On transiso-class graphs

Surendra Kumar Mishra and Ravindra Prasad Shukla

Abstract. In this paper, we have determined the number of isomorphism classes of transversals of subgroups of order 2 and 5 of Alt(5). Further, we have introduced two new graphs $\Gamma_{tic}(G)$ and $\Gamma_{d,tic}(G)$ on a finite group G, where d is the order of a subgroup of G and studied some properties of these graphs.

1. Introduction

Let G be a finite group and H be a subgroup of G. We say that a subset S of G is a normalized right transversal (NRT) of H in G, if S is obtained by choosing one and only one element from each right coset of H in G and $1 \in S$. For $x, y \in S$, define $\{x \circ y\} = S \cap Hxy$. Then with respect to this binary operation, S is a right loop with identity 1, that is, a right-quasigroup with both-sided identity (see [12, Proposition 4.3.3]). Conversely, every right loop can be embedded as an NRT in a group with some universal property (see [8, Theorem 3.4]).

Let S be an NRT of H in G. Let $\langle S \rangle$ be the subgroup of G generated by S and H_S be the subgroup $\langle S \rangle \cap H$. Then $H_S = \langle \{xy(x \circ y)^{-1} | x, y \in S\} \rangle$ and $H_SS = \langle S \rangle$ (see [8, Corollary 3.7]). Identifying S with the set $H \setminus G$ of all right cosets of H in G, we get a transitive permutation representation $\chi_S : G \to \text{Sym}(S)$ defined by $\{\chi_S(g)(x)\} = S \cap Hxg, g \in G, x \in S$. The kernel ker χ_S of this action is $\text{Core}_G(H)$, the core of H in G. Let $G_S = \chi_S(H_S)$, the group torsion of the right loop S (see [8]). The group G_S depends only on the right loop structure \circ on S and not on the subgroup H. Since χ_S is injective on S and if we identify S with $\chi_S(S)$, then $\chi_S(\langle S \rangle) = G_S S$ which also depends only on the right loop S and S is an NRT of G_S in $G_S S$. One can also verify that ker $(\chi_S|_{H_S S} : H_S S \to G_S S) =$ ker $(\chi_S|_{H_S} : H_S \to G_S) = \text{Core}_{H_S S}(H_S)$ and $\chi_S|_S =$ the identity map on S. Also, G_S is trivial if and only if (S, \circ) is a group (see [8]).

We denote the set of all normalized right transversals (NRTs) of H in G by $\mathcal{T}(G, H)$. We say that S and $T \in \mathcal{T}(G, H)$ are isomorphic (denoted by $S \cong T$), if their induced right loop structures are isomorphic. Let $\mathcal{I}(G, H)$ denote the set of isomorphism classes of NRTs of H in G. It has been proved in [10] as well as in [7] that $|\mathcal{I}(G, H)| = 1$ if and only if $H \trianglelefteq G$. It has been shown in [4] that there is no pair (G, H) such that $|\mathcal{I}(G, H)| = 2$. It is easy to observe that if H is a non-normal subgroup of G of index 3, then $|\mathcal{I}(G, H)| = 3$. The converse of this statement is

²⁰¹⁰ Mathematics Subject Classification: 20N05, 20D06, 20D60, 97K30

Keywords: Transversals; right loops; complete graphs.

proved in [5]. Also, it has been proved in [6] that there is no pair (G, H) such that $|\mathcal{I}(G, H)| = 4$. The integers 5, 6 also realized in this way (see [6]). It is easy to observe that if H is a subgroup of order 3 of Alt(4), then $|\mathcal{I}(G, H)| = 7$. Therefore it seems an interesting problem to know that which integer appears as $|\mathcal{I}(G, H)|$ for some pair (G, H).

In the Section 2, we have determined $|\mathcal{I}(G, H)|$, where G = Alt(5) and H be a non-normal subgroup of G of order 2 or 5. In the Section 3, we have defined two new graphs associated to the isomorphism classes of transversal of a subgroup in a finite group and studied some properties of these graphs.

2. Isomorphism classes of transversals in Alt(5)

Now, we state the following proposition whose proof is essentially the same proof of the Proposition 2.7 in [10].

Proposition 2.1. Let G be a finite group and H be a corefree subgroup of G. Let $T \in \mathcal{T}(G, H)$ such that $\langle T \rangle = G$. Let $\mathcal{O} = \{L \in \mathcal{T}(G, H) | T \cong L\}$. Then $Aut_H(G)$ acts transitively on the set \mathcal{O} .

Remark 2.2. If G is a finite group and H a subgroup of G such that $Core_G(H)$ is nontrivial, then the number $|\mathcal{I}(G, H)|$ may be different from the number of $Aut_H(G)$ -orbits in $\mathcal{T}(G, H)$. For example, let $G = \langle x, y | x^6 = 1 = y^2, yxy^{-1} = x^{-1} \rangle \cong D_{12}$, the dihedral group of order 12 and $H = \{1, x^3, y, yx^3\}$, where 1 is the identity of G. Then H is non-normal in G and [G:H] = 3. Hence $|\mathcal{I}(G,H)| = 3$. However, NRTs $\{1, x, x^2\}$, $\{1, yx, x^2\}$, $\{1, x, yx^2\}$ and $\{1, yx, yx^2\}$ to H in G, lie in different $Aut_H(G)$ -orbits (as the set of orders of group elements in any two NRTs are not same).

Lemma 2.3. Let L be a subgroup of G = Alt(5) of order 12. Then $L \cong Alt(4)$, the alternating group of degree 4.

Proof. Up to isomorphism, there are only 5 groups of order 12 (see [1, Theorem 5.1]),

- 1. $\mathbb{Z}_{12};$
- 2. $\mathbb{Z}_3 \times \mathbb{Z}_2 \times \mathbb{Z}_2;$
- 3. D_{12} , the dihedral group of order 12;
- 4. $\langle x, y | x^4 = y^3 = 1, xy = y^2 x \rangle;$
- 5. Alt(4).

Since G does not contain an element of order 12 or order 6 or order 4, hence it is not isomorphic to either of the groups in (1)-(4). Thus $L \cong Alt(4)$.

Lemma 2.4. Let K be a subgroup of Sym(5) of order 20. Then K is isomorphic to the group $\langle x, y | x^5 = y^4 = 1, yxy^{-1} = x^2 \rangle$, which is the one dimensional affine group over \mathbb{Z}_5 .

Proof. Up to isomorphism, there are only five non-isomorphic groups of order 20 (see [3]),

- 1. $\mathbb{Z}_{20};$
- 2. $\mathbb{Z}_{10} \times \mathbb{Z}_2$;
- 3. D_{20} , the dihedral group of order 20;
- 4. $M = \langle x, y \mid x^5 = y^4 = 1, yxy^{-1} = x^{-1} \rangle;$
- 5. $\langle x, y \mid x^5 = y^4 = 1, yxy^{-1} = x^2 \rangle$.

Since Sym(5) does not contain an element of order 10, K cannot be isomorphic to the either of the groups \mathbb{Z}_{20} , $\mathbb{Z}_{10} \times \mathbb{Z}_2$, D_{20} and M. This implies that K is not isomorphic to either of the groups in (1) - (4) (we observe that $Z(M) = \langle y^2 \rangle$). Thus K is isomorphic to the group $\langle x, y | x^5 = y^4 = 1, yxy^{-1} = x^2 \rangle$. \Box

Remark 2.5. Let G = Alt(5). Then Aut(G) = Inn(Sym(5)) (see [13, 2.17, p.299]). Since $Z(Sym(5)) = \{I\}$, we may identify Aut(G) with Sym(5) by identifying each $g \in Sym(5)$ with i_g , the inner automorphism of Sym(5), determined by $g \ (x \mapsto gxg^{-1})$. Thus for a subgroup H of G, $Aut_H(G) = N_{Sym(5)}(H)$.

Proposition 2.6. Let G = Alt(5). Let H be a subgroup of G of order 5. Then $Aut_H(G)$ is isomorphic to $\langle x, y | x^5 = y^4 = 1, yxy^{-1} = x^2 \rangle$, the one dimensional affine group over \mathbb{Z}_5 .

Proof. Let H be a subgroup of G of order 5. Then by Remark 2.5, $Aut_H(G) = N_{Sym(5)}(H)$. Since there are 6 Sylow 5-subgroups in Sym(5), $[Sym(5):N_{Sym(5)}(H)] = 6$. This implies that $|N_{Sym(5)}(H)| = 20 = |Aut_H(G)|$. Now, the proposition follows from the Lemma 2.4.

Proposition 2.7. Let G = Alt(5) and $H = \langle a = (12345) \rangle$. Let $S \in \mathcal{T}(G, H)$. Then $H \nsubseteq Stab_K(S)$, the stabilizer of S in K, where $K = N_{Sym(5)}(H)$ and the action of K is by conjugation.

Proof. Let $S_0 = \{ \alpha \in G : \alpha(5) = 5 \}$. Then $S_0 \cong Alt(4)$ and $S_0 \in \mathcal{T}(G, H)$. Let $S_0 = \{ I = a_0, a_1, a_2, a_3, a_4, a_5, a_6, a_7, a_8, a_9, a_{10}, a_{11} \}$, where $a_1 = (12)(34), a_2 = (13)(24), a_3 = (14)(23), a_4 = (123), a_5 = (132), a_6 = (124), a_7 = (142), a_8 = (134), a_9 = (143), a_{10} = (234), a_{11} = (243)$. Then there exists a unique map $\sigma : S_0 \to H$, with $\sigma(a_0) = a_0$ such that $S = S_{\sigma} = \{\sigma(a_i)a_i \mid 0 \leq i \leq 11\} \in \mathcal{T}(G, H)$. Assume that $Stab_K(S) \supseteq H$. Then

$$aSa^{-1} = S. \tag{1}$$

Now, $a\sigma(a_3)a_3a^{-1} = \sigma(a_3)aa_3a^{-1} = \sigma(a_3)a^2a_3$. Since $a\sigma(a_3)a_3a^{-1} \in S_{\sigma} (= S)$, by (1), $\sigma(a_3)a^2a_3 \in S$. This gives $\sigma(a_3)a^2 = \sigma(a_3)$. This implies that $a^2 = I$, a contradiction. Thus $Stab_K(S) \not\supseteq H$.

Corollary 2.8. Let G, H, K and S be as in the Proposition 2.7. Then $Stab_K(S) \ncong D_{10}$, the dihedral group of order 10. Further, $Stab_K(S) \neq K$.

Proof. We observe that K has only one subgroup L of order 10 isomorphic to the dihedral group D_{10} . Since L contains the subgroup H of K, by Proposition 2.7, $Stab_K(S) \neq L$. Since $H \subseteq K$, by Proposition 2.7 $Stab_K(S) \neq K$.

Proposition 2.9. Let G = Alt(5) and $H = \langle (12345) \rangle$. Let $S \in \mathcal{T}(G, H)$ such that $\langle S \rangle = S$. Then $S = hS_0h^{-1}$, where $h \in H$ and $S_0 = \{ \alpha \in G : \alpha(5) = 5 \} \in \mathcal{T}(G, H)$.

Proof. We observe that $S_0 = \langle (123), (124) \rangle \cong Alt(4)$. Let $S \in \mathcal{T}(G, H)$ such that $\langle S \rangle = S$. By Lemma 2.3, $S \cong S_0$. This implies that $S = \langle (abc), (def) \rangle$, where $a, b, c, d, e, f \in \{1, 2, 3, 4, 5\}$. Since $S \cong S_0$ and |(123)(124)| = 2, |(abc)(def)| = 2. This implies that d = a, e = b and hence $S = \langle (abc), (abf) \rangle$, where a, b, c and f are distinct. Thus we have a permutation $\alpha \in Sym(5)$ with $\alpha(1) = a, \alpha(2) = b$, $\alpha(3) = c, \alpha(4) = f$ and $\alpha(5) = d_0$, where $d_0 \in \{1, 2, 3, 4, 5\} \setminus \{a, b, c, f\}$. Thus

$$\alpha S_0 \alpha^{-1} = \left\langle \left(\alpha(1)\alpha(2)\alpha(3) \right), \left(\alpha(1)\alpha(2)\alpha(4) \right) \right\rangle = \left\langle (abc), (abf) \right\rangle = S.$$
⁽²⁾

Next, since $\alpha \in Sym(5)$, either $\alpha \in Alt(5)$ or $(12)\alpha \in Alt(5)$. First, assume that $\alpha \in Alt(5)$. Then there exists $h_1 \in H$ and $\beta_1 \in S_0$ such that $\alpha = h_1\beta_1$. Thus $h_1 = \alpha\beta_1^{-1} \in H$. Since $\beta_1 \in S_0$, by (2) $h_1S_0h_1^{-1} = \alpha\beta_1^{-1}S_0(\alpha\beta_1^{-1})^{-1} = S$.

Next, assume that $(12)\alpha \in Alt(5)$. Then there exists $h_2 \in H$ and $\beta_2 \in S_0$ such that $(12)\alpha = h_2\beta_2$. Thus $h_2 = (12)\alpha\beta_2^{-1}$. Now, since

 $((12)\alpha)(123)((12)\alpha)^{-1}$

$$= (\alpha(2)\alpha(1)\alpha(3)) \text{ and } ((12)\alpha)(124)((12)\alpha)^{-1} = (\alpha(2)\alpha(1)\alpha(4)), \text{ therefore}$$

$$\langle (12)\alpha \rangle S_0((12)\alpha) = \langle (\alpha(2)\alpha(1)\alpha(3)), (\alpha(2)\alpha(1)\alpha(4)) \rangle = \alpha S_0 \alpha^{-1}.$$
(3)

 $\langle \mathbf{a} \rangle$

Since $\beta_2 \in S_0$, by (3) $h_2 S_0 h_2^{-1} = S$. Thus in either cases, we have $S = h S_0 h^{-1}$, for some $h \in H$.

Remark 2.10. Let G be a finite group. If H and K are subgroups of G such that f(H) = K for some $f \in Aut(G)$, then $|\mathcal{I}(G, H)| = |\mathcal{I}(G, K)|$.

Proposition 2.11. Let G = Alt(5), the alternating group of degree 5 and H be a subgroup of G of order 5. Then $|\mathcal{I}(G, H)| = 5^2 \cdot (13 + 5^2 + 5^3 + 5^4 + 5^5 + 5^6 + 5^7)$.

 $(142), a_8 = (134), a_9 = (143), a_{10} = (234), a_{11} = (243)$. Then $S_0 \cong Alt(4)$. We observe that for each $S \in \mathcal{T}(G, H)$, there exists a unique map $\sigma : S_0 \to H$ such that $\sigma(a_0) = a_0$ and $S = S_{\sigma} = \{\sigma(a_i)a_i : 0 \leq i \leq 11\}$. Let $S \in \mathcal{T}(G, H)$. Then $S = S_{\sigma}$ for a unique map $\sigma : S_0 \to H$ with $\sigma(a_0) = a_0$. Further, since |H| = 5, a prime number, either $\langle S \rangle = S$ or $\langle S \rangle = G$. Assume that $\langle S \rangle = S$. Then by Lemma 2.3, $S \cong S_0 \cong Alt(4)$. By Proposition 2.9 all non-generating NRTs of H in G are conjugate, all non-generating NRTs of H in G forms a single $Aut_H(G)$ -orbit in $\mathcal{T}(G, H)$, where $Aut_H(G)$ is identified with the subgroup $K = N_{Sym(5)}(H)$ of Sym(5) and the action of K on $\mathcal{T}(G, H)$ is by conjugation (see also Remark 2.5). If $\langle S \rangle = G$, then by Proposition 2.1, the isomorphism class of S on $\mathcal{T}(G, H)$ forms a single $Aut_H(G)$ -orbit. Thus $\mathcal{I}(G, H)$ is precisely the orbits of K in $\mathcal{T}(G, H)$. Now, we describe the orbits of K in $\mathcal{T}(G, H)$. Since $H = \langle a = (12345) \rangle$, we have

$$N_{Sym(5)}(H) = K = \left\langle a, b = (1342) \mid a^5 = b^4 = 1, bab^{-1} = a^2 \right\rangle,$$

K is isomorphic to one dimensional affine group over \mathbb{Z}_5 (see Proposition 2.6). Further, by Proposition 2.7 and Corollary 2.8, $|Stab_K(S)| \in \{1, 2, 4\}$.

Assume that $|Stab_K(S)| = 4$. Since a subgroup of K of order 4 is a Sylow 2-subgroup of K, we may assume that $Stab_K(S) = \langle b = (1342) \rangle = K_1$. Since $bab^{-1} = a^2$, we obtain the following relations:

$$\left. \begin{array}{l} \sigma(a_0) &= \sigma(a_1) &= \sigma(a_2) &= \sigma(a_3) &= I \\ \sigma(a_6) &= (\sigma(a_4))^2, \ \sigma(a_9) &= (\sigma(a_4))^3, \ \sigma(a_{11}) &= (\sigma(a_4))^4, \\ \sigma(a_7) &= (\sigma(a_5))^2, \ \sigma(a_8) &= (\sigma(a_5))^3, \ \sigma(a_{10}) &= (\sigma(a_5))^4. \end{array} \right\}$$

$$\left. \begin{array}{l} (4) \end{array} \right.$$

Conversely, if $\sigma_1: S_0 \to H$ is a map satisfying the relations (4), then $Stab_K(S_{\sigma_1}) = K_1$, for if $g \in K \setminus K_1$, then $a_3 \notin gS_{\sigma_1}g^{-1}$ (note that $a_3 \in S_{\sigma_1}$) and $K_1 \subseteq Stab_K(S_{\sigma_1})$. Let $\sigma_1: S_0 \to H$ be a map satisfying (4). Then $S_{\sigma_1} = \{\sigma_1(a_i)a_i \mid 0 \leq i \leq 11\} \in \mathcal{T}(G, H)$ and $Stab_K(S_{\sigma_1}) = K_1$. Assume that $T \in \mathcal{T}(G, H)$ lies in the K-orbit of S_{σ_1} . Then there exists $g \in K$ such that $gS_{\sigma_1}g^{-1} = T$. This implies that $Stab_K(T) = gK_1g^{-1}$. Since $N_K(K_1) = K_1$, if $g \notin K_1$, then $Stab_K(T) \neq K_1$. Further, if $g \in K_1$, then $S_{\sigma_1} = gS_{\sigma_1}g^{-1} = T$. This implies that a map $\sigma: S_0 \to H$ satisfying (4) can be completely determined by assigning values of $\sigma(a_4)$ and $\sigma(a_5)$. Since each of $\sigma(a_4)$ and $\sigma(a_5)$ can take five distinct values, we have 25 $Aut_H(G) = K$ -orbits in $\mathcal{T}(G, H)$ each of size $\lfloor \frac{|K|}{|K_1|} = 5$.

Next, assume that $|Stab_K(S)| = 2$. Since a Sylow 2-subgroup of K is cyclic, any two subgroups of K of order 2 are conjugate. Thus we may assume that $Stab_K(S) = \langle b^2 = (14)(23) \rangle = L_1$. Since $b^2 a b^{-2} = a^4$, we obtain the following relations:

$$\begin{array}{l}
\sigma(a_0) = \sigma(a_1) = \sigma(a_2) = \sigma(a_3) = 1, \\
\sigma(a_8) = (\sigma(a_7))^4, \quad \sigma(a_9) = (\sigma(a_6))^4, \\
\sigma(a_{10}) = (\sigma(a_5))^4, \quad \sigma(a_{11}) = (\sigma(a_4))^4.
\end{array}$$
(5)

Conversely, let $\sigma_1 : S_0 \to H$ be a map satisfying (5). Then $Stab_K(S_{\sigma_1}) \supseteq L_1$. From the relations (5), we observe that σ_1 satisfying (5) can be completely determined

by assigning values of $\sigma_1(a_4)$, $\sigma_1(a_5)$, $\sigma_1(a_6)$ and $\sigma_1(a_7)$. Since each of $\sigma_1(a_i)$'s $(4 \leq i \leq 7)$ can take five distinct values, there are 625 choices of σ_1 satisfying (5). Further, from the relations (4) and (5), we observe that if a map from S_0 to H satisfies the relations (4), then it also satisfies (5). Further, since there are 25 choices of maps $\sigma : S_0 \to H$ satisfying (4), there are 600 choices of maps from $S_0 \to H$ which satisfies (5) but not (4). Let $\sigma_1 : S_0 \to H$ be a map which satisfies the relations (5) but not (4). Then $S_{\sigma_1} = \{\sigma_1(a_i)a_i \mid 0 \leq i \leq 11\} \in \mathcal{T}(G, H)$ and $Stab_K(S_{\sigma_1}) = L_1$. Assume that $T \in \mathcal{T}(G, H)$ lies in the K-orbit of S_{σ_1} . Then there exists $g \in K$ such that $gS_{\sigma_1}g^{-1} = T$. This implies that $Stab_K(T) = gL_1g^{-1}$. Since $N_K(L_1) = K_1$, if $g \notin K_1$, then $Stab_K(T) \neq L_1$. Next, if $g \in K_1 \setminus L_1$, then $gS_{\sigma_1}g^{-1} = T(\neq S_{\sigma_1})$. Since $[K_1 : L_1] = 2$, there exists a unique $T \in \mathcal{T}(G, H)$, different from S_{σ_1} which lies in the K-orbit of S_{σ_1} and $Stab_K(T) = L_1$. Thus by the discussion made above, there are 300 K-orbits in $\mathcal{T}(G, H)$ each of size $\frac{|K|}{|L_1|} = 10$.

Lastly, assume that $|Stab_K(S)| = 1$. As argued in the above paragraphs there are 125 NRTs in $\mathcal{T}(G, H)$ whose stabilizer are of order 4 and there are 3000 NRTs in $\mathcal{T}(G, H)$ whose stabilizer are of order 2, there are $5^{11} - 5^5 = 5^5(5^6 - 1)$ NRTs whose stabilizer are trivial. Hence, we have $5^4 \cdot (1+5+5^2+5^3+5^4+5^5)$, K-orbits in $\mathcal{T}(G, H)$ each of size 20. Thus $|\mathcal{I}(G, H)| = 5^2 + 3 \cdot 4 \cdot 5^2 + 5^4 \cdot (1+5+5^2+5^3+5^4+5^5) = 5^2 \cdot (13+5^2+5^3+5^4+5^5+5^6+5^7)$.

Corollary 2.12. There are at least, $5^2 \cdot (13 + 5^2 + 5^3 + 5^4 + 5^5 + 5^6 + 5^7)$ non-isomorphic right loops of order 12.

Proof. Let G = Alt(5), the alternating group of degree 5 and H be a subgroup of G of order 5. If $S \in \mathcal{T}(G, H)$, then S is a right loop of order 12 (see [12, Proposition 4.3.3, p.102]). By Proposition 2.11, $|\mathcal{I}(G, H)|$ is precisely the number of $\operatorname{Aut}_H(G)$ -orbits in $\mathcal{T}(G, H)$. Thus if $S_1, S_2 \in \mathcal{T}(G, H)$ belongs to different $\operatorname{Aut}_H(G)$ -orbits, then $S_1 \ncong S_2$. This completes the proof. \Box

Lemma 2.13. Let L be a subgroup of Sym(5) of order 8. Then L is isomorphic to D_8 , the dihedral group of order 8.

Proof. Since $|Sym(5)| = 2^3 \cdot 3 \cdot 5$, if *L* is a subgroup of Sym(5) of order 8, then it is a Sylow 2-subgroup of Sym(5). Let $N = \langle (13), (1234) \rangle$. Then *N* is a subgroup of Sym(5) of order 8 isomorphic to D_8 . Since any two Sylow 2-subgroups of Sym(5) are conjugate, the lemma follows.

Proposition 2.14. Let G = Alt(5), the alternating group of degree 5 and H be a subgroup of G of order 2. Then $|\mathcal{I}(G, H)| = 2^{26} + 10$.

Proof. Let H be a subgroup of G of order 2. Since any two elements of G of order 2 are conjugate, by Remark 2.10, we may assume that $H = \{I, x = (12)(34)\}$, where I is the identity element of G. Let $K = Aut_H(G)$. By Remark 2.5, we identify K with the group $N_{Sym(5)}(H) = C_{Sym(5)}(H)$, the centralizer of H in Sym(5). Since

there are 15 conjugates of (12)(34) in Sym(5), $|C_{Sym(5)}(H)| = 8$. By Lemma 2.13, $C_{Sym(5)}(H) \cong D_8$. Since $H = \{I, x = (12)(34)\}$, we have

 $K = \{I, (1324), (12)(34), (1423), (14)(23), (34), (13)(24), (12)\}.$

Consider the subgroups $V_4 = \{I, (12)(34), (13)(24), (14)(23)\}$ (isomorphic to the Klein's four group) and $L = \{g \in G : g(5) = 5\}$ of G. Let $T_1 = \{b_0 = I, b_1 = (13)(24)\}, T_2 = \{c_0 = I, c_1 = (134), c_2 = (143)\}$ and $T_3 = \{d_0 = I, d_1 = (12345), d_2 = (13524), d_3 = (14253), d_4 = (15432)\}$. Then $T_1 \in \mathcal{T}(V_4, H), T_2 \in \mathcal{T}(L, V_4)$ and $T_3 \in \mathcal{T}(G, L)$. Thus $S_0 = T_1 T_2 T_3 = \{b_i c_j d_k : 0 \leq i \leq 1, 0 \leq j \leq 2, 0 \leq k \leq 4\} \in \mathcal{T}(G, H)$.

Since G is a simple group and H is of order 2, $\langle S \rangle = G$, for every $S \in \mathcal{T}(G, H)$. Thus by Proposition 2.1, $\mathcal{I}(G, H)$ is precisely the orbits of K in $\mathcal{T}(G, H)$, where the action of K is by conjugation.

Let $S \in \mathcal{T}(G, H)$. Then there exists a unique map $\sigma : S_0 \to H$ such that $\sigma(b_0c_0d_0 = I) = I$ and $S = S_{\sigma} = \{\sigma(b_ic_jd_k)b_ic_jd_k : 0 \leq i \leq 1, 0 \leq j \leq 2, 0 \leq k \leq 4\}$. Let $g \in \{(1324), (1423), (12), (34)\} \subseteq K$. Then $g \notin Stab_K(S)$, for if $g \in Stab_K(S)$, then $g\sigma(b_1c_0d_0)b_1c_0d_0g^{-1} = \sigma(b_1c_0d_0)xb_1c_0d_0$, a contradiction as $x = (12)(34) \in H$ and $\sigma(b_1c_0d_0)b_1c_0d_0 \in S$. Let $g = (13)(24) \in K$. Then $g \notin Stab_K(S)$, for if $g \in Stab_K(S)$, then $g\sigma(b_0c_1d_0)b_0c_1d_0g^{-1} = \sigma(b_0c_1d_0)xb_0c_1d_0 \in S$ and so we have a contradiction as $x = (12)(34) \neq I$. Next, let $g = (14)(23) \in K$. Then $g \notin Stab_K(S)$, for if $g \in Stab_K(S)$, then $g\sigma(b_0c_2d_0)b_0c_2d_0g^{-1} = \sigma(b_0c_2d_0)xb_0c_2d_0 \in S, \sigma(b_0c_2d_0)x = \sigma(b_0c_2d_0)$, again a contradiction. The above arguments imply that stabilizer in K of an NRT of H in G is either H or $\{I\}$. Thus a K-orbit in $\mathcal{T}(G, H)$ is either of size 4 or of size 8.

Now, assume that $Stab_K(S) = H$. Then σ satisfies the following relations:

$$\left. \begin{array}{l} \sigma(b_{1}c_{0}d_{0}) = I \ or \ x, \ \sigma(b_{0}c_{1}d_{4})x = \sigma(b_{1}c_{0}d_{3}), \ \sigma(b_{0}c_{2}d_{1})x = \sigma(b_{0}c_{1}d_{2}) \\ \sigma(b_{1}c_{1}d_{1})x = \sigma(b_{1}c_{0}d_{2}), \sigma(b_{1}c_{2}d_{2})x = \sigma(b_{1}c_{0}d_{1}), \sigma(b_{0}c_{2}d_{3}) = \sigma(b_{0}c_{0}d_{4}) \\ \sigma(b_{0}c_{2}d_{0}) = \sigma(b_{1}c_{2}d_{0}), \ \sigma(b_{0}c_{1}d_{3}) = \sigma(b_{1}c_{2}d_{4}), \ \sigma(b_{0}c_{2}d_{2})x = \sigma(b_{0}c_{0}d_{1}) \\ \sigma(b_{1}c_{1}d_{2})x = \sigma(b_{1}c_{2}d_{1}), \ \sigma(b_{1}c_{0}d_{4}) = \sigma(b_{1}c_{2}d_{3}), \ \sigma(b_{0}c_{1}d_{1})x = \sigma(b_{0}c_{0}d_{2}) \\ \sigma(b_{0}c_{1}d_{0})x = \sigma(b_{1}c_{1}d_{0}), \ \sigma(b_{0}c_{2}d_{4}) = \sigma(b_{1}c_{1}d_{3}), \ \sigma(b_{1}c_{1}d_{4})x = \sigma(b_{0}c_{0}d_{3}) \end{array} \right\}$$

$$(6)$$

Conversely, if a map $\sigma_1 : S_0 \to H$ with $\sigma_1(I) = I$ satisfies (6), then $Stab_K(S_{\sigma_1}) = H$. *H*. From the relations (6), we find that there are 20 *K*-orbits in $\mathcal{T}(G, H)$ each of size 4. Hence we have $\frac{2^{29}-80}{8} = 2^{26} - 10$, *K*-orbits in $\mathcal{T}(G, H)$ each of size 8. Therefore $|\mathcal{I}(G, H)| = 2^{26} - 10 + 20 = 2^{26} + 10$.

Corollary 2.15. There are at least, $2^{26} + 10$ non-isomorphic right loops of order 30.

Proof. Let G = Alt(5), the alternating group of degree 5 and H be a subgroup of G of order 2. If $S \in \mathcal{T}(G, H)$, then S is a right loop of order 30 (see [12, Proposition 4.3.3, p.102]). By Proposition 2.14, $|\mathcal{I}(G, H)|$ is precisely the number of $\operatorname{Aut}_H(G)$ -orbits in $\mathcal{T}(G, H)$. Thus if $S_1, S_2 \in \mathcal{T}(G, H)$ belongs to different $\operatorname{Aut}_H(G)$ -orbits, then $S_1 \ncong S_2$. This completes the proof. \Box

3. Graphs and isomorphism classes of transversals

In this section, we have introduced two graphs associated to the isomorphism classes of transversals of a subgroup of a finite group and studied some properties of these graphs.

Definition 3.1. Let G be a finite group and X be the set of all nontrivial proper subgroups of G. We define a graph $\Gamma_{tic}(G)$ on G whose vertex set is X and two distinct vertices H and K are adjacent in $\Gamma_{tic}(G)$ if and only if $|\mathcal{I}(G, H)| =$ $|\mathcal{I}(G, K)|$. We will call this graph the *transiso-class* graph.

It is easy to observe that $\Gamma_{tic}(G)$ is complete if and only if $|\mathcal{I}(G, H)| = |\mathcal{I}(G, K)|$ for every $H, K \in X$.

Definition 3.2. Let G be a finite group. Let d be the order of a subgroup of G and X_d be the set of all subgroups of G of order d. We define a graph $\Gamma_{d,tic}(G)$ on G with vertex set X_d and two distinct vertices are adjacent in $\Gamma_{d,tic}(G)$ if and only if $|\mathcal{I}(G,H)| = |\mathcal{I}(G,K)|$. We call the graph $\Gamma_{d,tic}(G)$ as d-transiso-class graph.

We observe that $\Gamma_{d,tic}(G)$ is complete if and only if $|\mathcal{I}(G,H)| = |\mathcal{I}(G,K)|$ for any $H, K \in X_d$.

Remark 3.3. In the definitions 3.1 and 3.2, we observe that $\Gamma_{tic}(G)$ and $\Gamma_{d,tic}(G)$ both are connected if and only if they are complete.

Definition 3.4. ([11], p.143)A group G is said to be a *Dedekind* group if all the subgroups of G are normal in G.

Example 3.5. Let G be a finite Dedekind group. Since each subgroup of G is normal in G, $|\mathcal{I}(G, H)| = 1$ (see [10, Main Theorem, p.643]), for every subgroup H of G. Thus both $\Gamma_{tic}(G)$ and $\Gamma_{d,tic}(G)$ are complete, where d is the order of subgroup of G.

Proposition 3.6. Let G = Sym(3). Then $\Gamma_{d,tic}(G)$ is complete, d is the order of a subgroup of G.

Proof. Let $X_d = \{H \leq G : |H| = d\}$. Obviously, $d \in \{1, 2, 3, 6\}$. If d = 1 or d = 3 or d = 6, then $H \in X_d$ is normal in G and so $|\mathcal{I}(G, H)| = 1$. Thus $\Gamma_{d,tic}(G)$ is complete. Next, assume that d = 2. Since all 2-cycles in G are conjugate, any two members of X_2 are conjugate. Hence by Remark 2.10, $|\mathcal{I}(G, H)| = |\mathcal{I}(G, K)|$ for every $H, K \in X_2$. Thus $\Gamma_{2,tic}(G)$ is complete. \Box

Remark 3.7. It is easy to observe that if H is a subgroup of G = Sym(3) of order 2, then $|\mathcal{I}(G, H)| = 3$. However, if H = Alt(3), the alternating group of degree 3, then $|\mathcal{I}(G, H)| = 1$ (see [10]). Consequently, $\Gamma_{tic}(Sym(3))$ is not complete.

Proposition 3.8. Let G = Alt(4). Then $\Gamma_{d,tic}(G)$ is complete for every d, where d is the order of a subgroup of G.

Proof. Let G = Alt(4). Let X_d denote the set of all subgroups of G of order d. Then any two members of X_d are conjugate. By Remark 2.10, $|\mathcal{I}(G,H)| = |\mathcal{I}(G,K)|$ for every $H, K \in X_d$. Thus $\Gamma_{d.tic}(G)$ is complete for every d. \Box

Proposition 3.9. Let G = Alt(4). Then $\Gamma_{tic}(G)$ is not complete.

Proof. Let G = Alt(4). If H is a subgroup of G of order 2, then $|\mathcal{I}(G, H)| = 5$ (see [6]). Also, It is easy to observe that if K is a subgroup of order 3 of Alt(4), then $|\mathcal{I}(G, K)| = 7$. Thus H and K are not adjacent in $\Gamma_{tic}(G)$. Hence $\Gamma_{tic}(G)$ is not complete.

Lemma 3.10. Let G = Alt(5). Let X_d be the set of all subgroups of G of order d. Then any two members of X_d are conjugate.

Proof. Let X_d be the set of all subgroups of G of order d. Since G is simple, if $H \in X_d$, then $[G:H] \ge 5$ (see [13, p. 308]). Hence $d \in \{1, 2, 3, 4, 5, 6, 10, 12, 60\}$. If d = 1 or d = 60, then the proof is over. Assume that d = 2. Let $H \in X_2$. Then H is of the form $\{I, \sigma\}$, where $\sigma \in Alt(5)$ is product of two distinct transpositions. Since all permutations of the form σ are conjugate in Alt(5), any two members of X_2 are conjugate. Further, if $d \in \{3, 4, 5\}$, then any member of X_d is a Sylow d-subgroup of G. Hence any two members of X_d are conjugate.

Next, assume that d = 6. Since G has no permutation of order 6, a subgroup of order 6 in G is isomorphic to Sym(3). If K is a subgroup of G of order 6, then $N_G(K) = K$. Hence there are 10 conjugates of K in G. Since there are exactly 10 subgroups of G of order 6, all members of X_6 form a complete conjugacy class. Now, assume that d = 10. Again, since G has no permutation of order 10, a subgroup of G of order 10 is isomorphic to D_{10} . If $L \in X_{10}$, then it is easy to observe that $N_G(L) = L$. Thus there are 6 conjugates of L in G. Since there are exactly 6 subgroups of G of order 10, any two subgroups of G of order 10 are conjugate. Lastly, assume that d = 12. By Proposition 2.9 any two subgroups of G of order 12 are conjugate.

Proposition 3.11. Let G = Alt(5). Then $\Gamma_{d,tic}(G)$ is complete, for every d, where d is the order of a subgroup of G.

Proof. Let G = Alt(5). Let X_d denote the set of all subgroups of G of order d. Then by Lemma 3.10, any two members of X_d are conjugate. By Remark 2.10, $|\mathcal{I}(G,H)| = |\mathcal{I}(G,K)|$, for any $H, K \in X_d$. Hence $\Gamma_{d,tic}(G)$ is complete for every d.

Remark 3.12. In the above proposition, we observe that $\Gamma_{d,tic}(Alt(5))$ is complete for every d, where d is the order of a subgroup of Alt(5). However, Alt(5) is not a Dedekind group.

Proposition 3.13. Let G = Alt(5). Then $\Gamma_{tic}(G)$ is not complete.

Proof. Let G = Alt(5). Let X be the set of all nontrivial proper subgroups of G. Let H be a subgroup of G of order 2. Then by Proposition 2.14, $|\mathcal{I}(G, H)| = 2^{26} + 10$.

Let K be a subgroup of G of order 5. Then by Proposition 2.11, $|\mathcal{I}(G, K)| \neq |\mathcal{I}(G, H)|$. Thus both H and K are in X, however they are not adjacent in $\Gamma_{tic}(G)$. Hence $\Gamma_{tic}(G)$ is not complete.

Proposition 3.14. Let G be a finite p-group, p is a prime. Then $\Gamma_{d,tic}(G)$ is complete if and only if each member of X_d is normal in G, where X_d is the set of all subgroups of G of order d.

Proof. Let G be a finite p-group. Then for each divisor d of |G|, G contains a normal subgroup H of order d (see [9, Proposition 9.1.23]). Thus $\Gamma_{d,tic}(G)$ is complete if $|\mathcal{I}(G,K)| = 1$ for every $K \in X_d$. Consequently, each $K \in X_d$ is normal in G (see [10]). Conversely, assume that each member of X_d is normal in G. Then $|\mathcal{I}(G,H)| = 1$, for any $H \in X_d$. Hence $\Gamma_{d,tic}(G)$ is complete.

Corollary 3.15. Let G be a nonabelian group of order order p^3 , p is a prime. Then $\Gamma_{p,tic}(G)$ is complete if and only if $G \cong Q_8$.

Proof. Assume that $\Gamma_{p,tic}(G)$ is complete. By the above proposition each subgroup of G of order p is normal in G. Since a subgroup of G of order p^2 is maximal in G, it is normal in G. Thus if $\Gamma_{p,tic}(G)$ is complete, then all subgroups of G are normal in G. Hence G is a Dedekind group. Thus by [11, p.143], $G \cong Q_8$. Conversely, if $G = Q_8$, then $\Gamma_{2,tic}(G)$ is complete follows from the Example 3.5.

Proposition 3.16. Let $G = D_{2n}$. If n is even, then $\Gamma_{2,tic}(G)$ is not complete.

Proof. Let X_2 be the set of all subgroups of G of order 2. Since the center Z(G) of G is of order 2, $|\mathcal{I}(G, Z(G))| = 1$. Again if $H \in X_2$ and H is non-normal, then $|\mathcal{I}(G, H)| \neq 1$ (see [10, Main Theorem, p.643]). Thus Z(G) and H are not adjacent in $\Gamma_{2,tic}(G)$. Consequently, $\Gamma_{2,tic}(G)$ is not complete.

Let $G = D_8 = \langle a, b : a^2 = b^4 = 1$, $aba = b^{-1} \rangle$. Let $X_2 = \{H_1 = \langle a \rangle, H_2 = \langle ba \rangle, H_3 = \langle b^2 a \rangle, H_4 = \langle b^3 a \rangle, H_5 = \langle b^2 \rangle \}$ be the set of all subgroups of G of order 2 and let $X_4 = \{K_1 = \langle b \rangle, K_2 = \langle b^2, a \rangle, K_3 = \langle b^2, ba \rangle \}$ be the set of all subgroups of G of order 4. Then the connectivity of subgroups in $\Gamma_{2,tic}(D_8)$ and $\Gamma_{4,tic}(D_8)$ can be shown in following pictorial form:

$$H_{2} \longrightarrow H_{4}$$

$$H_{1} \longrightarrow H_{3}$$
(a) Γ_{1}
(b) Γ_{2}

Figure 1: $\Gamma_{2,tic}(D_8) = \Gamma_1 \cup \Gamma_2$

Figure 2: $\Gamma_{4,tic}(D_8)$

Proposition 3.17. Let G be a finite group containing a nontrivial proper normal subgroup. Assume that $\Gamma_{tic}(G)$ is complete. Then G is a Dedekind group.

Proof. Let X be the set of all nontrivial proper subgroups of G. Then there exists $H \in X$ such that $H \trianglelefteq G$ and hence $|\mathcal{I}(G, H)| = 1$ (see [10, Main Theorem, p.643]). Assume that $\Gamma_{tic}(G)$ is complete. Then $|\mathcal{I}(G, K)| = 1$, for every $K \in X$. Thus each subgroup of G is normal in G (see [10]). Hence G is a Dedekind group. \Box

In the Proposition 3.17, we saw that if $\Gamma_{tic}(G)$ is complete and G has a nontrivial proper normal subgroup, then G is Dedekind. Then, we may ask the following questions:

Question 1. Does there exists a finite non-abelian simple group G such that $\Gamma_{tic}(G)$ complete ?

Question 2. Let G be a finite group. Let X_d be the set of all subgroups of G of order d. Assume that $\Gamma_{d,tic}$ is complete. Then what can we say about the members of X_d ?

Acknowledgement. The authors are grateful to the anonymous referee for the valuable suggestions for adding the Corollary 2 and 3. During the work of this paper the first author was supported (financially) by CSIR, Government of India.

References

- [1] M. Artin, Algebra, PHI Learning Private Limited, New Delhi, 2003.
- [2] R. Diestel, Graph Theory, Springer-Verlag, New York, 2005.
- [3] D. Dummit and R. Foote, Abstract Algebra, J. Wiley & Sons, New Delhi, 2004.
- [4] V.K. Jain and R.P. Shukla, On the isomorphism classes of transversals, Comm. Alg., 36 (2008), 1717–1725.
- [5] V.K. Jain and R.P. Shukla, On the isomorphism classes of transversals II, Comm. Alg., 39 (2011), 2024–2036.
- [6] V. Kakkar and R.P. Shukla, On the number of isomorphism classes of transversals, Proc. Indian Acad. Sci. (Math. Sci.), 123 (2013), 345–359.

- [7] V. Kakkar and R.P. Shukla, Some characterizations of a normal subgroups of a group and isotopic classes of transversals, Algebra Colloq., 23 (2106), 409-422.
- [8] R. Lal, Transversals in groups. J. Algebra, 181 (1996), 70–81.
- [9] R. Lal, Algebra 1, Infosys Sci. Found. Ser. Math. Sci., Singapore, 2017.
- [10] R. Lal and R.P. Shukla, Perfectly stable subgroups of finite groups, Comm. Alg., 24 (1996), 643–657.
- [11] D.J.S. Robinson, A Course in the Theory of Groups, Springer-Verlag, 1996.
- [12] J.D.H. Smith and A.B. Romanowska, Post-Modern Algebra, J. Wiley & Sons, New York, 1991.
- [13] M. Suzuki, Group Theory I, Springer-Verlag, 1982.

Received February 14, 2021

Department of Mathematics, University of Allahabad, Prayagraj, 211002, India. e-mails: surendramishra557@gmail.com (S.K. Mishra), shuklarp@gmail.com (R.P. Shukla)