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On transiso-class graphs

Surendra Kumar Mishra and Ravindra Prasad Shukla

Abstract. In this paper, we have determined the number of isomorphism classes of transversals
of subgroups of order 2 and 5 of Alt(5). Further, we have introduced two new graphs Γtic(G)

and Γd,tic(G) on a finite group G, where d is the order of a subgroup of G and studied some
properties of these graphs.

1. Introduction

Let G be a finite group and H be a subgroup of G. We say that a subset S of G is
a normalized right transversal (NRT) of H in G, if S is obtained by choosing one
and only one element from each right coset of H in G and 1 ∈ S . For x, y ∈ S,
define {x ◦ y} = S ∩Hxy. Then with respect to this binary operation, S is a right
loop with identity 1, that is, a right-quasigroup with both-sided identity (see [12,
Proposition 4.3.3]). Conversely, every right loop can be embedded as an NRT in
a group with some universal property (see [8, Theorem 3.4]).

Let S be an NRT of H in G. Let 〈S〉 be the subgroup of G generated by S
and HS be the subgroup 〈S〉 ∩ H. Then HS = 〈{xy(x ◦ y)−1 |x, y ∈ S}〉 and
HSS = 〈S〉 (see [8, Corollary 3.7]). Identifying S with the set H \ G of all right
cosets of H in G, we get a transitive permutation representation χ

S
: G→Sym(S)

defined by {χ
S
(g)(x)} = S ∩Hxg, g ∈ G, x ∈ S. The kernel kerχ

S
of this action is

CoreG(H), the core of H in G. Let GS = χ
S
(HS), the group torsion of the right

loop S (see [8]). The group GS depends only on the right loop structure ◦ on S
and not on the subgroup H. Since χS is injective on S and if we identify S with
χS(S), then χS(〈S〉) = GSS which also depends only on the right loop S and S
is an NRT of GS in GSS. One can also verify that ker(χS |HSS : HSS → GSS) =
ker(χS |HS

: HS → GS) = CoreHSS(HS) and χS |S = the identity map on S. Also,
GS is trivial if and only if (S, ◦) is a group (see [8]).

We denote the set of all normalized right transversals (NRTs) of H in G by
T (G,H). We say that S and T ∈ T (G,H) are isomorphic (denoted by S ∼= T ), if
their induced right loop structures are isomorphic. Let I(G,H) denote the set of
isomorphism classes of NRTs of H in G. It has been proved in [10] as well as in [7]
that |I(G,H)| = 1 if and only if H EG. It has been shown in [4] that there is no
pair (G,H) such that |I(G,H)| = 2. It is easy to observe that if H is a non-normal
subgroup of G of index 3, then |I(G,H)| = 3. The converse of this statement is
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proved in [5]. Also, it has been proved in [6] that there is no pair (G,H) such that
|I(G,H)| = 4. The integers 5, 6 also realized in this way (see [6]). It is easy to
observe that if H is a subgroup of order 3 of Alt(4), then |I(G,H)| = 7. Therefore
it seems an interesting problem to know that which integer appears as |I(G,H)|
for some pair (G, H).

In the Section 2, we have determined |I(G,H)|, where G = Alt(5) and H be a
non-normal subgroup of G of order 2 or 5. In the Section 3, we have defined two
new graphs associated to the isomorphism classes of transversal of a subgroup in
a finite group and studied some properties of these graphs.

2. Isomorphism classes of transversals in Alt(5)

Now, we state the following proposition whose proof is essentially the same proof
of the Proposition 2.7 in [10].

Proposition 2.1. Let G be a finite group and H be a corefree subgroup of G. Let
T ∈ T (G,H) such that 〈T 〉 = G. Let O = {L ∈ T (G,H)|T ∼= L}. Then AutH(G)
acts transitively on the set O.

Remark 2.2. If G is a finite group and H a subgroup of G such that CoreG(H)
is nontrivial, then the number |I(G,H)| may be different from the number of
AutH(G)-orbits in T (G,H). For example, let G = 〈x, y|x6 = 1 = y2, yxy−1 =
x−1〉 ∼= D12, the dihedral group of order 12 and H = {1, x3, y, yx3}, where 1 is the
identity of G. Then H is non-normal in G and [G : H] = 3. Hence |I(G,H)| = 3.
However, NRTs {1, x, x2}, {1, yx, x2}, {1, x, yx2} and {1, yx, yx2} to H in G, lie in
different AutH(G)-orbits (as the set of orders of group elements in any two NRTs
are not same).

Lemma 2.3. Let L be a subgroup of G = Alt(5) of order 12. Then L ∼= Alt(4),
the alternating group of degree 4.

Proof. Up to isomorphism, there are only 5 groups of order 12 (see [1, Theorem
5.1]),

1. Z12;

2. Z3 × Z2 × Z2;

3. D12, the dihedral group of order 12;

4.
〈
x, y|x4 = y3 = 1, xy = y2x

〉
;

5. Alt(4).

Since G does not contain an element of order 12 or order 6 or order 4, hence it is
not isomorphic to either of the groups in (1)-(4). Thus L ∼= Alt(4).
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Lemma 2.4. Let K be a subgroup of Sym(5) of order 20. Then K is isomorphic
to the group

〈
x, y | x5 = y4 = 1, yxy−1 = x2

〉
, which is the one dimensional affine

group over Z5.

Proof. Up to isomorphism, there are only five non-isomorphic groups of order 20
(see [3]),

1. Z20;

2. Z10 × Z2;

3. D20, the dihedral group of order 20;

4. M =
〈
x, y | x5 = y4 = 1, yxy−1 = x−1

〉
;

5.
〈
x, y | x5 = y4 = 1, yxy−1 = x2

〉
.

Since Sym(5) does not contain an element of order 10, K cannot be isomorphic
to the either of the groups Z20, Z10 × Z2, D20 and M . This implies that K is not
isomorphic to either of the groups in (1) - (4) (we observe that Z(M) = 〈y2〉).
Thus K is isomorphic to the group

〈
x, y | x5 = y4 = 1, yxy−1 = x2

〉
.

Remark 2.5. Let G = Alt(5). Then Aut(G) = Inn(Sym(5)) (see [13, 2.17,
p.299]). Since Z(Sym(5)) = {I}, we may identify Aut(G) with Sym(5) by iden-
tifying each g ∈ Sym(5) with ig, the inner automorphism of Sym(5), determined
by g (x 7→ gxg−1). Thus for a subgroup H of G, AutH(G) = NSym(5)(H).

Proposition 2.6. Let G = Alt(5). Let H be a subgroup of G of order 5. Then
AutH(G) is isomorphic to

〈
x, y | x5 = y4 = 1, yxy−1 = x2

〉
, the one dimensional

affine group over Z5.

Proof. Let H be a subgroup of G of order 5. Then by Remark 2.5, AutH(G) =
NSym(5)(H). Since there are 6 Sylow 5-subgroups in Sym(5), [Sym(5) :NSym(5)(H)]
= 6. This implies that |NSym(5)(H)| = 20 = |AutH(G)|. Now, the proposition fol-
lows from the Lemma 2.4.

Proposition 2.7. Let G = Alt(5) and H = 〈a = (12345)〉. Let S ∈ T (G,H).
Then H * StabK(S), the stabilizer of S in K, where K = NSym(5)(H) and the
action of K is by conjugation.

Proof. Let S0 = {α ∈ G : α(5) = 5}. Then S0
∼= Alt(4) and S0 ∈ T (G,H).

Let S0 = {I = a0, a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11}, where a1 =
(12)(34), a2 = (13)(24), a3 = (14)(23), a4 = (123), a5 = (132), a6 = (124), a7 =
(142), a8 = (134), a9 = (143), a10 = (234), a11 = (243). Then there exists a
unique map σ : S0 → H, with σ(a0) = a0 such that S = Sσ = {σ(ai)ai | 0 6 i 6
11} ∈ T (G,H). Assume that StabK(S) ⊇ H. Then

aSa−1 = S. (1)
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Now, aσ(a3)a3a
−1 = σ(a3)aa3a

−1 = σ(a3)a2a3. Since aσ(a3)a3a
−1 ∈ Sσ (= S),

by (1), σ(a3)a2a3 ∈ S. This gives σ(a3)a2 = σ(a3). This implies that a2 = I, a
contradiction. Thus StabK(S) + H.

Corollary 2.8. Let G,H,K and S be as in the Proposition 2.7. Then StabK(S) �
D10, the dihedral group of order 10. Further, StabK(S) 6= K.

Proof. We observe that K has only one subgroup L of order 10 isomorphic to the
dihedral group D10. Since L contains the subgroup H of K, by Proposition 2.7,
StabK(S) 6= L. Since H ⊆ K, by Proposition 2.7 StabK(S) 6= K.

Proposition 2.9. Let G = Alt(5) and H = 〈(12345)〉. Let S ∈ T (G,H) such
that 〈S〉 = S. Then S = hS0h

−1, where h ∈ H and S0 = {α ∈ G : α(5) = 5} ∈
T (G,H).

Proof. We observe that S0 = 〈(123), (124)〉 ∼= Alt(4). Let S ∈ T (G,H) such that
〈S〉 = S. By Lemma 2.3, S ∼= S0. This implies that S = 〈(abc), (def)〉, where
a, b, c, d, e, f ∈ {1, 2, 3, 4, 5}. Since S ∼= S0 and |(123)(124)| = 2, |(abc)(def)| = 2.
This implies that d = a, e = b and hence S = 〈(abc), (abf)〉, where a, b, c and f
are distinct. Thus we have a permutation α ∈ Sym(5) with α(1) = a, α(2) = b,
α(3) = c, α(4) = f and α(5) = d0, where d0 ∈ {1, 2, 3, 4, 5} \ {a, b, c, f}. Thus

αS0α
−1 =

〈(
α(1)α(2)α(3)

)
,
(
α(1)α(2)α(4)

)〉
=
〈
(abc), (abf)

〉
= S. (2)

Next, since α ∈ Sym(5), either α ∈ Alt(5) or (12)α ∈ Alt(5). First, assume that
α ∈ Alt(5). Then there exists h1 ∈ H and β1 ∈ S0 such that α = h1β1. Thus
h1 = αβ1

−1 ∈ H. Since β1 ∈ S0, by (2) h1S0h
−1
1 = αβ−11 S0(αβ−11 )−1 = S.

Next, assume that (12)α ∈ Alt(5). Then there exists h2 ∈ H and β2 ∈ S0 such
that (12)α = h2β2. Thus h2 = (12)αβ−12 . Now, since(

(12)α
)
(123)

(
(12)α

)−1
=
(
α(2)α(1)α(3)

)
and

(
(12)α

)
(124)

(
(12)α

)−1
=
(
α(2)α(1)α(4)

)
, therefore(

(12)α)S0((12)α
)−1

=
〈(
α(2)α(1)α(3)

)
,
(
α(2)α(1)α(4)

)〉
= αS0α

−1. (3)

Since β2 ∈ S0, by (3) h2S0h
−1
2 = S. Thus in either cases, we have S = hS0h

−1,
for some h ∈ H.

Remark 2.10. Let G be a finite group. If H and K are subgroups of G such that
f(H) = K for some f ∈Aut(G), then |I(G,H)| = |I(G,K)|.

Proposition 2.11. Let G = Alt(5), the alternating group of degree 5 and H be a
subgroup of G of order 5. Then |I(G,H)| = 52 · (13 + 52 + 53 + 54 + 55 + 56 + 57).

Proof. Since any two subgroups of order 5 of G are conjugate, by Remark 2.10,
we may take H = 〈a = (12345)〉. Let S0 ∈ T (G,H), where S0 = {a0 = I, a1 =
(12)(34), a2 = (13)(24), a3 = (14)(23), a4 = (123), a5 = (132), a6 = (124), a7 =
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(142), a8 = (134), a9 = (143), a10 = (234), a11 = (243)}. Then S0
∼= Alt(4). We

observe that for each S ∈ T (G,H), there exists a unique map σ : S0 → H such
that σ(a0) = a0 and S = Sσ = {σ(ai)ai : 0 6 i 6 11}. Let S ∈ T (G,H). Then
S = Sσ for a unique map σ : S0 → H with σ(a0) = a0. Further, since |H| = 5, a
prime number, either 〈S〉 = S or 〈S〉 = G. Assume that 〈S〉 = S. Then by Lemma
2.3, S ∼= S0

∼= Alt(4). By Proposition 2.9 all non-generating NRTs of H in G
are conjugate, all non-generating NRTs of H in G forms a single AutH(G)-orbit
in T (G,H), where AutH(G) is identified with the subgroup K = NSym(5)(H) of
Sym(5) and the action of K on T (G,H) is by conjugation (see also Remark 2.5).
If 〈S〉 = G, then by Proposition 2.1, the isomorphism class of S on T (G,H) forms
a single AutH(G)-orbit. Thus I(G,H) is precisely the orbits of K in T (G,H).
Now, we describe the orbits of K in T (G,H). Since H = 〈a = (12345)〉, we have

NSym(5)(H) = K =
〈
a, b = (1342) | a5 = b4 = 1, bab−1 = a2

〉
,

K is isomorphic to one dimensional affine group over Z5 (see Proposition 2.6).
Further, by Proposition 2.7 and Corollary 2.8, |StabK(S)| ∈ {1, 2, 4}.

Assume that |StabK(S)| = 4. Since a subgroup of K of order 4 is a Sylow
2-subgroup of K, we may assume that StabK(S) = 〈b = (1342)〉 = K1. Since
bab−1 = a2, we obtain the following relations:

σ(a0) = σ(a1) = σ(a2) = σ(a3) = I
σ(a6) = (σ(a4))2, σ(a9) = (σ(a4))3, σ(a11) = (σ(a4))4,
σ(a7) = (σ(a5))2, σ(a8) = (σ(a5))3, σ(a10) = (σ(a5))4.

 (4)

Conversely, if σ1 : S0 → H is a map satisfying the relations (4), then StabK(Sσ1
) =

K1, for if g ∈ K \ K1, then a3 /∈ gSσ1
g−1 (note that a3 ∈ Sσ1

) and K1 ⊆
StabK(Sσ1). Let σ1 : S0 → H be a map satisfying (4). Then Sσ1 = {σ1(ai)ai | 0 6
i 6 11} ∈ T (G,H) and StabK(Sσ1) = K1. Assume that T ∈ T (G,H) lies in the
K-orbit of Sσ1

. Then there exists g ∈ K such that gSσ1
g−1 = T . This implies

that StabK(T ) = gK1g
−1. Since NK(K1) = K1, if g /∈ K1, then StabK(T ) 6= K1.

Further, if g ∈ K1, then Sσ1
= gSσ1

g−1 = T . This implies that Sσ1
lies in

the unique K-orbit of size 5. From the relations (4), we observe that a map
σ : S0 → H satisfying (4) can be completely determined by assigning values of
σ(a4) and σ(a5). Since each of σ(a4) and σ(a5) can take five distinct values, we
have 25 AutH(G) = K-orbits in T (G,H) each of size |K||K1| = 5.

Next, assume that |StabK(S)| = 2. Since a Sylow 2-subgroup of K is cyclic,
any two subgroups of K of order 2 are conjugate. Thus we may assume that
StabK(S) = 〈b2 = (14)(23)〉 = L1. Since b2ab−2 = a4, we obtain the following
relations:

σ(a0) = σ(a1) = σ(a2) = σ(a3) = 1,
σ(a8) = (σ(a7))4, σ(a9) = (σ(a6))4,
σ(a10) = (σ(a5))4, σ(a11) = (σ(a4))4.

 (5)

Conversely, let σ1 : S0 → H be a map satisfying (5). Then StabK(Sσ1
) ⊇ L1. From

the relations (5), we observe that σ1 satisfying (5) can be completely determined
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by assigning values of σ1(a4), σ1(a5), σ1(a6) and σ1(a7). Since each of σ1(ai)’s
(4 6 i 6 7) can take five distinct values, there are 625 choices of σ1 satisfying
(5). Further, from the relations (4) and (5), we observe that if a map from S0 to
H satisfies the relations (4), then it also satisfies (5). Further, since there are 25
choices of maps σ : S0 → H satisfying (4), there are 600 choices of maps from
S0 → H which satisfies (5) but not (4). Let σ1 : S0 → H be a map which satisfies
the relations (5) but not (4). Then Sσ1 = {σ1(ai)ai | 0 6 i 6 11} ∈ T (G,H) and
StabK(Sσ1) = L1. Assume that T ∈ T (G,H) lies in the K-orbit of Sσ1 . Then
there exists g ∈ K such that gSσ1

g−1 = T . This implies that StabK(T ) = gL1g
−1.

Since NK(L1) = K1, if g /∈ K1, then StabK(T ) 6= L1. Next, if g ∈ K1 \ L1, then
gSσ1

g−1 = T (6= Sσ1
). Since [K1 : L1] = 2, there exists a unique T ∈ T (G,H),

different from Sσ1 which lies in the K-orbit of Sσ1 and StabK(T ) = L1. Thus
by the discussion made above, there are 300 K-orbits in T (G,H) each of size
|K|
|L1| = 10.

Lastly, assume that |StabK(S)| = 1. As argued in the above paragraphs there
are 125 NRTs in T (G,H) whose stabilizer are of order 4 and there are 3000 NRTs
in T (G,H) whose stabilizer are of order 2, there are 511 − 55 = 55(56 − 1) NRTs
whose stabilizer are trivial. Hence, we have 54 ·(1+5+52+53+54+55), K-orbits in
T (G,H) each of size 20. Thus |I(G,H)| = 52+3·4·52+54·(1+5+52+53+54+55) =
52 · (13 + 52 + 53 + 54 + 55 + 56 + 57).

Corollary 2.12. There are at least, 52 · (13 + 52 + 53 + 54 + 55 + 56 + 57) non-
isomorphic right loops of order 12.

Proof. Let G = Alt(5), the alternating group of degree 5 and H be a subgroup
of G of order 5. If S ∈ T (G,H), then S is a right loop of order 12 (see [12,
Proposition 4.3.3, p.102]). By Proposition 2.11, |I(G,H)| is precisely the number
of AutH(G)-orbits in T (G,H). Thus if S1, S2 ∈ T (G,H) belongs to different
AutH(G)-orbits, then S1 � S2. This completes the proof.

Lemma 2.13. Let L be a subgroup of Sym(5) of order 8. Then L is isomorphic
to D8, the dihedral group of order 8.

Proof. Since |Sym(5)| = 23 ·3 ·5, if L is a subgroup of Sym(5) of order 8, then it is
a Sylow 2-subgroup of Sym(5). Let N = 〈(13), (1234)〉. Then N is a subgroup of
Sym(5) of order 8 isomorphic to D8. Since any two Sylow 2-subgroups of Sym(5)
are conjugate, the lemma follows.

Proposition 2.14. Let G = Alt(5), the alternating group of degree 5 and H be a
subgroup of G of order 2. Then |I(G,H)| = 226 + 10.

Proof. Let H be a subgroup of G of order 2. Since any two elements of G of order 2
are conjugate, by Remark 2.10, we may assume that H = {I, x = (12)(34)}, where
I is the identity element of G. Let K = AutH(G). By Remark 2.5, we identify K
with the group NSym(5)(H) = CSym(5)(H), the centralizer of H in Sym(5). Since
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there are 15 conjugates of (12)(34) in Sym(5), |CSym(5)(H)| = 8. By Lemma 2.13,
CSym(5)(H) ∼= D8. Since H = {I, x = (12)(34)}, we have

K = {I, (1324), (12)(34), (1423), (14)(23), (34), (13)(24), (12)}.

Consider the subgroups V4 = {I, (12)(34), (13)(24), (14)(23)} (isomorphic to
the Klein’s four group) and L = {g ∈ G : g(5) = 5} of G. Let T1 = {b0 =
I, b1 = (13)(24)}, T2 = {c0 = I, c1 = (134), c2 = (143)} and T3 = {d0 =
I, d1 = (12345), d2 = (13524), d3 = (14253), d4 = (15432)}. Then T1 ∈ T (V4, H),
T2 ∈ T (L, V4) and T3 ∈ T (G,L). Thus S0 = T1T2T3 = {bicjdk : 0 6 i 6 1, 0 6
j 6 2, 0 6 k 6 4} ∈ T (G,H).

Since G is a simple group and H is of order 2, 〈S〉 = G, for every S ∈ T (G,H).
Thus by Proposition 2.1, I(G,H) is precisely the orbits of K in T (G,H), where
the action of K is by conjugation.

Let S ∈ T (G,H). Then there exists a unique map σ : S0 → H such that
σ(b0c0d0 = I) = I and S = Sσ = {σ(bicjdk)bicjdk : 0 6 i 6 1, 0 6 j 6
2, 0 6 k 6 4}. Let g ∈ {(1324), (1423), (12), (34)} ⊆ K. Then g /∈ StabK(S),
for if g ∈ StabK(S), then gσ(b1c0d0)b1c0d0g

−1 = σ(b1c0d0)xb1c0d0, a contra-
diction as x = (12)(34) ∈ H and σ(b1c0d0)b1c0d0 ∈ S. Let g = (13)(24) ∈
K. Then g /∈ StabK(S), for if g ∈ StabK(S), then gσ(b0c1d0)b0c1d0g

−1 =
σ(b0c1d0)xb0c1d0 ∈ S and so we have a contradiction as x = (12)(34) 6= I.
Next, let g = (14)(23) ∈ K. Then g /∈ StabK(S), for if g ∈ StabK(S), then
gσ(b0c2d0)b0c2d0g

−1 = σ(b0c2d0)xb0c2d0 ∈ S, σ(b0c2d0)x = σ(b0c2d0), again a
contradiction. The above arguments imply that stabilizer in K of an NRT of H
in G is either H or {I}. Thus a K-orbit in T (G,H) is either of size 4 or of size 8.

Now, assume that StabK(S) = H. Then σ satisfies the following relations:

σ(b1c0d0) = I or x, σ(b0c1d4)x = σ(b1c0d3), σ(b0c2d1)x = σ(b0c1d2)
σ(b1c1d1)x = σ(b1c0d2), σ(b1c2d2)x = σ(b1c0d1), σ(b0c2d3) = σ(b0c0d4)
σ(b0c2d0) = σ(b1c2d0), σ(b0c1d3) = σ(b1c2d4), σ(b0c2d2)x = σ(b0c0d1)
σ(b1c1d2)x = σ(b1c2d1), σ(b1c0d4) = σ(b1c2d3), σ(b0c1d1)x = σ(boc0d2)
σ(b0c1d0)x = σ(b1c1d0), σ(b0c2d4) = σ(b1c1d3), σ(b1c1d4)x = σ(b0c0d3)

 (6)

Conversely, if a map σ1 : S0 → H with σ1(I) = I satisfies (6), then StabK(Sσ1
) =

H. From the relations (6), we find that there are 20 K-orbits in T (G,H) each
of size 4. Hence we have 229−80

8 = 226 − 10, K-orbits in T (G,H) each of size 8.
Therefore |I(G,H)| = 226 − 10 + 20 = 226 + 10.

Corollary 2.15. There are at least, 226 + 10 non-isomorphic right loops of order
30.

Proof. Let G = Alt(5), the alternating group of degree 5 and H be a subgroup
of G of order 2. If S ∈ T (G,H), then S is a right loop of order 30 (see [12,
Proposition 4.3.3, p.102]). By Proposition 2.14, |I(G,H)| is precisely the number
of AutH(G)-orbits in T (G,H). Thus if S1, S2 ∈ T (G,H) belongs to different
AutH(G)-orbits, then S1 � S2. This completes the proof.
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3. Graphs and isomorphism classes of transversals
In this section, we have introduced two graphs associated to the isomorphism
classes of transversals of a subgroup of a finite group and studied some properties
of these graphs.

Definition 3.1. Let G be a finite group and X be the set of all nontrivial proper
subgroups of G. We define a graph Γtic(G) on G whose vertex set is X and
two distinct vertices H and K are adjacent in Γtic(G) if and only if |I(G,H)| =
|I(G,K)|. We will call this graph the transiso-class graph.

It is easy to observe that Γtic(G) is complete if and only if |I(G,H)| = |I(G,K)|
for every H, K ∈ X.

Definition 3.2. Let G be a finite group. Let d be the order of a subgroup of G
and Xd be the set of all subgroups of G of order d. We define a graph Γd,tic(G) on
G with vertex set Xd and two distinct vertices are adjacent in Γd,tic(G) if and only
if |I(G,H)| = |I(G,K)|. We call the graph Γd,tic(G) as d-transiso-class graph.

We observe that Γd,tic(G) is complete if and only if |I(G,H)| = |I(G,K)| for
any H, K ∈ Xd.

Remark 3.3. In the definitions 3.1 and 3.2, we observe that Γtic(G) and Γd,tic(G)
both are connected if and only if they are complete.

Definition 3.4. ([11], p.143)A group G is said to be a Dedekind group if all the
subgroups of G are normal in G.

Example 3.5. Let G be a finite Dedekind group. Since each subgroup of G is
normal in G, |I(G,H)| = 1 (see [10, Main Theorem, p.643]), for every subgroup
H of G. Thus both Γtic(G) and Γd,tic(G) are complete, where d is the order of
subgroup of G.

Proposition 3.6. Let G = Sym(3). Then Γd,tic(G) is complete, d is the order of
a subgroup of G.

Proof. Let Xd = {H 6 G : |H| = d}. Obviously, d ∈ {1, 2, 3, 6}. If d = 1 or d = 3
or d = 6, then H ∈ Xd is normal in G and so |I(G,H)| = 1. Thus Γd,tic(G) is
complete. Next, assume that d = 2. Since all 2-cycles in G are conjugate, any two
members of X2 are conjugate. Hence by Remark 2.10, |I(G,H)| = |I(G,K)| for
every H, K ∈ X2. Thus Γ2,tic(G) is complete.

Remark 3.7. It is easy to observe that if H is a subgroup of G = Sym(3) of order
2, then |I(G,H)| = 3. However, if H = Alt(3), the alternating group of degree 3,
then |I(G,H)| = 1 (see [10]). Consequently, Γtic(Sym(3)) is not complete.

Proposition 3.8. Let G = Alt(4). Then Γd,tic(G) is complete for every d, where
d is the order of a subgroup of G.
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Proof. Let G = Alt(4). Let Xd denote the set of all subgroups of G of order
d. Then any two members of Xd are conjugate. By Remark 2.10, |I(G,H)| =
|I(G,K)| for every H, K ∈ Xd. Thus Γd,tic(G) is complete for every d.

Proposition 3.9. Let G = Alt(4). Then Γtic(G) is not complete.

Proof. Let G = Alt(4). If H is a subgroup of G of order 2, then |I(G,H)| = 5
(see [6]). Also, It is easy to observe that if K is a subgroup of order 3 of Alt(4),
then |I(G,K)| = 7. Thus H and K are not adjacent in Γtic(G). Hence Γtic(G) is
not complete.

Lemma 3.10. Let G = Alt(5). Let Xd be the set of all subgroups of G of order
d. Then any two members of Xd are conjugate.

Proof. Let Xd be the set of all subgroups of G of order d. Since G is simple, if
H ∈ Xd, then [G : H] > 5 (see [13, p. 308]). Hence d ∈ {1, 2, 3, 4, 5, 6, 10, 12, 60}.
If d = 1 or d = 60, then the proof is over. Assume that d = 2. Let H ∈ X2. Then
H is of the form {I, σ}, where σ ∈ Alt(5) is product of two distinct transpositions.
Since all permutations of the form σ are conjugate in Alt(5), any two members
of X2 are conjugate. Further, if d ∈ {3, 4, 5}, then any member of Xd is a Sylow
d-subgroup of G. Hence any two members of Xd are conjugate.

Next, assume that d = 6. Since G has no permutation of order 6, a subgroup
of order 6 in G is isomorphic to Sym(3). If K is a subgroup of G of order 6, then
NG(K) = K. Hence there are 10 conjugates of K in G. Since there are exactly
10 subgroups of G of order 6, all members of X6 form a complete conjugacy class.
Now, assume that d = 10. Again, since G has no permutation of order 10, a
subgroup of G of order 10 is isomorphic to D10. If L ∈ X10, then it is easy to
observe that NG(L) = L. Thus there are 6 conjugates of L in G. Since there
are exactly 6 subgroups of G of order 10, any two subgroups of G of order 10 are
conjugate. Lastly, assume that d = 12. By Proposition 2.9 any two subgroups of
G of order 12 are conjugate.

Proposition 3.11. Let G = Alt(5). Then Γd,tic(G) is complete, for every d,
where d is the order of a subgroup of G.

Proof. Let G = Alt(5). Let Xd denote the set of all subgroups of G of order d.
Then by Lemma 3.10, any two members of Xd are conjugate. By Remark 2.10,
|I(G,H)| = |I(G,K)|, for any H, K ∈ Xd. Hence Γd,tic(G) is complete for every
d.

Remark 3.12. In the above proposition, we observe that Γd,tic(Alt(5)) is complete
for every d, where d is the order of a subgroup of Alt(5). However, Alt(5) is not
a Dedekind group.

Proposition 3.13. Let G = Alt(5). Then Γtic(G) is not complete.
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Proof. Let G = Alt(5). Let X be the set of all nontrivial proper subgroups of
G. Let H be a subgroup of G of order 2. Then by Proposition 2.14, |I(G,H)| =
226 + 10.

Let K be a subgroup of G of order 5. Then by Proposition 2.11, |I(G,K)| 6=
|I(G,H)|. Thus both H and K are in X, however they are not adjacent in Γtic(G)
. Hence Γtic(G) is not complete.

Proposition 3.14. Let G be a finite p-group, p is a prime. Then Γd,tic(G) is
complete if and only if each member of Xd is normal in G, where Xd is the set of
all subgroups of G of order d.

Proof. Let G be a finite p-group. Then for each divisor d of |G|, G contains a
normal subgroup H of order d (see [9, Proposition 9.1.23]). Thus Γd,tic(G) is
complete if |I(G,K)| = 1 for every K ∈ Xd. Consequently, each K ∈ Xd is
normal in G (see [10]). Conversely, assume that each member of Xd is normal in
G. Then |I(G,H)| = 1, for any H ∈ Xd. Hence Γd,tic(G) is complete.

Corollary 3.15. Let G be a nonabelian group of order order p3, p is a prime.
Then Γp,tic(G) is complete if and only if G ∼= Q8.

Proof. Assume that Γp,tic(G) is complete. By the above proposition each subgroup
of G of order p is normal in G. Since a subgroup of G of order p2 is maximal in G,
it is normal in G. Thus if Γp,tic(G) is complete, then all subgroups of G are normal
in G. Hence G is a Dedekind group. Thus by [11, p.143], G ∼= Q8. Conversely, if
G = Q8, then Γ2,tic(G) is complete follows from the Example 3.5.

Proposition 3.16. Let G = D2n. If n is even, then Γ2,tic(G) is not complete.

Proof. Let X2 be the set of all subgroups of G of order 2. Since the center Z(G)
of G is of order 2, |I(G,Z(G))| = 1. Again if H ∈ X2 and H is non-normal,
then |I(G,H)| 6= 1 (see [10, Main Theorem, p.643]). Thus Z(G) and H are not
adjacent in Γ2,tic(G). Consequently, Γ2,tic(G) is not complete.

Let G = D8 = 〈a, b : a2 = b4 = 1, aba = b−1〉. Let X2 =
{
H1 = 〈a〉, H2 =

〈ba〉, H3 = 〈b2a〉, H4 = 〈b3a〉, H5 = 〈b2〉
}
be the set of all subgroups of G of order

2 and let X4 = {K1 = 〈b〉,K2 = 〈b2, a〉,K3 = 〈b2, ba〉} be the set of all subgroups
of G of order 4. Then the connectivity of subgroups in Γ2,tic(D8) and Γ4,tic(D8)
can be shown in following pictorial form:

H1 H3

H2 H4

(a) Γ1

H5 = Z(D8)

(b) Γ2

Figure 1: Γ2,tic(D8) = Γ1 ∪ Γ2
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K1 K3

K2

Figure 2: Γ4,tic(D8)

Proposition 3.17. Let G be a finite group containing a nontrivial proper normal
subgroup. Assume that Γtic(G) is complete. Then G is a Dedekind group.

Proof. Let X be the set of all nontrivial proper subgroups of G. Then there exists
H ∈ X such that HEG and hence |I(G,H)| = 1 (see [10, Main Theorem, p.643]).
Assume that Γtic(G) is complete. Then |I(G,K)| = 1, for every K ∈ X. Thus
each subgroup of G is normal in G (see [10]). Hence G is a Dedekind group.

In the Proposition 3.17, we saw that if Γtic(G) is complete and G has a nontriv-
ial proper normal subgroup, then G is Dedekind. Then, we may ask the following
questions:

Question 1. Does there exists a finite non-abelian simple group G such that
Γtic(G) complete ?

Question 2. Let G be a finite group. Let Xd be the set of all subgroups of G of
order d. Assume that Γd,tic is complete. Then what can we say about the members
of Xd ?
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