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Semisymmetric quasigroups

as alignments on abstract polyhedra

Kyle M. Lewis

Abstract.A quasigroup satisfying the identity x(yx) = y is called semisymmetric; if a semisym-
metric quasigroup is commutative, then it is totally symmetric. We demonstrate a bijection
between totally symmetric quasigroups and directed graphs satisfying certain specifications.
Further, we demonstrate a bijection between semisymmetric quasigroups and certain mappings
between abstract polyhedra and directed graphs, termed alignments.

1. Introduction
As a class, the semisymmetric quasigroups arguably warrant particular interest
due to both their algebraic and their combinatorial properties – commutative
semisymmetric i.e. totally symmetric quasigroups have been an object of study
for almost as long as quasigroups themselves [1]. There is a well-known bijec-
tion between idempotent totally symmetric quasigroups and the combinatorial
block designs known as Steiner triple systems [2]; this further links totally sym-
metric quasigroups to finite geometry, as the Steiner triple system of order 7 is
equivalent to the finite projective plane of order 2, and the Steiner triple system
of order 9 is equivalent to the finite affine plane of order 3 [11]. Notably, via
the semisymmetrization functor described by Smith [16], as well as the similar
Mendelsohnization functor described by Krapež and Petrić [12], [17], it is possible
to reduce homotopisms between arbitrary quasigroups to homomorphisms between
semisymmetric quasigroups.

In this paper, we first lay groundwork by establishing a novel bijection between
totally symmetric quasigroups and directed graphs meeting certain specifications.
There have been several graph theoretic approaches applied to the study of quasi-
groups in the past [3], [9]; the main advantages of the schema implemented here are
that the diagrams remain relatively simple, yet we are still able to fully recover the
structure of any given (totally symmetric) quasigroup from its associated directed
graph, even such that new quasigroups can be constructed starting only with a
set of rules for constructing digraphs. Then, we expand this result to demonstrate
a link between semisymmetric quasigroups and abstract polytopes, which are a
combinatorial generalization of more traditional, geometric polytopes [5], [13].
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Specifically, we demonstrate a bijection between semisymmetric quasigroups and
objects we will refer to as alignments, which represent mappings between abstract
polyhedra and directed graphs. Likewise, up to isomorphism the full structure of
a semisymmetric quasigroup will be shown to be recoverable from its associated
alignment and vice versa.

2. Preliminaries

A partial quasigroup (Q, ·) is a set Q with a binary operation (·) such that for some
a, b ∈ Q there exist (at most) unique elements x, y ∈ Q such that a ·x = b, y ·a = b;
if this relation is satisfied for all a, b ∈ Q, then it is complete or simply a quasigroup
[2]. For brevity, we will denote x ·y by juxtaposition xy. An isomorphism between
partial quasigroups is a bijection f : Q→ Q′ such that f(x) · f(y) = f(xy) for all
x, y ∈ Q, in which case Q and Q′ are said to be isomorphic.

Given a quasigroup (Q, ·), it is possible to define 5 conjugate or parastrophic
operations [6], [15] such that:

x · y = z ⇔ z/y = x (1)
x · y = z ⇔ x\z = y (2)
x · y = z ⇔ y ◦ x = z (3)
x · y = z ⇔ y//z = x (4)
x · y = z ⇔ z\\x = y (5)

If Q satisfies any of the equivalent [16] identities:

y · xy = x (6)
yx · y = x (7)
x/y = yx (8)
x\y = yx (9)

then it is said to be semisymmetric. If Q is both semisymmetric and commutative,
then it is totally symmetric, abbreviated as a TS-quasigroup. Equivalently, Q is
totally symmetric iff all of its parastrophic operations coincide with one another.

A partial Steiner triple system of order n is a pair (V,B) where V is an n-
element set and B is a set of 3-element subsets of V , referred to as Steiner triples,
where any 2-element subset of V is contained in at most 1 triple. A partial Steiner
triple system is complete if every 2-element subset of N is contained in exactly 1
triple in B, in which case it is referred to as simply a Steiner triple system [2].

A cyclic order on 3 elements is a ternary relation θ such that for distinct
elements x, y, z then θ(x, y, z) ⇔ θ(z, x, y) ⇔ ¬θ(z, y, x) [7]. We call a pair of
cyclic orders of the form θ1(x, y, a), θ2(y, x, b) partial opposites; that is, to say,
they share > 2 common elements which are in reversed order in regards to each
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other. If partial opposites share all 3 elements, then they are simply opposites.
The scope of this paper is limited to cyclic orders on 3 elements, and so we need
not consider cyclic orders on larger sets.

A partial Mendelsohn triple system (W,C) is a generalization of a Steiner triple
system where W is a set and C is set of 3-element subsets of W with some cyclic
order, referred to as Mendelsohn triples, such that ({x, y, z}, θ) = (x, y, z) contains
the ordered pairs (x, y),(y, z),(z, x), and no others. Likewise, any ordered pair of
distinct elements (x, y) : x, y ∈ W can be contained in at most 1 triple in C; if
every possible ordered pair of distinct elements in W is contained in exactly 1
triple in C, then the system is complete and simply a Mendelsohn triple system
[3].

A multiset is a generalization of a set allowing for multiple instances of each
element. Similarly, an extended Steiner system of order n is a pair (V,B) where V
is an n-element set and B is a set of 3-element submultisets of V , called extended
Steiner triples wherein each 2-element multisubset of V is contained in exactly 1
extended Steiner triple. An extended Mendelsohn system is a pair (W,C) where
W is a set and C is a set of extended Mendelsohn triples such that any ordered pair
of not necessarily distinct elements (a, b) : a, b ∈ M is contained within exactly 1
triple in C. That is to say, extended Steiner and Mendelsohn triple systems are
simply triple systems that allow for the repetition of elements [3]. From hereon,
we will assume all Steiner and Mendelsohn systems are extended, and as such we
can safely use just triples and triple systems when there is no chance of confusion.
Cyclic orders also extend to multisets – note that any cyclic order of the form
θ(x, x, y) or θ(x, x, x) is opposite to itself.

Suppose some graded partially ordered set (P,6) with strictly monotone rank
function ρ : P → {−1, 0, 1, 2, ..., n} sending elements fi ∈ P , called faces, to integer
values such that there is some unique least face f−1 and some unique greatest face
fn such that ρ(f−1) = −1 and ρ(fn) = n. Faces of rank n are n-faces – we
call 0-faces vertices and 1-faces edges. Faces f1, f2 are incident if f1 6 f2 or
f2 6 f1. Any maximal totally ordered subset Fi ⊂ P is a flag ; each flag contains
exactly n + 2 faces. 2 flags are adjacent if they differ by exactly 1 face. P is
strongly flag-connected if for any 2 flags Fx, Fy in P , there is some sequence of
flags (F0, F1, ..., Fn) such that any 2 successive Fi, Fi+1 are adjacent to each other,
where Fx = F0, Fy = Fn and Fx ∩Fy ⊆ Fi for all i. If for any pair of faces fx 6 fz
in P where ρ(fx) = i− 1, ρ(fz) = i+ 1, there are exactly 2 faces fy1, fy2 such that
fx 6 fy1,2 6 fz and ρ(fy1,2) = i, then P is said to satisfy the diamond condition;
that is to say, any pair of incident faces that differ in rank by 2 have exactly 2
incident faces strictly between them.

A graded poset (P,6) is an abstract n-polytope [5], [13], [14] if it has a unique
least face of rank -1 and a unique greatest face of rank n, is strongly flag-connected,
all flags contain exactly n + 2 faces, and it satisfies the diamond condition. An
abstract 3-polytope is an abstract polyhedron. We will call a polyhedron cubic if
its graph is 3-regular – that is to say, each vertex is incident to exactly 3 edges.

An automorphism on an abstract polytope P is an order-preserving bijection
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ϕ : P → P . From hereon, all polytopes will be assumed to be abstract and all
quasigroups will be assumed to be finite.

3. Totally symmetric quasigroups and digraphs

3.1 Constructing didgraphs from quasigroups
There is a natural bijection between Steiner triple systems and totally symmetric
quasigroups given by S : Q → S(Q) where Q is some partial TS-quasigroup and
S(Q) = (V,B) is the partial Steiner system over the same underlying set such that
for x, y, z ∈ Q then {x, y, z} ∈ B if and only if xy = z, yx = z, xz = y. We will
refer to partial Steiner systems as isomorphic to each other iff their corresponding
partial quasigroups are isomorphic to each other, and likewise for individual Steiner
triples.

Lemma 3.1. There are exactly 3 isomorphism classes of Steiner triples: triples of
the form {x, x, x} (type 1), of the form {x, x, y} (type 2), and of the form {x, y, z}
(type 3), where x 6= y 6= z.

Proof. Any 2 triples {x, x, x}, {a, a, a} are isomorphic by ϕ(x) = a, ϕ(a) = x. Any
2 triples {x, x, y}, {a, a, b} are isomorphic by ϕ(x) = a, ϕ(a) = x, ϕ(y) = b, ϕ(b) =
y. Any 2 triples {x, y, z}, {a, b, c} are isomorphic by ϕ(x) = a, ϕ(a) = x, ϕ(y) =
b, ϕ(b) = y, ϕ(z) = c, ϕ(c) = z. No isomorphism between triples of different types
is possible because any mapping would necessarily either map unique values x, y
to the same value a or map the a single value x to different values a, b.

A partial triple system can be constructed through the union of any 2 triples
with less than 2 elements in common. Necessarily then, said triples must either
have exactly 1 element in common, in which case we will refer to them as inter-
secting, or they have no elements in common, making them disjoint. If 2 triples
t1, t2 are intersecting such that t1 has more instances of the intersecting element
than t2, we will say that t2 binds to t1 e.g. {1, 2, 3} binds to {1, 1, 4}.

Proposition 3.2. A partial Steiner triple system is uniquely determined up to
isomorphism by the types of its constituent triples and the intersection between
them.

Proof. Given partial triple systems (V1, B1) where B1 = {{x1, y1, z1}, {a1, b1, c1}}
and (V2, B2) where B2 = {{x2, y2, z2}, {a2, b2, c2}} there exists an isomorphism
ϕ(x1) = x2, ϕ(x2) = x1, ϕ(a1) = a2, ϕ(a2) = a1 et cetera iff ∀d1, e1 ∈ ∪B1∃d2, e2 ∈
∪B2((d1 = e1) ⇒ (d2 = e2)). This process can be continued inductively for the
union of triple systems of arbitrarily greater (finite) order.

Corollary 3.3. Any given totally symmetric quasigroup is uniquely determined
up to isomorphism by the types of its corresponding triples and the intersection
between them.
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In light of this, we can devise a schema to represent totally symmetric quasi-
groups as directed graphs: for given partial totally symmetric quasigroup Q, let
D : Q→ D(Q) take it to the directed graph D(Q) such that for every Steiner triple
ti ∈ S(Q) there is exactly 1 vertex vi ∈ D(Q) and where for any t1, t2 7→ v1, v2
then v1 directly succeeds v2 if and only if t2 binds to t1. For example, given an
example quasigroup Q4 of order 4 with the Cayley table:

1 2 3 4
1 1 2 4 3
2 2 1 3 4
3 4 3 2 1
4 3 4 1 2

we can derive the corresponding triples: {1,1,1}, {2, 2,1}, {3, 3, 2}, {4, 4, 2}, {1, 3, 4},
producing the directed graph:

Figure 1: Labeled digraph of Q4

The labels in figure 1 are purely for illustrative purposes; the final, unlabeled
digraph is:

Figure 2: Unlabeled digraph D(Q4)

We will refer to vertices inD(Q) as being of the same type as the triples in S(Q)
they correspond to e.g. a type 1 vertex represents some triple of the form {x, x, x}.
In general, if there is little chance for confusion we will use the same terminology
between vertices in D(Q) and the triples in S(Q) which they represent.

Proposition 3.4. Up to isomorphism, the full structure of any TS-quasigroup Q
can be recovered from its directed graph D(Q).

Proof. It is clear from the definition of an extended Steiner triple system that in
any complete system (V,B) each element of its underlying set x ∈ V must occur
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in exactly 1 triple either of the form {x, x, x} or of the form {x, x, y}. It follows
then that for given triples t1, t2 the only possible case in which t2 can contain less
instances of some shared element x ∈ t1, t2 is if t2 contains exactly 1 instance of
x and t1 contains either 2 or 3 instances of x. That is to say, a given triple binds
exactly once for each element it contains exactly 1 instance of. Therefore, the type
of triple each vertex represents can be inferred from its outdegree: vertices with
outdegree 0 map to type 1 triples, outdegree 1 to type 2 triples, and outdegree 3
to type 3 triples.

Given the digraph D(Q), once the type of each vertex is identified, we may
arbitrarily assign some bijective mapping between the type 1 and 2 vertices of the
digraph and the elements of Q; that is to say, we label each type 1 and 2 vertex
with a unique element of Q. Now, each vertex can be mapped to some triple as
follows: type 1 vertices with label x are sent to {x, x, x}, type 2 vertices with label
x binding to some vertex with label y are sent to {x, x, y}, type 3 vertices binding
to some vertices with labels x, y, z (respectively) are sent to {x, y, z}. The union
of these triples forms a triple system and thus a totally symmetric quasigroup. For
example:

Figure 3: The type of each vertex in example diagram D(Q5)

Figure 4: Arbitrary labeling of type 1 and type 2 vertices of D(Q5)

Figure 5: Deriving the corresponding triples for each vertex of D(Q5)

Our choice in assigning type 1 and 2 vertices to elements of Q does not matter,
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because the type of each triple and the intersection between them are preserved
and so by Corollary 3.3 any quasigroup produced by this method will be isomorphic
to Q. In fact, every quasigroup isomorphic to Q on the same underlying set can be
produced via permutations on the labels of the type 1 and 2 vertices of its digraph
D(Q).

Corollary 3.5. Every automorphism of a given TS-quasigroup Q corresponds to
some graph isomorphism between permutations of labelings on the type 1 and 2
vertices of its directed graph D(Q).

3.2 Constructing quasigroups from digraphs
A complete extended Steiner triple system of order n contains:(

n+ 2− 1

2

)
=

1

2
n(n+ 1) (10)

(unordered) pairs of elements. As shown by Johnson and Mendelsohn in Section 3
of [8], given a triple system of order n, fixing the number of triples of any type also
fixes the number of triples of each of the other 2 types. More specifically, where i
is the number of type 1 triples, the number of type 3 triples must be equal to:

1
2n(n+ 1)− (i+ 2(n− i))

3
= n2/6− n/2 + i/3 (11)

and therefore the number of type 1 triples i in a given triple system of order n
must be such that:

3 | 1

2
n2 − 3

2
n+ i (12)

A given element of a quasigroup x ∈ Q such that xx = x is called an idempotent
element or simply an idempotent [3]; a quasigroup wherein all elements are idem-
potent is an idempotent quasigroup. It is readily apparent that each type 1 triple
in a Steiner system specifies an element of its corresponding TS-quasigroup to be
idempotent, and that each type 2 triple specifies an element not to be idempotent.
By definition:

xx = y ⇔ xy = x⇔ yx = x (13)

and so these triples define not only the squares for each element x2 = y but also
the local identities for each element xy = x. Let us define the subset: U = {y ∈
Q | x2 = y, x ∈ Q} as the unique squares of Q. On D(Q), the unique squares
correspond to the type 1 vertices together with the type 2 vertices which have at
least 1 other type 2 vertex bound to them – this is equivalent to saying the unique
squares are the elements that are either their own squares or the square of some
other element.

Lemma 3.6. For a TS-quasigroup of odd order n, |U | = n; all elements are unique
squares.
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Proof. For elements of a TS-quasigroup x, y, z ∈ Q, by definition xy = z ⇔ xz = y.
Then for any fixed x, we can define an involution ϕ : Q → Q sending y 7→ xy. If
n is odd, because ϕ is an involution there then must be some element z for which
ϕ(z) = z i.e. xz = z. Because Q is a quasigroup, there can be no y such that
xz = z, yz = z, x 6= y; that is to say, if x acts as a local identity element for z, then
it must be the only identity element for z. There being exactly n elements in Q,
if some x were to act as an identity for more than 1 element, then there must be
some y that cannot be an identity for any element – but as we established, every
element of Q must be an identity for some other element. Therefore, each z maps
uniquely to some local identity x, or alternatively, every element x is the unique
square of some z.

In informal terms, every row and column of the Cayley table for Q is some
involution on the underlying set of Q, which means each row can be represented
as the product of disjoint transpositions, but because n is odd for any row x there
always must be some cell left over that cannot be swapped with any other cell.
This defines the local identity for x and thus it also defines x2; this must be unique
because if another row had the same local identity for x there would be multiple
instances of the same element in a single column.

Corollary 3.7. For any TS-quasigroup Q of odd order, all type 2 vertices in D(Q)
are partitioned into cycles of length > 3.

Proof. If all elements are unique squares, then each type 2 vertex must have at
least 1 other type 2 vertex bound to it. Given that type 2 vertices have outdegree
1, they all must bind to other type 2 vertices, else there necessarily would be some
type 2 vertex left over with no type 2 vertex bound to it. Assuming the number
of vertices is finite, they will therefore be partitioned into cycles. There can be no
2-cycles as that would imply {{x, x, y}, {y, y, x}}, thus the pair {x, y} would occur
in more than 1 triple.

Lemma 3.8. For a TS-quasigroup of even order n, 1 6 |U | 6 n/2.

Proof. As above, on TS-quasigroup Q we define an involution ϕ : y 7→ xy for some
fixed x where x, y ∈ Q. If n is even, because ϕ is an involution for every y such
that ϕ(y) = y there must also be another distinct element z ∈ Q where ϕ(z) = z;
that is, any x must act as a local identity for an even number of elements in Q
(0 being even). Conversely, every x must be the square of an even number of
elements. It follows then that the maximum possible number of unique squares is
n/2; trivially, there must be at least 1 unique square.

Informally, because n is even there cannot be an odd number of unswapped
cells in a given row of the Cayley table for Q.

Corollary 3.9. In the digraph D(Q) for a TS-quasigroup Q of even order, every
type 1 vertex must have an odd number of type 2 vertices bound to it and every
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type 2 vertex must have an even number of type 2 vertices bound to it (0 being
even).

To summarize, for a TS-quasigroup Q of order n: the number of type 1 vertices
i must be such that 3 | 12n

2− 3
2n+ i. The number of type 2 vertices must be n− i.

If n is odd, the type 2 vertices are partitioned into cycles of length > 3. If n is
even, every type 1 vertex must have an odd number of type 2 vertices bound to
it and every type 2 vertex must have an even number of type 2 vertices bound
to it. We will refer to a given configuration of type 1 and 2 vertices meeting the
aforementioned specifications as a diagonal subgraph.

Proposition 3.10. For any TS-quasigroup Q, D(Q) contains a diagonal subgraph
as an induced subgraph. Further, up to isomorphism every diagonal subgraph can
be mapped to some unique partial TS-quasigroup.

Proof. By Corollaries 3.7 and 3.9, the induced subgraph containing only the type
1 and type 2 vertices of the digraph of a TS-quasigroup will always be a diagonal
subgraph. Using the method specified in Proposition 3.4, we can always produce
a partial Steiner system and therefore a partial TS-quasigroup with any arbitrary
labeling of the vertices bijective with some set. Because this method preserves the
types of triples and the intersections between them, by Corollary 3.3 this partial
quasigroup is unique up to isomorphism for each unique diagonal subgraph. Triples
in a diagonal subraph are all either of the form {x, x, x} or {x, x, y}, and thus the
only way for a given pair to show up more than once would be to label more than
1 vertex with the same element, which goes against the definition.

However, not every diagonal subgraph can be made into a complete TS-quasi-
group. There must be n2/6−n/2+i/3 type 3 triples in a complete Steiner system,
and each corresponding type 3 vertex must bind to exactly 3 type 1 or type 2
vertices. Further, no 2 type 3 vertices may bind to more than 1 shared vertex, as
this would imply 2 triples that shared more than 1 common element. Finally, no
type 3 vertex may bind to 2 vertices a, b where a is bound to b; this would imply
some {{x, y, z}, {x, x, y}, {y, y, w}} and thus the pair {x, y} is contained in more
than 1 triple. A directed graph composed (solely) of a diagonal subgraph and a
set of type 3 vertices meeting the aforementioned specifications is complete.

Theorem 3.11. Up to isomorphism, there exists a bijection between complete
digraphs and totally symmetric quasigroups such that the full structure of a unique
totally symmetric quasigroup can be recovered from any complete digraph and vice
versa.

Proof. Given any diagonal subgraph and some bijective labeling from some set to
the vertices, it is readily apparent that any completion via the addition of bound
type 3 vertices is equivalent to the specification of a set of triples, each containing
exactly 3 distinct elements of the set. If any 2 of these type 3 triples shared more
than 1 common element between them, they would necessarily bind to more than
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1 shared vertex and thus violate the definition of a complete digraph. If any of
these type 3 triples shared more than 1 common element with some type 2 triple,
it would also necessarily bind to the triple said type 2 binds to and thus violate the
definition of a complete digraph. Clearly, a type 3 triple cannot share more than 1
common element with a type 1 triple. There being n2/6−n/2 + i/3 type 3 triples
ensures by the pigeonhole principle that every possible pair of elements of the set
is accounted for in some triple. By Corollary 3.3, any 2 digraphs corresponding to
isomorphic quasigroups are necessarily isomorphic to each other. By Proposition
3.4, every totally symmetric quasigroup corresponds to a directed graph, and thus
the bijection is complete.

Corollary 3.12. Every subquasigroup of any TS-quasigroup Q appears as an in-
duced subgraph of D(Q).

The methodology described here for constructing digraphs from TS-quasigroups
is compatible with that of Khatirinejad et al. in [10] for constructing digraphs
from Mendelsohn triple systems, which are equivalent to idempotent, semisym-
metric quasigroups [17]. Specifically, given any idempotent TS-quasigroup Q, we
can construct a Khatirinejad et al. digraph from D(Q) by replacing each type 3
vertex with a set of 6 vertices arranged into 2 cyclically ordered triangles (as each
Steiner triple is equivalent to 2 Mendelsohn triples).

Remark 3.13. There is known to exist a bijection between idempotent TS-quasi-
groups of order n and TS-quasigroups of order n + 1 with a (global) identity
element [4]. This can be represented graphically as follows: given the digraph of
some idempotent, TS-quasigroup, add 1 additional type 1 vertex, then bind every
other type 1 vertex to the added vertex, converting them to type 2 vertices.

Figure 6: Example idempotent quasigroup Q3

Figure 7: Derived quasigroup with identity V4 (the Klein 4-group)

Note that 1 of the arrows in Figure 2 is in the opposite orientation to that of its
counterpart in Figure 7, distinguishing Q4 and V4 as nonisomorphic quasigroups.
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4. Quasigroups and abstract polyhedra

4.1 Constructing polyhedra from quasigroups

Similarly to Steiner systems and totally symmetric quasigroups, there exists a
natural bijection between Mendelsohn triple systems and semisymmetric quasi-
groups given by M : Q → M(Q) where Q is a given partial semisymmetric
quasigroup and M(Q) = (W,C) is the partial Mendelsohn system over the same
underlying set such that for elements x, y, z ∈ Q then (x, y, z) ∈ C if and only
if xy = z, yz = x, zx = y; note that because semisymmetric quasigroups are not
necessarily commutative, this does not necessarily imply yx = z, zy = x, xz = y.

Lemma 4.1. There exist exactly 3 isomorphism classes of extended Mendelsohn
triples.

Proof. The same reasoning applied to Steiner systems in Lemma 3.1 equally applies
to Mendelsohn systems.

Indeed, type 1 and type 2 Mendelsohn triples behave similarly to their Steiner
counterparts in that they specify squares and local identities and are also com-
mutative: type 1 triples (x, x, x) trivially imply xx = x, type 2 triples (x, x, y)
imply xx = y, yx = x, xy = x. Type 3 Mendolsohn triples, however, have a more
complex structure in that (x, y, z) 6= (z, y, x). As such, we will need to devise a
new schema to represent type 3 Mendelsohn triples.

For given partial semisymmetric quasigroup Q, let G : Q → G(Q) take it to
the (undirected) multigraph G(Q) such that for every type 3 Mendelsohn triple
ti ∈ M(Q) there is exactly 1 vertex vi ∈ G(Q) and where for any t1, t2 7→ v1, v2
then there is exactly 1 edge linking v1 to v2 for every pair of elements t1 and
t2 have in common. Thus, 2 vertices are adjacent if and only if the triples they
represent share at least 2 elements in common e.g. (1, 2, 3) is adjacent to (2, 1, 4)
but not to (1, 5, 6). As above, we will use the same terminology between vertices
in G(Q) and the triples they represent in M(Q) when expedient.

To illustrate, from an example semisymmetric quasigroup Q4s with Cayley
table:

1 2 3 4
1 1 3 4 2
2 4 2 1 3
3 2 4 3 1
4 3 1 2 4

we can derive 4 type 1 triples {(1, 1, 1), (2, 2, 2), (3, 3, 3), (4, 4, 4)} and 4 type 3
triples {(1, 2, 3), (1, 3, 4), (1, 4, 2), (2, 4, 3)}. This would produce the graph:
or unlabeled:

For given semisymmetric quasigroup Q, let us define a relation
 on the type 3
triples of M(Q) such that a
 b for a, b ∈M(Q) if and only if their corresponding
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Figure 8: Labelled graph of Q4s

Figure 9: Unlabeled graph G(Q4s)

vertices in G(Q) are connected. Because connectivity is reflexive, symmetric, and
transitive,
 is then an equivalence relation; we will refer to the partial quasigroups
corresponding to the equivalence classes of type 3 triples in M(Q) under
 as the
components of Q. A partial quasigroup q such that any t1, t2 ∈ M(q) are type 3
triples corresponding to vertices of degree 3 in G(q) and t1 
 t2 we will call a free
component. That is to say, a free component q is a partial quasigroup composed of
type 3 triples where G(q) is connected and where adding any further type 3 triple
to M(q) would make G(q) disconnected.

Lemma 4.2. Given a complete semisymmetric quasigroup Q, G(Q) will be 3-
regular; further, G(q) will be 3-regular for every component q of Q.

Proof. Each type 3 Mendelsohn triple contains exactly 3 ordered pairs of elements,
and because Q is complete then for each ordered pair (x, y) in a type 3 triple
there also must be some triple containing (y, x). If there were some type 2 triple
containing (y, x), then necessarily (y, x, x) or (y, y, x), which would make (x, y)
appear in more than 1 triple, and trivially no type 1 triple can contain (y, x), so
(y, x) must be contained in some other type 3 triple, which will be adjacent by
definition. Therefore, every vertex must be incident to exactly 3 edges, each edge
corresponding to an unordered pair {x, y}. By definition any vertices in G(Q)
connected to any vertex in G(q) of any component q are also within G(q), thus
G(q) for every component of Q must also be 3-regular.

Corollary 4.3. Every component of a complete semisymmetric quasigroup is iso-
morphic to some free component.

In some cases,M(Q) may contain triples of the form {(x, y, z), (z, y, x)}, that is
to say, pairs of triples containing the same elements but in opposite order; we will
call these commutative pairs. In G(Q), these pairs correspond to the multigraph:
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Figure 10: Multigraph of a commutative pair

Remark 4.4. A semisymmetric quasigroup is totally symmetric if and only if all
of its components are commutative pairs.

Lemma 4.5. For any free component q, if q is not a commutative pair, then G(q)
is a simple graph.

Proof. By definition, any vertex v ∈ G(q) must have 3 incident edges. If all edges
connect to 1 other vertex, then their corresponding triples inM(q) have all 3 pairs
of elements in common and thus q is a commutative pair. If v were linked to some
other vertex by exactly 2 edges, this would imply there are 2 triples that have
2 pairs of elements in common, but not the 3rd, which is clearly combinatorially
impossible. Then if q is not a commutative pair, any v ∈ G(q) will have 3 edges
linking to 3 separate vertices, thus G(q) is a simple graph.

For a given free component q, let a cycle cx ∈ G(q) be an element-cycle for
x iff for every vertex in cx, its corresponding triple in M(q) contains x. Define a
cycle structure on q to be a surjection C : G(q)→ q sending each element-cycle in
G(q) to an element of q such that if cx 7→ x then cx is an element-cycle for x.

Lemma 4.6. For any commutative pair q, up to isomorphism there exists exactly
1 cycle structure on q.

Proof. All vertices in G(q) represent triples in M(q) containing all elements of q,
so all cycles qualify as element-cycles. There are 3 elements of q and there are 3
cycles in G(q), so any surjection must assign 1 cycle to each element. G(q) is vertex
transitive and edge transitive, therefore any such assignment will be equivalent up
to isomorphism.

Proposition 4.7. For any free component q, if q is not a commutative pair, then
there exists exactly 1 cycle structure on q.

Proof. For a given triple t1 = (x, y, z) ∈M(q), consider an element x; by definition,
G(q) is 3-regular, therefore there exist edges linking t1 to vertices containing (y, x)
and (x, z). G(q) is simple, therefore these edges link to distinct vertices t2 =
(y, x, a) and t3 = (x, z, b) where a 6= b. The 3rd edge must link to some vertex
containing (z, y), and this vertex cannot contain x, else the pairs (y, x) or (x, z)
would appear in more than 1 triple. Now, t2 must be adjacent to t1, some vertex
t4 = (x, d, a), and some 3rd vertex which also cannot contain x else (x, a) or (a, x)
would appear in more than 1 triple. Likewise, t3 is adjacent to t1, some vertex
t5 = (x, b, e), and a 3rd vertex not containing x. So then t4 must be adjacent
to some vertex containing (d, x), and t5 must be adjacent to a vertex containing
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(x, e), and so on. Assuming the number of triples and therefore vertices is finite,
there must eventually be some vertex (x, e, d) linking these 2 trails into a closed
cycle cx.

All vertices in cx contain x, so then cx is an element-cycle for x; thus for any
triple in M(q) and any element contained in that triple, there exists an element-
cycle in G(q) for that element. Further, as demonstrated, any vertex adjacent to a
vertex in cx which is not contained in cx cannot contain x, so cx is the only possible
element cycle for x for any vertex in cx. If there were some element f ∈ q such that
cx was also an element cycle for f , then there would be multiple triples containing
(x, f) or (f, x). Therefore, any cycle structure C has only 1 possible mapping from
cycles to elements. By definition, any element in q must be represented in some
vertex of G(q), so then C is a surjection.

Given that for any free component q there always exists a cycle structure on
G(q) unique up to isomorphism for commutative pairs and fully unique for simple
G(q), from hereon we can safely assume the cycle structure on any free component.
It is therefore meaningful to speak of the element-cycles of a given q.

Corollary 4.8. Each vertex of G(q) is contained within exactly 3 element-cycles.

Lemma 4.9. For some free component q, any 2 element-cycles in G(q) either
share exactly 2 common vertices that are adjacent to each other, or they share no
common vertices.

Proof. Given graph G(q) containing element-cycles cx, cy for elements x, y ∈ q, if
they share a common vertex it must be representative of some triple containing the
pair (x, y) or the pair (y, x). The existence of a triple containing (x, y) necessarily
implies the existence of some triple containing (y, x) and vice versa, and because
they share 2 common elements by definition they are adjacent. There cannot be
any more triples containing (x, y) or (y, x) and thus there are no more common
vertices shared by cx and cy.

Lemma 4.10. For some free component q, each edge in G(q) is contained within
exactly 2 element-cycles.

Proof. By definition, every edge in G(q) links 2 vertices representing triples con-
taining 2 shared elements, and by Proposition 4.7 there can be no adjacent vertices
sharing a common element not contained within a shared element-cycle. An edge
cannot be in more than 2 element-cycles for any graph with > 2 vertices because
that would imply 2 triples sharing more than 2 common elements, and it cannot
be in more than 2 element cycles for any graph with 2 vertices because that would
necessitate a cycle with length > 2.

Proposition 4.11. The graph of any free component is isomorphic to the graph
of some cubic abstract polyhedron.
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Proof. We use the work of Murty in [13]: Lemmas 4.9 and 4.10 satisfy Murty’s
Lemmas 2.2 (i) and (ii), therefore by Murty’s Theorem 2.11, the graph of any
free component satisfies the necessary and sufficient conditions to be that of a
cubic abstract 3-polytope i.e. an abstract polyhedron, where each element-cycle
is equivalent to some 2-face.

Further, by Murty’s Theorem 2.8, any 2 abstract polytopes with the same 2
dimensional skeleton are isomorphic, thus we can specify the polyhedron associated
with any given free component via its element-cycles. Define P : q → P (q) taking
some free component q to the cubic polyhedron P (q) such that each element-cycle
ci ∈ G(q) is sent to its equivalent 2-face in P (q). For any cubic polyhedron p, we
define a labeling on p to be a function L : p → X sending each 2-face of p to an
element of some set X such that for every edge in p incident to 2-faces f1, f2, the
(unordered) pair {L(f1), L(f2)} is unique.

4.2 Constructing quasigroups from polyhedra

For quasigroup (Q, ·) we will refer to the parastrophic quasigroup (Q, ◦) such that
x ·y = z ⇔ y◦x = z as the transpose of (Q, ·); or alternatively, QT is the transpose
of Q. A totally symmetric quasigroup and its transpose are exactly identical
(indeed, this is true for any commutative quasigroup). By definition, a strictly
semisymmetric quasigroup and its transpose are not identical, but sometimes they
are isomorphic. This is somewhat problematic, as heretofore our procedure cannot
distinguish between a semisymmetric quasigroup and its transpose – both will
produce the same graph, even if they are not isomorphic to each other. We must
devise a way to differentiate between parastrophes, but also a way to identify when
they are essentially the same.

Conveniently, because we can now map components of semisymmetric quasi-
groups to polyhedra, we can also assign them an orientation. Define an oriented
vertex to be the pair v̂ = (v, θ), where v is a vertex of some polyhedron p and θ is
some cyclic order on the 2-faces incident to v, called an orientation on v. Let an
oriented polyhedron be the pair p̂ = (p,Θ) where p is some cubic polyhedron and
Θ : V → Θ(V ) is a function on the vertices V ⊂ P sending each vertex vi 7→ v̂i to
an oriented vertex such that the orientation for any v̂1 is a partial opposite that
of any adjacent vertex v̂2. We will refer to Θ as an orientation on p.

Lemma 4.12. There are at most 2 possible orientations on any given polyhedron
p.

Proof. Suppose we fix the orientation for some vertex v̂1 such that θ1(f1, f2, f3).
Then any adjacent vertex v̂2 sharing incident 2-faces f1, f2 must be partial opposite
such that θ2(f2, f1,−), and likewise for all other adjacent vertices. So fixing a
single vertex therefore fixes all connected vertices, and since all vertices in p are
connected and there are only 2 possible cyclic orders on a set of 3 elements, there
are at most 2 possible orientations on p.
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Proposition 4.13. Given some oriented polyhedron p̂, any labeling on p̂ specifies
a unique free component qp.

Proof. A labeling on p̂ identifies each 2-face with some set element such that every
edge is incident to a unique pair of elements, and each oriented vertex v̂i ∈ p̂
specifies a cyclic order on its incident 2-faces, thus each v̂i specifies a cyclic order
on 3 distinct set elements and is therefore equivalent to a type 3 Mendelsohn triple.
By the definition of a cubic polyhedron, there are exactly 2 vertices v̂1, v̂2 incident
to any pair of 2-faces {f1, f2}, and by the definition of an orientation on p then v̂1
and v̂2 must have opposite orientations relative to f1 and f2; therefore no ordered
pair (f1, f2) occurs in p̂ more than once. The graph of p̂ is connected and 3-regular
so necessarily the partial quasigroup qp it defines is a free component. Any other
polyhedron that defines the same qp would necessarily have the same faces, labels,
and orientation as p̂ and thus be identical to p̂; therefore qp is unique.

For given free component q, define P̂ : q → P̂ (q) as the function taking q
to the oriented polyhedron P̂ (q) such that for each triple ti ∈ M(q) is sent to a
corresponding oriented vertex ti 7→ v̂i.

For given cubic polyhedron p, consider the action of its automorphism group
Aut (p) on its 2-faces; let us denote the orbit of a 2-face fi under this action as
Aut (p) · fi. Given any 2 vertices v1, v2 ∈ p with incident 2-faces {f1, f2, f3} and
{f4, f5, f6}, respectively, then by definition if there is some ϕ ∈ Aut (p) sending
v1 7→ v2 then necessarily

{Aut (p) ·f1,Aut (p) ·f2,Aut (p) ·f3} = {Aut (p) ·f4,Aut (p) ·f5,Aut (p) ·f6} (14)

that is to say, for any vertices in the same orbit, the set of orbits of their incident
2-faces must also be the same. However, given some orientation on p, the order of
incident 2-faces relative to v̂1 and v̂2 may be different. If some ϕ ∈ Aut (p) : v1 7→
v2 and the orbits of the faces incident to corresponding oriented vertices v̂1 and
v̂2 are in opposite order, we will call them opposite vertices. Any vertex which is
opposite to itself is a self-opposite vertex.

Proposition 4.14. A free component q is isomorphic to its transpose qT if and
only if there exists some automorphism ϕ : P (q) → P (q) taking every vertex in
P̂ (Q) to some opposite vertex.

Proof. By definition, q and qT are identical in all respects except for the order
of the elements in their constituent triples in M(q),M(qT ), so as the (unordered)
sets of elements and their intersections are preserved, P (q) = P (qT ) without some
orientation to distinguish between them. Therefore P̂ (qT ) is simply P̂ (q) with its
orientation reversed. If there exists some ϕ ∈ Aut (P (q)) taking every vertex to
some opposite, it follows that P̂ (q) is isomorphic to itself with reversed orientation
i.e. P̂ (qT ); then by Proposition 4.13 q is isomorphic to qT .
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Let D : Q→ D(Q) take semisymmetric quasigroup Q to directed graph D(Q)
such that for every type 1 or 2 triple in ti ∈ M(Q) there is exactly 1 vertex vi ∈
D(Q) and where for any t1, t2 7→ v1, v2 then v1 directly succeeds v2 if and only if t2
binds to t1. That is to say, D applies to the type 1 and 2 triples of semisymmetric
quasigroups in the same way it does for totally symmetric quasigroups; as above,
the number of type 1 and 2 vertices is equal to |Q|. Let any digraph such that
each vertex has outdegree 6 1 be a semisymmetric diagonal subgraph.

For a given oriented polyhedron p̂ and a given semisymmetric diagonal sub-
graph d, let ψ : p̂ → d be any function taking each 2-face of p̂ to some vertex
of d such that for every edge in p̂ incident to 2-faces f1, f2, the (unordered) pair
{ψ(f1), ψ(f2)} is unique and ψ(f1) does not bind to ψ(f2) or vice versa.

Lemma 4.15. Given some oriented polyhedron p̂ and some semisymmetric di-
agonal subgraph d, any ψi from p̂ to d specifies a unique partial semisymmetric
quasigroup q up to isomorphism.

Proof. Suppose some bijective mapping between the vertices of d and the elements
of some set X – it is clear that this is equivalent to a labeling on p̂ given by
L : p̂ → X maps each face of p̂ to an element of X iff ψi sends that face to the
vertex in d mapped to X. Therefore by Proposition 4.13 we now have a unique free
component, and we derive all type 1 and 2 triples from d in the same way as we did
for TS-quasigroups to produce a unique partial semisymmetric quasigroup q. The
derived type 3 triples in M(q) are self-consistent by Proposition 4.13 and the type
1 and 2 triples are self-consistent by Proposition 3.10. Supposing, then, there were
some pair (x, y) contained in a type 3 triple (x, y, a) and a type 2 triple (x, x, y) –
necessarily there would then be some other type 3 triple (y, x, b) forming an edge in
p̂ incident to faces fx, fy such that ψi(fx) = (x, x, y), ψi(fy) = (y, y,−), meaning
ψi(fx) binds to ψi(fy), which would violate the definition of the ψ function. It
follows then that for any ψj that specifies a quasigroup isomorphic to q then the
image of p̂ under ψj must be isomorphic to the image of p̂ under ψi; therefore, the
mapping ψi is unique up to isomorphism.

Suppose some diagonal subgraph d; each vertex of d represents an element of
some semisymmetric quasigroup Q, and for every element x ∈ Q there must be
|Q| unordered pairs {x, y} represented within M(Q). Each type 1 triple contains
1 pair and each type 2 triple contains 2 pairs, so we shall say that a type 1 vertex
starts with a bound weight of 1 and a type 2 vertex starts with a bound weight
of 2. Every type 2 triple bound to a given vertex corresponds to another pair of
elements, so we add +1 bound weight to a vertex for every other type 2 vertex
bound to it. Finally, for each face of a polyhedron 1 pair is represented for every
edge, so we add the number of edges mapped to a vertex in d to its bound weight.

Define an alignment to be the ordered triple (d,O,Ψ) where d is some semisym-
metric diagonal subgraph, O = {p̂1, p̂2, ..., p̂n} some set of oriented polyhedra, and
Ψ = {ψ1, ψ2, ..., ψn} some set of functions ψi : p̂i → d taking each 2-face of its
respective p̂i ∈ O to some vertex in d such that for every edge in p̂i incident
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to 2-faces f1, f2, the unordered pair {Ψ−1(ψi(f1)),Ψ−1(ψi(f2))} is unique, where
Ψ−1(vi) = {fx|ψx(fx) = vi}, that is to say Ψ−1 is the preimage of vi ∈ d across all
ψx ∈ Ψ. Further, there is no v1 binding to v2 such that some face f1 ∈ Ψ−1(v1)
shares an incident edge with some f2 ∈ Ψ−1(v2), and the total bound weight for
each vi ∈ d across all of Ψ is equal to |d|, the number of vertices in d. We will call
2 alignments A1, A2 isomorphic iff their sets of polyhedra O1, O2 are isomorphic
to each other and the image of Ψ1 in d1 is isomorphic to the image of Ψ2 in d2.

Theorem 4.16. Up to isomorphism, there exists a bijection between alignments
and semisymmetric quasigroups such that the full structure of a unique semisym-
metric quasigroup can be recovered from any alignment and vice versa.

Proof. Suppose some alignment A = (d,O,Ψ): by Lemma 4.15 each ψi ∈ Ψ yields
a unique partial semisymmetric quasigroup, so then the union of these partial
quasigroups also produces a semisymmetric quasigroup Q. Because the bound
weight of each vi ∈ d is equal to |d|, every possible pair of elements in Q must
be represented and therefore Q is complete. If there were 2 type 3 triples t1, t2 ∈
M(Q) both containing some ordered pair of elements (x, y), then this would imply
there are faces f1−4 ∈ ∪O such that f1, f2 share an incident edge and f3, f4 share
an incident edge and there are some ψi, ψj ∈ Ψ where ψi(f1) = ψj(f3), ψi(f2) =
ψj(f4), but this would violate the definition of an alignment because for any edge
in ∪O the image of its pair of incident faces must be unique across all Ψ. If
there were a type 3 triple t1 and a type 2 triple t2 in M(Q) both containing some
ordered pair of elements (x, y), then this would imply some faces f1, f2 ∈ ∪O such
that ψi(f1) binds to ψj(f2), which also violates the definition of an alignment.
Any alignment that yields a quasigroup isomorphic to Q would necessarily have
a set of oriented polyhedra isomorphic to O mapping to an image isomorphic to
Ψ(O) and therefore be equivalent to A, thus A corresponds to a unique Q up to
isomorphism.

Conversely, suppose some semisymmetric quasigroup Q′: the diagonal sub-
graph is given by D(Q′). For each component q′i ∈ Q′, we can derive an oriented
polyhedron P̂ (q′i); let the set of all such P̂ (q′i) be P̂ (Q′). Finally, ψi for each P̂ (q′i)
is given by simply mapping each 2-face corresponding to an element x ∈ Q′ to the
vertex in D(Q′) corresponding to x; let the set of all such ψi be ΨQ′ . Now we can
define function α : Q′ → A′ = (D(Q′), P̂ (Q′),ΨQ′) taking any given semisymmet-
ric quasigroup Q′ to a unique alignment A′ up to isomorphism, thus, the bijection
is complete.

For example, given an alignment A5 on a triangular prism:
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Figure 11: Diagram of alignment A5

We can assign an arbitrary labeling to the type 1 and 2 vertices:

Figure 12: Arbitrary labeling on A5

And derive the Mendelsohn triples corresponding to each vertex:

Figure 13: A5 with derived triples

Yielding a semisymmetric quasigroup with the Cayley table:

1 2 3 4 5
1 2 1 4 5 3
2 1 2 5 3 4
3 5 4 3 1 2
4 3 5 2 4 1
5 4 3 1 2 5

Remark 4.17. Any labeling on a triangular prism produces a free component
isomorphic to its transpose, so in the previous example the orientations on the
vertices could have been omitted, but we retain them for illustrative purposes.
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