On transiso-class graphs

Surendra Kumar Mishra and Ravindra Prasad Shukla

Abstract

In this paper, we have determined the number of isomorphism classes of transversals of subgroups of order 2 and 5 of $\operatorname{Alt}(5)$. Further, we have introduced two new graphs $\Gamma_{t i c}(G)$ and $\Gamma_{d, t i c}(G)$ on a finite group G, where d is the order of a subgroup of G and studied some properties of these graphs.

1. Introduction

Let G be a finite group and H be a subgroup of G. We say that a subset S of G is a normalized right transversal (NRT) of H in G, if S is obtained by choosing one and only one element from each right coset of H in G and $1 \in S$. For $x, y \in S$, define $\{x \circ y\}=S \cap H x y$. Then with respect to this binary operation, S is a right loop with identity 1 , that is, a right-quasigroup with both-sided identity (see [12, Proposition 4.3.3]). Conversely, every right loop can be embedded as an NRT in a group with some universal property (see [8, Theorem 3.4]).

Let S be an NRT of H in G. Let $\langle S\rangle$ be the subgroup of G generated by S and H_{S} be the subgroup $\langle S\rangle \cap H$. Then $H_{S}=\left\langle\left\{x y(x \circ y)^{-1} \mid x, y \in S\right\}\right\rangle$ and $H_{S} S=\langle S\rangle$ (see [8, Corollary 3.7]). Identifying S with the set $H \backslash G$ of all right cosets of H in G, we get a transitive permutation representation $\chi_{S}: G \rightarrow \operatorname{Sym}(S)$ defined by $\left\{\chi_{S}(g)(x)\right\}=S \cap H x g, g \in G, x \in S$. The kernel ker χ_{S} of this action is Core $_{G}(H)$, the core of H in G. Let $G_{S}=\chi_{S}\left(H_{S}\right)$, the group torsion of the right loop S (see [8]). The group G_{S} depends only on the right loop structure o on S and not on the subgroup H. Since χ_{S} is injective on S and if we identify S with $\chi_{S}(S)$, then $\chi_{S}(\langle S\rangle)=G_{S} S$ which also depends only on the right loop S and S is an NRT of G_{S} in $G_{S} S$. One can also verify that $\operatorname{ker}\left(\left.\chi_{S}\right|_{H_{S} S}: H_{S} S \rightarrow G_{S} S\right)=$ $\operatorname{ker}\left(\left.\chi_{S}\right|_{H_{S}}: H_{S} \rightarrow G_{S}\right)=\operatorname{Core}_{H_{S} S}\left(H_{S}\right)$ and $\left.\chi_{S}\right|_{S}=$ the identity map on S. Also, G_{S} is trivial if and only if (S, \circ) is a group (see [8]).

We denote the set of all normalized right transversals (NRTs) of H in G by $\mathcal{T}(G, H)$. We say that S and $T \in \mathcal{T}(G, H)$ are isomorphic (denoted by $S \cong T$), if their induced right loop structures are isomorphic. Let $\mathcal{I}(G, H)$ denote the set of isomorphism classes of NRTs of H in G. It has been proved in [10] as well as in [7] that $|\mathcal{I}(G, H)|=1$ if and only if $H \unlhd G$. It has been shown in [4] that there is no pair (G, H) such that $|\mathcal{I}(G, H)|=2$. It is easy to observe that if H is a non-normal subgroup of G of index 3 , then $|\mathcal{I}(G, H)|=3$. The converse of this statement is

[^0]proved in [5]. Also, it has been proved in [6] that there is no pair (G, H) such that $|\mathcal{I}(G, H)|=4$. The integers 5,6 also realized in this way (see [6]). It is easy to observe that if H is a subgroup of order 3 of $\operatorname{Alt}(4)$, then $|\mathcal{I}(G, H)|=7$. Therefore it seems an interesting problem to know that which integer appears as $|\mathcal{I}(G, H)|$ for some pair (G, H).

In the Section 2, we have determined $|\mathcal{I}(G, H)|$, where $G=\operatorname{Alt}(5)$ and H be a non-normal subgroup of G of order 2 or 5 . In the Section 3, we have defined two new graphs associated to the isomorphism classes of transversal of a subgroup in a finite group and studied some properties of these graphs.

2. Isomorphism classes of transversals in $\operatorname{Alt}(5)$

Now, we state the following proposition whose proof is essentially the same proof of the Proposition 2.7 in [10].

Proposition 2.1. Let G be a finite group and H be a corefree subgroup of G. Let $T \in \mathcal{T}(G, H)$ such that $\langle T\rangle=G$. Let $\mathcal{O}=\{L \in \mathcal{T}(G, H) \mid T \cong L\}$. Then Aut ${ }_{H}(G)$ acts transitively on the set \mathcal{O}.

Remark 2.2. If G is a finite group and H a subgroup of G such that $\operatorname{Core}_{G}(H)$ is nontrivial, then the number $|\mathcal{I}(G, H)|$ may be different from the number of $A u t_{H}(G)$-orbits in $\mathcal{T}(G, H)$. For example, let $G=\langle x, y| x^{6}=1=y^{2}, y x y^{-1}=$ $\left.x^{-1}\right\rangle \cong D_{12}$, the dihedral group of order 12 and $H=\left\{1, x^{3}, y, y x^{3}\right\}$, where 1 is the identity of G. Then H is non-normal in G and $[G: H]=3$. Hence $|\mathcal{I}(G, H)|=3$. However, NRTs $\left\{1, x, x^{2}\right\},\left\{1, y x, x^{2}\right\},\left\{1, x, y x^{2}\right\}$ and $\left\{1, y x, y x^{2}\right\}$ to H in G, lie in different $A u t_{H}(G)$-orbits (as the set of orders of group elements in any two NRTs are not same).

Lemma 2.3. Let L be a subgroup of $G=\operatorname{Alt}(5)$ of order 12 . Then $L \cong \operatorname{Alt}(4)$, the alternating group of degree 4.

Proof. Up to isomorphism, there are only 5 groups of order 12 (see [1, Theorem 5.1]),

1. \mathbb{Z}_{12};
2. $\mathbb{Z}_{3} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}$;
3. D_{12}, the dihedral group of order 12 ;
4. $\left\langle x, y \mid x^{4}=y^{3}=1, x y=y^{2} x\right\rangle$;
5. Alt(4).

Since G does not contain an element of order 12 or order 6 or order 4, hence it is not isomorphic to either of the groups in (1)-(4). Thus $L \cong \operatorname{Alt}(4)$.

Lemma 2.4. Let K be a subgroup of $\operatorname{Sym}(5)$ of order 20. Then K is isomorphic to the group $\left\langle x, y \mid x^{5}=y^{4}=1, y x y^{-1}=x^{2}\right\rangle$, which is the one dimensional affine group over \mathbb{Z}_{5}.

Proof. Up to isomorphism, there are only five non-isomorphic groups of order 20 (see [3]),

1. \mathbb{Z}_{20};
2. $\mathbb{Z}_{10} \times \mathbb{Z}_{2}$;
3. D_{20}, the dihedral group of order 20 ;
4. $M=\left\langle x, y \mid x^{5}=y^{4}=1, y x y^{-1}=x^{-1}\right\rangle$;
5. $\left\langle x, y \mid x^{5}=y^{4}=1, y x y^{-1}=x^{2}\right\rangle$.

Since $\operatorname{Sym}(5)$ does not contain an element of order 10, K cannot be isomorphic to the either of the groups $\mathbb{Z}_{20}, \mathbb{Z}_{10} \times \mathbb{Z}_{2}, D_{20}$ and M. This implies that K is not isomorphic to either of the groups in (1) - (4) (we observe that $Z(M)=\left\langle y^{2}\right\rangle$). Thus K is isomorphic to the group $\left\langle x, y \mid x^{5}=y^{4}=1, y x y^{-1}=x^{2}\right\rangle$.

Remark 2.5. Let $G=\operatorname{Alt}(5)$. Then $\operatorname{Aut}(G)=\operatorname{Inn}(\operatorname{Sym}(5))$ (see [13, 2.17, p.299]). Since $Z(\operatorname{Sym}(5))=\{I\}$, we may identify $\operatorname{Aut}(G)$ with $\operatorname{Sym}(5)$ by identifying each $g \in \operatorname{Sym}(5)$ with i_{g}, the inner automorphism of $\operatorname{Sym}(5)$, determined by $g\left(x \mapsto g x g^{-1}\right)$. Thus for a subgroup H of $G, A u t_{H}(G)=N_{\operatorname{Sym}(5)}(H)$.

Proposition 2.6. Let $G=\operatorname{Alt}(5)$. Let H be a subgroup of G of order 5. Then Aut $_{H}(G)$ is isomorphic to $\left\langle x, y \mid x^{5}=y^{4}=1, y x y^{-1}=x^{2}\right\rangle$, the one dimensional affine group over \mathbb{Z}_{5}.

Proof. Let H be a subgroup of G of order 5. Then by Remark 2.5, Aut $H_{H}(G)=$ $N_{\text {Sym }(5)}(H)$. Since there are 6 Sylow 5 -subgroups in $\operatorname{Sym}(5),\left[\operatorname{Sym}(5): N_{\operatorname{Sym}(5)}(H)\right]$ $=6$. This implies that $\left|N_{S y m(5)}(H)\right|=20=\left|A u t_{H}(G)\right|$. Now, the proposition follows from the Lemma 2.4.

Proposition 2.7. Let $G=\operatorname{Alt}(5)$ and $H=\langle a=(12345)\rangle$. Let $S \in \mathcal{T}(G, H)$. Then $H \nsubseteq \operatorname{Stab}_{K}(S)$, the stabilizer of S in K, where $K=N_{\operatorname{Sym}(5)}(H)$ and the action of K is by conjugation.

Proof. Let $S_{0}=\{\alpha \in G: \alpha(5)=5\}$. Then $S_{0} \cong \operatorname{Alt}(4)$ and $S_{0} \in \mathcal{T}(G, H)$. Let $S_{0}=\left\{I=a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}, a_{9}, a_{10}, a_{11}\right\}$, where $a_{1}=$ $(12)(34), a_{2}=(13)(24), a_{3}=(14)(23), a_{4}=(123), a_{5}=(132), a_{6}=(124), a_{7}=$ (142), $a_{8}=(134), a_{9}=(143), a_{10}=(234), a_{11}=(243)$. Then there exists a unique map $\sigma: S_{0} \rightarrow H$, with $\sigma\left(a_{0}\right)=a_{0}$ such that $S=S_{\sigma}=\left\{\sigma\left(a_{i}\right) a_{i} \mid 0 \leqslant i \leqslant\right.$ $11\} \in \mathcal{T}(G, H)$. Assume that $\operatorname{Stab}_{K}(S) \supseteq H$. Then

$$
\begin{equation*}
a S a^{-1}=S \tag{1}
\end{equation*}
$$

Now, $a \sigma\left(a_{3}\right) a_{3} a^{-1}=\sigma\left(a_{3}\right) a a_{3} a^{-1}=\sigma\left(a_{3}\right) a^{2} a_{3}$. Since $a \sigma\left(a_{3}\right) a_{3} a^{-1} \in S_{\sigma}(=S)$, by (1), $\sigma\left(a_{3}\right) a^{2} a_{3} \in S$. This gives $\sigma\left(a_{3}\right) a^{2}=\sigma\left(a_{3}\right)$. This implies that $a^{2}=I$, a contradiction. Thus $\operatorname{Stab}_{K}(S) \nsupseteq H$.

Corollary 2.8. Let G, H, K and S be as in the Proposition 2.7. Then $\operatorname{Stab}_{K}(S) \nsubseteq$ D_{10}, the dihedral group of order 10. Further, $\operatorname{Stab}_{K}(S) \neq K$.

Proof. We observe that K has only one subgroup L of order 10 isomorphic to the dihedral group D_{10}. Since L contains the subgroup H of K, by Proposition 2.7,

Proposition 2.9. Let $G=A l t(5)$ and $H=\langle(12345)\rangle$. Let $S \in \mathcal{T}(G, H)$ such that $\langle S\rangle=S$. Then $S=h S_{0} h^{-1}$, where $h \in H$ and $S_{0}=\{\alpha \in G: \alpha(5)=5\} \in$ $\mathcal{T}(G, H)$.

Proof. We observe that $S_{0}=\langle(123),(124)\rangle \cong \operatorname{Alt}(4)$. Let $S \in \mathcal{T}(G, H)$ such that $\langle S\rangle=S$. By Lemma $2.3, S \cong S_{0}$. This implies that $S=\langle(a b c),(d e f)\rangle$, where $a, b, c, d, e, f \in\{1,2,3,4,5\}$. Since $S \cong S_{0}$ and $|(123)(124)|=2,|(a b c)(d e f)|=2$. This implies that $d=a, e=b$ and hence $S=\langle(a b c),(a b f)\rangle$, where a, b, c and f are distinct. Thus we have a permutation $\alpha \in \operatorname{Sym}(5)$ with $\alpha(1)=a, \alpha(2)=b$, $\alpha(3)=c, \alpha(4)=f$ and $\alpha(5)=d_{0}$, where $d_{0} \in\{1,2,3,4,5\} \backslash\{a, b, c, f\}$. Thus

$$
\begin{equation*}
\alpha S_{0} \alpha^{-1}=\langle(\alpha(1) \alpha(2) \alpha(3)),(\alpha(1) \alpha(2) \alpha(4))\rangle=\langle(a b c),(a b f)\rangle=S \tag{2}
\end{equation*}
$$

Next, since $\alpha \in \operatorname{Sym}(5)$, either $\alpha \in \operatorname{Alt}(5)$ or (12) $\alpha \in \operatorname{Alt}(5)$. First, assume that $\alpha \in \operatorname{Alt}(5)$. Then there exists $h_{1} \in H$ and $\beta_{1} \in S_{0}$ such that $\alpha=h_{1} \beta_{1}$. Thus $h_{1}=\alpha \beta_{1}^{-1} \in H$. Since $\beta_{1} \in S_{0}$, by (2) $h_{1} S_{0} h_{1}^{-1}=\alpha \beta_{1}^{-1} S_{0}\left(\alpha \beta_{1}^{-1}\right)^{-1}=S$.

Next, assume that (12) $\alpha \in \operatorname{Alt}(5)$. Then there exists $h_{2} \in H$ and $\beta_{2} \in S_{0}$ such that $(12) \alpha=h_{2} \beta_{2}$. Thus $h_{2}=(12) \alpha \beta_{2}^{-1}$. Now, since
$((12) \alpha)(123)((12) \alpha)^{-1}$
$=(\alpha(2) \alpha(1) \alpha(3))$ and $((12) \alpha)(124)((12) \alpha)^{-1}=(\alpha(2) \alpha(1) \alpha(4))$, therefore

$$
\begin{equation*}
((12) \alpha) S_{0}((12) \alpha)^{-1}=\langle(\alpha(2) \alpha(1) \alpha(3)),(\alpha(2) \alpha(1) \alpha(4))\rangle=\alpha S_{0} \alpha^{-1} \tag{3}
\end{equation*}
$$

Since $\beta_{2} \in S_{0}$, by (3) $h_{2} S_{0} h_{2}^{-1}=S$. Thus in either cases, we have $S=h S_{0} h^{-1}$, for some $h \in H$.

Remark 2.10. Let G be a finite group. If H and K are subgroups of G such that $f(H)=K$ for some $f \in \operatorname{Aut}(G)$, then $|\mathcal{I}(G, H)|=|\mathcal{I}(G, K)|$.

Proposition 2.11. Let $G=$ Alt(5), the alternating group of degree 5 and H be a subgroup of G of order 5 . Then $|\mathcal{I}(G, H)|=5^{2} \cdot\left(13+5^{2}+5^{3}+5^{4}+5^{5}+5^{6}+5^{7}\right)$.

Proof. Since any two subgroups of order 5 of G are conjugate, by Remark 2.10, we may take $H=\langle a=(12345)\rangle$. Let $S_{0} \in \mathcal{T}(G, H)$, where $S_{0}=\left\{a_{0}=I, a_{1}=\right.$ $(12)(34), a_{2}=(13)(24), a_{3}=(14)(23), a_{4}=(123), a_{5}=(132), a_{6}=(124), a_{7}=$
$\left.(142), a_{8}=(134), a_{9}=(143), a_{10}=(234), a_{11}=(243)\right\}$. Then $S_{0} \cong \operatorname{Alt}(4)$. We observe that for each $S \in \mathcal{T}(G, H)$, there exists a unique map $\sigma: S_{0} \rightarrow H$ such that $\sigma\left(a_{0}\right)=a_{0}$ and $S=S_{\sigma}=\left\{\sigma\left(a_{i}\right) a_{i}: 0 \leqslant i \leqslant 11\right\}$. Let $S \in \mathcal{T}(G, H)$. Then $S=S_{\sigma}$ for a unique map $\sigma: S_{0} \rightarrow H$ with $\sigma\left(a_{0}\right)=a_{0}$. Further, since $|H|=5$, a prime number, either $\langle S\rangle=S$ or $\langle S\rangle=G$. Assume that $\langle S\rangle=S$. Then by Lemma 2.3, $S \cong S_{0} \cong A l t(4)$. By Proposition 2.9 all non-generating NRTs of H in G are conjugate, all non-generating NRTs of H in G forms a single $A u t_{H}(G)$-orbit in $\mathcal{T}(G, H)$, where $A u t_{H}(G)$ is identified with the subgroup $K=N_{\text {Sym(5) }}(H)$ of $\operatorname{Sym}(5)$ and the action of K on $\mathcal{T}(G, H)$ is by conjugation (see also Remark 2.5). If $\langle S\rangle=G$, then by Proposition 2.1, the isomorphism class of S on $\mathcal{T}(G, H)$ forms a single $\operatorname{Aut}_{H}(G)$-orbit. Thus $\mathcal{I}(G, H)$ is precisely the orbits of K in $\mathcal{T}(G, H)$. Now, we describe the orbits of K in $\mathcal{T}(G, H)$. Since $H=\langle a=(12345)\rangle$, we have

$$
N_{S y m(5)}(H)=K=\left\langle a, b=(1342) \mid a^{5}=b^{4}=1, b a b^{-1}=a^{2}\right\rangle,
$$

K is isomorphic to one dimensional affine group over \mathbb{Z}_{5} (see Proposition 2.6). Further, by Proposition 2.7 and Corollary 2.8, $\left|\operatorname{Stab}_{K}(S)\right| \in\{1,2,4\}$.

Assume that $\left|\operatorname{Stab}_{K}(S)\right|=4$. Since a subgroup of K of order 4 is a Sylow 2 -subgroup of K, we may assume that $\operatorname{Stab}_{K}(S)=\langle b=(1342)\rangle=K_{1}$. Since $b a b^{-1}=a^{2}$, we obtain the following relations:

$$
\left.\begin{array}{c}
\sigma\left(a_{0}\right)=\sigma\left(a_{1}\right)=\sigma\left(a_{2}\right)=\sigma\left(a_{3}\right)=I \tag{4}\\
\sigma\left(a_{6}\right)=\left(\sigma\left(a_{4}\right)\right)^{2}, \sigma\left(a_{9}\right)=\left(\sigma\left(a_{4}\right)\right)^{3}, \sigma\left(a_{11}\right)=\left(\sigma\left(a_{4}\right)\right)^{4}, \\
\sigma\left(a_{7}\right)=\left(\sigma\left(a_{5}\right)\right)^{2}, \sigma\left(a_{8}\right)=\left(\sigma\left(a_{5}\right)\right)^{3}, \sigma\left(a_{10}\right)=\left(\sigma\left(a_{5}\right)\right)^{4} .
\end{array}\right\}
$$

Conversely, if $\sigma_{1}: S_{0} \rightarrow H$ is a map satisfying the relations (4), then $\operatorname{Stab}_{K}\left(S_{\sigma_{1}}\right)=$ K_{1}, for if $g \in K \backslash K_{1}$, then $a_{3} \notin g S_{\sigma_{1}} g^{-1}$ (note that $a_{3} \in S_{\sigma_{1}}$) and $K_{1} \subseteq$ $\operatorname{Stab}_{K}\left(S_{\sigma_{1}}\right)$. Let $\sigma_{1}: S_{0} \rightarrow H$ be a map satisfying (4). Then $S_{\sigma_{1}}=\left\{\sigma_{1}\left(a_{i}\right) a_{i} \mid 0 \leqslant\right.$ $i \leqslant 11\} \in \mathcal{T}(G, H)$ and $\operatorname{Stab}_{K}\left(S_{\sigma_{1}}\right)=K_{1}$. Assume that $T \in \mathcal{T}(G, H)$ lies in the K-orbit of $S_{\sigma_{1}}$. Then there exists $g \in K$ such that $g S_{\sigma_{1}} g^{-1}=T$. This implies that $\operatorname{Stab}_{K}(T)=g K_{1} g^{-1}$. Since $N_{K}\left(K_{1}\right)=K_{1}$, if $g \notin K_{1}$, then $\operatorname{Stab}_{K}(T) \neq K_{1}$. Further, if $g \in K_{1}$, then $S_{\sigma_{1}}=g S_{\sigma_{1}} g^{-1}=T$. This implies that $S_{\sigma_{1}}$ lies in the unique K-orbit of size 5 . From the relations (4), we observe that a map $\sigma: S_{0} \rightarrow H$ satisfying (4) can be completely determined by assigning values of $\sigma\left(a_{4}\right)$ and $\sigma\left(a_{5}\right)$. Since each of $\sigma\left(a_{4}\right)$ and $\sigma\left(a_{5}\right)$ can take five distinct values, we have $25 A u t_{H}(G)=K$-orbits in $\mathcal{T}(G, H)$ each of size $\frac{|K|}{\left|K_{1}\right|}=5$.

Next, assume that $\left|\operatorname{Stab}_{K}(S)\right|=2$. Since a Sylow 2-subgroup of K is cyclic, any two subgroups of K of order 2 are conjugate. Thus we may assume that $\operatorname{Stab}_{K}(S)=\left\langle b^{2}=(14)(23)\right\rangle=L_{1}$. Since $b^{2} a b^{-2}=a^{4}$, we obtain the following relations:

$$
\left.\begin{array}{l}
\sigma\left(a_{0}\right)=\sigma\left(a_{1}\right)=\sigma\left(a_{2}\right)=\sigma\left(a_{3}\right)=1 \\
\sigma\left(a_{8}\right)=\left(\sigma\left(a_{7}\right)\right)^{4}, \quad \sigma\left(a_{9}\right)=\left(\sigma\left(a_{6}\right)\right)^{4}, \tag{5}\\
\sigma\left(a_{10}\right)=\left(\sigma\left(a_{5}\right)\right)^{4}, \quad \sigma\left(a_{11}\right)=\left(\sigma\left(a_{4}\right)\right)^{4} .
\end{array}\right\}
$$

Conversely, let $\sigma_{1}: S_{0} \rightarrow H$ be a map satisfying (5). Then $\operatorname{Stab}_{K}\left(S_{\sigma_{1}}\right) \supseteq L_{1}$. From the relations (5), we observe that σ_{1} satisfying (5) can be completely determined
by assigning values of $\sigma_{1}\left(a_{4}\right), \sigma_{1}\left(a_{5}\right), \sigma_{1}\left(a_{6}\right)$ and $\sigma_{1}\left(a_{7}\right)$. Since each of $\sigma_{1}\left(a_{i}\right)$'s $(4 \leqslant i \leqslant 7)$ can take five distinct values, there are 625 choices of σ_{1} satisfying (5). Further, from the relations (4) and (5), we observe that if a map from S_{0} to H satisfies the relations (4), then it also satisfies (5). Further, since there are 25 choices of maps $\sigma: S_{0} \rightarrow H$ satisfying (4), there are 600 choices of maps from $S_{0} \rightarrow H$ which satisfies (5) but not (4). Let $\sigma_{1}: S_{0} \rightarrow H$ be a map which satisfies the relations (5) but not (4). Then $S_{\sigma_{1}}=\left\{\sigma_{1}\left(a_{i}\right) a_{i} \mid 0 \leqslant i \leqslant 11\right\} \in \mathcal{T}(G, H)$ and $\operatorname{Stab}_{K}\left(S_{\sigma_{1}}\right)=L_{1}$. Assume that $T \in \mathcal{T}(G, H)$ lies in the K-orbit of $S_{\sigma_{1}}$. Then there exists $g \in K$ such that $g S_{\sigma_{1}} g^{-1}=T$. This implies that $\operatorname{Stab}_{K}(T)=g L_{1} g^{-1}$. Since $N_{K}\left(L_{1}\right)=K_{1}$, if $g \notin K_{1}$, then $\operatorname{Stab}_{K}(T) \neq L_{1}$. Next, if $g \in K_{1} \backslash L_{1}$, then $g S_{\sigma_{1}} g^{-1}=T\left(\neq S_{\sigma_{1}}\right)$. Since $\left[K_{1}: L_{1}\right]=2$, there exists a unique $T \in \mathcal{T}(G, H)$, different from $S_{\sigma_{1}}$ which lies in the K-orbit of $S_{\sigma_{1}}$ and $\operatorname{Stab}_{K}(T)=L_{1}$. Thus by the discussion made above, there are $300 K$-orbits in $\mathcal{T}(G, H)$ each of size $\frac{|K|}{\left|L_{1}\right|}=10$.

Lastly, assume that $\left|\operatorname{Stab}_{K}(S)\right|=1$. As argued in the above paragraphs there are 125 NRTs in $\mathcal{T}(G, H)$ whose stabilizer are of order 4 and there are 3000 NRTs in $\mathcal{T}(G, H)$ whose stabilizer are of order 2 , there are $5^{11}-5^{5}=5^{5}\left(5^{6}-1\right)$ NRTs whose stabilizer are trivial. Hence, we have $5^{4} \cdot\left(1+5+5^{2}+5^{3}+5^{4}+5^{5}\right), K$-orbits in $\mathcal{T}(G, H)$ each of size 20 . Thus $|\mathcal{I}(G, H)|=5^{2}+3 \cdot 4 \cdot 5^{2}+5^{4} \cdot\left(1+5+5^{2}+5^{3}+5^{4}+5^{5}\right)=$ $5^{2} \cdot\left(13+5^{2}+5^{3}+5^{4}+5^{5}+5^{6}+5^{7}\right)$.

Corollary 2.12. There are at least, $5^{2} \cdot\left(13+5^{2}+5^{3}+5^{4}+5^{5}+5^{6}+5^{7}\right)$ nonisomorphic right loops of order 12.

Proof. Let $G=\operatorname{Alt}(5)$, the alternating group of degree 5 and H be a subgroup of G of order 5. If $S \in \mathcal{T}(G, H)$, then S is a right loop of order 12 (see [12, Proposition 4.3.3, p.102]). By Proposition 2.11, $|\mathcal{I}(G, H)|$ is precisely the number of $\operatorname{Aut}_{H}(G)$-orbits in $\mathcal{T}(G, H)$. Thus if $S_{1}, S_{2} \in \mathcal{T}(G, H)$ belongs to different Aut $_{H}(G)$-orbits, then $S_{1} \nexists S_{2}$. This completes the proof.

Lemma 2.13. Let L be a subgroup of Sym(5) of order 8. Then L is isomorphic to D_{8}, the dihedral group of order 8 .

Proof. Since $|\operatorname{Sym}(5)|=2^{3} \cdot 3 \cdot 5$, if L is a subgroup of $\operatorname{Sym}(5)$ of order 8 , then it is a Sylow 2-subgroup of $\operatorname{Sym}(5)$. Let $N=\langle(13),(1234)\rangle$. Then N is a subgroup of $\operatorname{Sym}(5)$ of order 8 isomorphic to D_{8}. Since any two Sylow 2-subgroups of $\operatorname{Sym}(5)$ are conjugate, the lemma follows.

Proposition 2.14. Let $G=\operatorname{Alt}(5)$, the alternating group of degree 5 and H be a subgroup of G of order 2. Then $|\mathcal{I}(G, H)|=2^{26}+10$.

Proof. Let H be a subgroup of G of order 2 . Since any two elements of G of order 2 are conjugate, by Remark 2.10, we may assume that $H=\{I, x=(12)(34)\}$, where I is the identity element of G. Let $K=A u t_{H}(G)$. By Remark 2.5, we identify K with the group $N_{\text {Sym(5) }}(H)=C_{\text {Sym(5) }}(H)$, the centralizer of H in Sym(5). Since
there are 15 conjugates of $(12)(34)$ in $\operatorname{Sym}(5),\left|C_{\operatorname{Sym}(5)}(H)\right|=8$. By Lemma 2.13, $C_{\text {Sym (5) }}(H) \cong D_{8}$. Since $H=\{I, x=(12)(34)\}$, we have

$$
K=\{I,(1324),(12)(34),(1423),(14)(23),(34),(13)(24),(12)\}
$$

Consider the subgroups $V_{4}=\{I,(12)(34),(13)(24),(14)(23)\}$ (isomorphic to the Klein's four group) and $L=\{g \in G: g(5)=5\}$ of G. Let $T_{1}=\left\{b_{0}=\right.$ $\left.I, b_{1}=(13)(24)\right\}, T_{2}=\left\{c_{0}=I, c_{1}=(134), c_{2}=(143)\right\}$ and $T_{3}=\left\{d_{0}=\right.$ $\left.I, d_{1}=(12345), d_{2}=(13524), d_{3}=(14253), d_{4}=(15432)\right\}$. Then $T_{1} \in \mathcal{T}\left(V_{4}, H\right)$, $T_{2} \in \mathcal{T}\left(L, V_{4}\right)$ and $T_{3} \in \mathcal{T}(G, L)$. Thus $S_{0}=T_{1} T_{2} T_{3}=\left\{b_{i} c_{j} d_{k}: 0 \leqslant i \leqslant 1,0 \leqslant\right.$ $j \leqslant 2,0 \leqslant k \leqslant 4\} \in \mathcal{T}(G, H)$.

Since G is a simple group and H is of order $2,\langle S\rangle=G$, for every $S \in \mathcal{T}(G, H)$. Thus by Proposition 2.1, $\mathcal{I}(G, H)$ is precisely the orbits of K in $\mathcal{T}(G, H)$, where the action of K is by conjugation.

Let $S \in \mathcal{T}(G, H)$. Then there exists a unique map $\sigma: S_{0} \rightarrow H$ such that $\sigma\left(b_{0} c_{0} d_{0}=I\right)=I$ and $S=S_{\sigma}=\left\{\sigma\left(b_{i} c_{j} d_{k}\right) b_{i} c_{j} d_{k} \quad: 0 \leqslant i \leqslant 1,0 \leqslant j \leqslant\right.$ $2,0 \leqslant k \leqslant 4\}$. Let $g \in\{(1324),(1423),(12),(34)\} \subseteq K$. Then $g \notin \operatorname{Stab}_{K}(S)$, for if $g \in \operatorname{Stab}_{K}(S)$, then $g \sigma\left(b_{1} c_{0} d_{0}\right) b_{1} c_{0} d_{0} g^{-1}=\sigma\left(b_{1} c_{0} d_{0}\right) x b_{1} c_{0} d_{0}$, a contradiction as $x=(12)(34) \in H$ and $\sigma\left(b_{1} c_{0} d_{0}\right) b_{1} c_{0} d_{0} \in S$. Let $g=(13)(24) \in$ K. Then $g \notin \operatorname{Stab}_{K}(S)$, for if $g \in \operatorname{Stab}_{K}(S)$, then $g \sigma\left(b_{0} c_{1} d_{0}\right) b_{0} c_{1} d_{0} g^{-1}=$ $\sigma\left(b_{0} c_{1} d_{0}\right) x b_{0} c_{1} d_{0} \in S$ and so we have a contradiction as $x=(12)(34) \neq I$. Next, let $g=(14)(23) \in K$. Then $g \notin \operatorname{Stab}_{K}(S)$, for if $g \in \operatorname{Stab}_{K}(S)$, then $g \sigma\left(b_{0} c_{2} d_{0}\right) b_{0} c_{2} d_{0} g^{-1}=\sigma\left(b_{0} c_{2} d_{0}\right) x b_{0} c_{2} d_{0} \in S, \sigma\left(b_{0} c_{2} d_{0}\right) x=\sigma\left(b_{0} c_{2} d_{0}\right)$, again a contradiction. The above arguments imply that stabilizer in K of an NRT of H in G is either H or $\{I\}$. Thus a K-orbit in $\mathcal{T}(G, H)$ is either of size 4 or of size 8 .

Now, assume that $\operatorname{Stab}_{K}(S)=H$. Then σ satisfies the following relations:

$$
\left.\begin{array}{l}
\sigma\left(b_{1} c_{0} d_{0}\right)=I \text { or } x, \sigma\left(b_{0} c_{1} d_{4}\right) x=\sigma\left(b_{1} c_{0} d_{3}\right), \sigma\left(b_{0} c_{2} d_{1}\right) x=\sigma\left(b_{0} c_{1} d_{2}\right) \\
\sigma\left(b_{1} c_{1} d_{1}\right) x=\sigma\left(b_{1} c_{0} d_{2}\right), \sigma\left(b_{1} c_{2} d_{2}\right) x=\sigma\left(b_{1} c_{0} d_{1}\right), \sigma\left(b_{0} c_{2} d_{3}\right)=\sigma\left(b_{0} c_{0} d_{4}\right) \\
\sigma\left(b_{0} c_{2} d_{0}\right)=\sigma\left(b_{1} c_{2} d_{0}\right), \sigma\left(b_{0} c_{1} d_{3}\right)=\sigma\left(b_{1} c_{2} d_{4}\right), \sigma\left(b_{0} c_{2} d_{2}\right) x=\sigma\left(b_{0} c_{0} d_{1}\right) \tag{6}\\
\sigma\left(b_{1} c_{1} d_{2}\right) x=\sigma\left(b_{1} c_{2} d_{1}\right), \sigma\left(b_{1} c_{0} d_{4}\right)=\sigma\left(b_{1} c_{2} d_{3}\right), \sigma\left(b_{0} c_{1} d_{1}\right) x=\sigma\left(b_{o} c_{0} d_{2}\right) \\
\sigma\left(b_{0} c_{1} d_{0}\right) x\left(b_{1} c_{1} d_{0}\right), \sigma\left(b_{0} c_{2} d_{4}\right)=\sigma\left(b_{1} c_{1} d_{3}\right), \sigma\left(b_{1} c_{1} d_{4}\right) x=\sigma\left(b_{0} c_{0} d_{3}\right)
\end{array}\right\}
$$

Conversely, if a map $\sigma_{1}: S_{0} \rightarrow H$ with $\sigma_{1}(I)=I$ satisfies (6), then $\operatorname{Stab}_{K}\left(S_{\sigma_{1}}\right)=$ H. From the relations (6), we find that there are $20 K$-orbits in $\mathcal{T}(G, H)$ each of size 4. Hence we have $\frac{2^{29}-80}{8}=2^{26}-10, K$-orbits in $\mathcal{T}(G, H)$ each of size 8 . Therefore $|\mathcal{I}(G, H)|=2^{26}-10+20=2^{26}+10$.
Corollary 2.15. There are at least, $2^{26}+10$ non-isomorphic right loops of order 30.

Proof. Let $G=\operatorname{Alt}(5)$, the alternating group of degree 5 and H be a subgroup of G of order 2. If $S \in \mathcal{T}(G, H)$, then S is a right loop of order 30 (see [12, Proposition 4.3.3, p.102]). By Proposition 2.14, $|\mathcal{I}(G, H)|$ is precisely the number of $\operatorname{Aut}_{H}(G)$-orbits in $\mathcal{T}(G, H)$. Thus if $S_{1}, S_{2} \in \mathcal{T}(G, H)$ belongs to different $\operatorname{Aut}_{H}(G)$-orbits, then $S_{1} \nsupseteq S_{2}$. This completes the proof.

3. Graphs and isomorphism classes of transversals

In this section, we have introduced two graphs associated to the isomorphism classes of transversals of a subgroup of a finite group and studied some properties of these graphs.

Definition 3.1. Let G be a finite group and X be the set of all nontrivial proper subgroups of G. We define a graph $\Gamma_{t i c}(G)$ on G whose vertex set is X and two distinct vertices H and K are adjacent in $\Gamma_{\text {tic }}(G)$ if and only if $|\mathcal{I}(G, H)|=$ $|\mathcal{I}(G, K)|$. We will call this graph the transiso-class graph.

It is easy to observe that $\Gamma_{t i c}(G)$ is complete if and only if $|\mathcal{I}(G, H)|=|\mathcal{I}(G, K)|$ for every $H, K \in X$.

Definition 3.2. Let G be a finite group. Let d be the order of a subgroup of G and X_{d} be the set of all subgroups of G of order d. We define a graph $\Gamma_{d, t i c}(G)$ on G with vertex set X_{d} and two distinct vertices are adjacent in $\Gamma_{d, t i c}(G)$ if and only if $|\mathcal{I}(G, H)|=|\mathcal{I}(G, K)|$. We call the graph $\Gamma_{d, t i c}(G)$ as d-transiso-class graph.

We observe that $\Gamma_{d, t i c}(G)$ is complete if and only if $|\mathcal{I}(G, H)|=|\mathcal{I}(G, K)|$ for any $H, K \in X_{d}$.

Remark 3.3. In the definitions 3.1 and 3.2, we observe that $\Gamma_{t i c}(G)$ and $\Gamma_{d, t i c}(G)$ both are connected if and only if they are complete.

Definition 3.4. ([11], p.143)A group G is said to be a Dedekind group if all the subgroups of G are normal in G.

Example 3.5. Let G be a finite Dedekind group. Since each subgroup of G is normal in $G,|\mathcal{I}(G, H)|=1$ (see [10, Main Theorem, p.643]), for every subgroup H of G. Thus both $\Gamma_{t i c}(G)$ and $\Gamma_{d, t i c}(G)$ are complete, where d is the order of subgroup of G.

Proposition 3.6. Let $G=\operatorname{Sym}(3)$. Then $\Gamma_{d, t i c}(G)$ is complete, d is the order of a subgroup of G.

Proof. Let $X_{d}=\{H \leqslant G:|H|=d\}$. Obviously, $d \in\{1,2,3,6\}$. If $d=1$ or $d=3$ or $d=6$, then $H \in X_{d}$ is normal in G and so $|\mathcal{I}(G, H)|=1$. Thus $\Gamma_{d, t i c}(G)$ is complete. Next, assume that $d=2$. Since all 2 -cycles in G are conjugate, any two members of X_{2} are conjugate. Hence by Remark 2.10, $|\mathcal{I}(G, H)|=|\mathcal{I}(G, K)|$ for every $H, K \in X_{2}$. Thus $\Gamma_{2, t i c}(G)$ is complete.

Remark 3.7. It is easy to observe that if H is a subgroup of $G=\operatorname{Sym}(3)$ of order 2 , then $|\mathcal{I}(G, H)|=3$. However, if $H=\operatorname{Alt}(3)$, the alternating group of degree 3, then $|\mathcal{I}(G, H)|=1$ (see [10]). Consequently, $\Gamma_{t i c}(\operatorname{Sym}(3))$ is not complete.

Proposition 3.8. Let $G=\operatorname{Alt}(4)$. Then $\Gamma_{d, t i c}(G)$ is complete for every d, where d is the order of a subgroup of G.

Proof. Let $G=\operatorname{Alt}(4)$. Let X_{d} denote the set of all subgroups of G of order d. Then any two members of X_{d} are conjugate. By Remark 2.10, $|\mathcal{I}(G, H)|=$ $|\mathcal{I}(G, K)|$ for every $H, K \in X_{d}$. Thus $\Gamma_{d, t i c}(G)$ is complete for every d.

Proposition 3.9. Let $G=\operatorname{Alt}(4)$. Then $\Gamma_{t i c}(G)$ is not complete.
Proof. Let $G=\operatorname{Alt}(4)$. If H is a subgroup of G of order 2 , then $|\mathcal{I}(G, H)|=5$ (see [6]). Also, It is easy to observe that if K is a subgroup of order 3 of $\operatorname{Alt}(4)$, then $|\mathcal{I}(G, K)|=7$. Thus H and K are not adjacent in $\Gamma_{t i c}(G)$. Hence $\Gamma_{t i c}(G)$ is not complete.

Lemma 3.10. Let $G=\operatorname{Alt}(5)$. Let X_{d} be the set of all subgroups of G of order d. Then any two members of X_{d} are conjugate.

Proof. Let X_{d} be the set of all subgroups of G of order d. Since G is simple, if $H \in X_{d}$, then $[G: H] \geqslant 5$ (see [13, p. 308]). Hence $d \in\{1,2,3,4,5,6,10,12,60\}$. If $d=1$ or $d=60$, then the proof is over. Assume that $d=2$. Let $H \in X_{2}$. Then H is of the form $\{I, \sigma\}$, where $\sigma \in \operatorname{Alt}(5)$ is product of two distinct transpositions. Since all permutations of the form σ are conjugate in $\operatorname{Alt}(5)$, any two members of X_{2} are conjugate. Further, if $d \in\{3,4,5\}$, then any member of X_{d} is a Sylow d-subgroup of G. Hence any two members of X_{d} are conjugate.

Next, assume that $d=6$. Since G has no permutation of order 6 , a subgroup of order 6 in G is isomorphic to $\operatorname{Sym}(3)$. If K is a subgroup of G of order 6 , then $N_{G}(K)=K$. Hence there are 10 conjugates of K in G. Since there are exactly 10 subgroups of G of order 6 , all members of X_{6} form a complete conjugacy class. Now, assume that $d=10$. Again, since G has no permutation of order 10, a subgroup of G of order 10 is isomorphic to D_{10}. If $L \in X_{10}$, then it is easy to observe that $N_{G}(L)=L$. Thus there are 6 conjugates of L in G. Since there are exactly 6 subgroups of G of order 10 , any two subgroups of G of order 10 are conjugate. Lastly, assume that $d=12$. By Proposition 2.9 any two subgroups of G of order 12 are conjugate.

Proposition 3.11. Let $G=\operatorname{Alt}(5)$. Then $\Gamma_{d, t i c}(G)$ is complete, for every d, where d is the order of a subgroup of G.

Proof. Let $G=\operatorname{Alt}(5)$. Let X_{d} denote the set of all subgroups of G of order d. Then by Lemma 3.10, any two members of X_{d} are conjugate. By Remark 2.10, $|\mathcal{I}(G, H)|=|\mathcal{I}(G, K)|$, for any $H, K \in X_{d}$. Hence $\Gamma_{d, t i c}(G)$ is complete for every d.

Remark 3.12. In the above proposition, we observe that $\Gamma_{d, t i c}(\operatorname{Alt}(5))$ is complete for every d, where d is the order of a subgroup of $\operatorname{Alt}(5)$. However, $\operatorname{Alt}(5)$ is not a Dedekind group.

Proposition 3.13. Let $G=\operatorname{Alt}(5)$. Then $\Gamma_{t i c}(G)$ is not complete.

Proof. Let $G=\operatorname{Alt}(5)$. Let X be the set of all nontrivial proper subgroups of G. Let H be a subgroup of G of order 2. Then by Proposition 2.14, $|\mathcal{I}(G, H)|=$ $2^{26}+10$.

Let K be a subgroup of G of order 5. Then by Proposition 2.11, $|\mathcal{I}(G, K)| \neq$ $|\mathcal{I}(G, H)|$. Thus both H and K are in X, however they are not adjacent in $\Gamma_{\text {tic }}(G)$. Hence $\Gamma_{t i c}(G)$ is not complete.

Proposition 3.14. Let G be a finite p-group, p is a prime. Then $\Gamma_{d, t i c}(G)$ is complete if and only if each member of X_{d} is normal in G, where X_{d} is the set of all subgroups of G of order d.

Proof. Let G be a finite p-group. Then for each divisor d of $|G|, G$ contains a normal subgroup H of order d (see [9, Proposition 9.1.23]). Thus $\Gamma_{d, t i c}(G)$ is complete if $|\mathcal{I}(G, K)|=1$ for every $K \in X_{d}$. Consequently, each $K \in X_{d}$ is normal in G (see [10]). Conversely, assume that each member of X_{d} is normal in G. Then $|\mathcal{I}(G, H)|=1$, for any $H \in X_{d}$. Hence $\Gamma_{d, t i c}(G)$ is complete.

Corollary 3.15. Let G be a nonabelian group of order order p^{3}, p is a prime Then $\Gamma_{p, t i c}(G)$ is complete if and only if $G \cong Q_{8}$.
Proof. Assume that $\Gamma_{p, t i c}(G)$ is complete. By the above proposition each subgroup of G of order p is normal in G. Since a subgroup of G of order p^{2} is maximal in G, it is normal in G. Thus if $\Gamma_{p, t i c}(G)$ is complete, then all subgroups of G are normal in G. Hence G is a Dedekind group. Thus by [11, p.143], $G \cong Q_{8}$. Conversely, if $G=Q_{8}$, then $\Gamma_{2, t i c}(G)$ is complete follows from the Example 3.5.

Proposition 3.16. Let $G=D_{2 n}$. If n is even, then $\Gamma_{2, t i c}(G)$ is not complete.
Proof. Let X_{2} be the set of all subgroups of G of order 2. Since the center $Z(G)$ of G is of order $2,|\mathcal{I}(G, Z(G))|=1$. Again if $H \in X_{2}$ and H is non-normal, then $|\mathcal{I}(G, H)| \neq 1$ (see [10, Main Theorem, p.643]). Thus $Z(G)$ and H are not adjacent in $\Gamma_{2, t i c}(G)$. Consequently, $\Gamma_{2, t i c}(G)$ is not complete.

Let $G=D_{8}=\left\langle a, b: a^{2}=b^{4}=1, a b a=b^{-1}\right\rangle$. Let $X_{2}=\left\{H_{1}=\langle a\rangle, H_{2}=\right.$ $\left.\langle b a\rangle, H_{3}=\left\langle b^{2} a\right\rangle, H_{4}=\left\langle b^{3} a\right\rangle, H_{5}=\left\langle b^{2}\right\rangle\right\}$ be the set of all subgroups of G of order 2 and let $X_{4}=\left\{K_{1}=\langle b\rangle, K_{2}=\left\langle b^{2}, a\right\rangle, K_{3}=\left\langle b^{2}, b a\right\rangle\right\}$ be the set of all subgroups of G of order 4. Then the connectivity of subgroups in $\Gamma_{2, t i c}\left(D_{8}\right)$ and $\Gamma_{4, t i c}\left(D_{8}\right)$ can be shown in following pictorial form:

(a) Γ_{1}

$$
H_{5}=Z\left(D_{8}\right)
$$

(b) Γ_{2}

Figure 1: $\quad \Gamma_{2, t i c}\left(D_{8}\right)=\Gamma_{1} \cup \Gamma_{2}$

Figure 2: $\quad \Gamma_{4, t i c}\left(D_{8}\right)$

Proposition 3.17. Let G be a finite group containing a nontrivial proper normal subgroup. Assume that $\Gamma_{\text {tic }}(G)$ is complete. Then G is a Dedekind group.

Proof. Let X be the set of all nontrivial proper subgroups of G. Then there exists $H \in X$ such that $H \unlhd G$ and hence $|\mathcal{I}(G, H)|=1$ (see [10, Main Theorem, p.643]). Assume that $\Gamma_{t i c}(G)$ is complete. Then $|\mathcal{I}(G, K)|=1$, for every $K \in X$. Thus each subgroup of G is normal in G (see [10]). Hence G is a Dedekind group.

In the Proposition 3.17, we saw that if $\Gamma_{t i c}(G)$ is complete and G has a nontrivial proper normal subgroup, then G is Dedekind. Then, we may ask the following questions:

Question 1. Does there exists a finite non-abelian simple group G such that $\Gamma_{t i c}(G)$ complete?

Question 2. Let G be a finite group. Let X_{d} be the set of all subgroups of G of order d. Assume that $\Gamma_{d, t i c}$ is complete. Then what can we say about the members of X_{d} ?

Acknowledgement. The authors are grateful to the anonymous referee for the valuable suggestions for adding the Corollary 2 and 3. During the work of this paper the first author was supported (financially) by CSIR, Government of India.

References

[1] M. Artin, Algebra, PHI Learning Private Limited, New Delhi, 2003.
[2] R. Diestel, Graph Theory, Springer-Verlag, New York, 2005.
[3] D. Dummit and R. Foote, Abstract Algebra, J. Wiley \& Sons, New Delhi, 2004.
[4] V.K. Jain and R.P. Shukla, On the isomorphism classes of transversals, Comm. Alg., 36 (2008), 1717-1725.
[5] V.K. Jain and R.P. Shukla, On the isomorphism classes of transversals II, Comm. Alg., 39 (2011), 2024-2036.
[6] V. Kakkar and R.P. Shukla, On the number of isomorphism classes of transversals, Proc. Indian Acad. Sci. (Math. Sci.), 123 (2013), 345-359.
[7] V. Kakkar and R.P. Shukla, Some characterizations of a normal subgroups of a group and isotopic classes of transversals, Algebra Colloq., 23 (2106), 409-422.
[8] R. Lal, Transversals in groups. J. Algebra, 181 (1996), 70-81.
[9] R. Lal, Algebra 1, Infosys Sci. Found. Ser. Math. Sci., Singapore, 2017.
[10] R. Lal and R.P. Shukla, Perfectly stable subgroups of finite groups, Comm. Alg., 24 (1996), 643-657.
[11] D.J.S. Robinson, A Course in the Theory of Groups, Springer-Verlag, 1996.
[12] J.D.H. Smith and A.B. Romanowska, Post-Modern Algebra, J. Wiley \& Sons, New York, 1991.
[13] M. Suzuki, Group Theory I, Springer-Verlag, 1982.

Department of Mathematics,
University of Allahabad,
Prayagraj, 211002, India.
e-mails: surendramishra557@gmail.com (S.K. Mishra), shuklarp@gmail.com (R.P. Shukla)

[^0]: 2010 Mathematics Subject Classification: 20N05, 20D06, 20D60, 97 K 30
 Keywords: Transversals; right loops; complete graphs.

