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On quasi-cancellative AG-groupoids

Muhammad Iqbal and Imtiaz Ahmad

Abstract. We proved the analog of the Burmistrovich’s theorem for semigroups: a cyclic-
associative AG-groupoid is quasi-cancellative if and only if it is a semilattice of cancellative
cyclic-associative AG-subgroupoids. We also proved that an AG-groupoid in which all elements
are 3-potent is quasi-cancellative.

1. Introduction
A magma is a fundamental type of an algebraic structure, consist of a non-empty set together
with one binary operation. Abel-Grassmann’s groupoids (abbreviated as AG-groupoids) [9] (also
known as left almost semigroups (LA-semigroups) [5]) can be considered as the non-empty set H
with the binary operation satisfying the identity xy · z = zy · x. This structures was introduced
by Kazim and Naseeruddin in [5].

Protić and Stevanović introduced in [10] the concept of 3-potent elements, AG-3-bands,
AG-bands and anti-rectangular AG-bands. The notion of cyclic-associative AG-groupoids (AC-
AG-groupoids) was introduced by Iqbal et al. in [4]. Dudek and Gigoń [2, 3] studied some
fundamental properties of completely inverse AG**-groupoids and determine certain fundamental
congruences on it. Mushtaq and Yusuf proved in [7] that a left cancellative AG-groupoid is right
cancellative. Shah et al. proved in [12] that in AG-monoids the set of all cancellative elements
is an AG-subgroupoid. They further proved that a finite AG-monoid has at least one non-
cancellative element and the set of non-cancellative elements form a maximal ideal.

In this note we will prove the Burmistrovich theorem for AG-groupoids: a cyclic-associative
AG-groupoid is quasi-cancellative if and only if it is a semilattice of cancellative cyclic-associative
AG-subgroupoids. Also we will prove that any AG-groupoid H in which xx · x = x · xx = x for
all x ∈ H is quasi-cancellative.

2. Results
A groupoid (H, ·), or simply H, satisfying the identity xy · z = zy · x (known as the left invertive
law (L.I.Law) [5]) is called an AG-groupoid. Every AG-groupoid satisfies the medial law (M.Law):
xy · zt = xz · yt. An AG-groupoid contains at most one left identity [7]. An AG-groupoid having
a left identity satisfies the paramedial law (P.Law): xy · zt = ty · zx.

An element h ∈ H is called an idempotent if h2 = h. The set of all idempotent elements
of H is denoted by E(H). An AG-groupoid containing only idempotent elements is called an
AG-band [13]. A commutative AG-band is called a semilattice. An element h ∈ H is 3-potent
if (hh)h = h(hh) = h. If all elements of an AG-groupoid H are 3-potents, then H is called an
AG-3-band. An AG-groupoid H is called an AG*-groupoid [6] if xy · z = y · xz for all x, y, z ∈ H
(known as a weak associative law); an AG**-groupoid [8] if x ·yz = y ·xz and a cyclic-associative
AG-groupoid (CA-AG-groupoid) if x · yz = z · xy [4]. Every CA-AG-groupoid is paramedial
[4]. An element h of an AG-groupoid H is right (left) cancellative if for all x, y ∈ H, xh = yh
(hx = hy) implies x = y. The element h is cancellative if it is simultaneously right and left
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cancellative. H is (right/left) cancellative if all elements of H are (right/left) cancellative. H is
quasi-cancellative [11] if for all x, y ∈ H: (i) x2 = xy and y2 = yx imply x = y, (ii) x2 = yx and
y2 = xy imply x = y.

Lemma 1. If a quasi-cancellative AG-groupoid is cyclic-associative, then
(A) xa = xb⇐⇒ ax = bx,
(B) x2a = x2b ⇒ ax = bx,
(C) x2a = x2b ⇒ xa = xb,
(D) xy · a = xy · b ⇒ a · yx = b · yx,
(E) xy · a = xy · b ⇒ yx · a = yx · b,
(F ) a · xy = b · xy ⇒ a · yx = b · yx,
(G) a · xy = b · xy ⇒ yx · a = yx · b,
(H) xy · a = xy · b ⇐⇒ a · yx = b · yx.

Proof. (A). Assume xa = xb, then xa · xa = xb · xa and xa · xb = xb · xb. Now by the cyclic-
associativity and M.Law we get

xa · xa = a(xa · x) = x(a · xa) = x(a · ax) = x(x · aa) = aa · xx = ax · ax = (ax)2.

Analogously,

xb · xa = a(xb · x) = x(a · xb) = x(b · ax) = x(x · ba) = ba · xx = bx · ax = x(bx · a)
= x(ax · b) = b(x · ax) = ax · bx.

Thus (ax)2 = ax · bx. Similarly, we obtain xa · xb = ba · xx = bx · ax. Thus (bx)2 = bx · ax.
By quasi-cancellativity, from (ax)2 = ax · bx and (bx)2 = bx · ax, we have ax = bx.
The converse implication follows by symmetry.

(B). Let x2a = x2b. Then x2a·a = x2b·a⇒ aa·xx = ab·xx⇒ ax·ax = ax·bx⇒ (ax)2 = ax·bx.
Similarly from x2a = x2b we have x2a · b = x2b · b, which gives (bx)2 = bx · ax. This together

with (ax)2 = ax · bx implies ax = bx.

(C). Follows from (A) and (B).

(D). Assume xy ·a = xy ·b. Then a2 ·xy = (xy ·a)a = (xy ·b)a = ab·xy. So, a2 ·xy = ab·xy. Thus,
(a2 ·xy) ·xy = (ab ·xy) ·xy. But (xy ·xy)a2 = (yy ·xx)a2 = (yx ·yx)a2 = (a ·yx)(a ·yx) = (a ·yx)2.
Similarly, (ab ·xy) ·xy = (xy ·xy) ·ab = (yy ·xx) ·ab = (yx ·yx) ·ab = (b ·yx)(a ·yx) = (b ·yx)(a ·yx).
Therefore (a · yx)2 = (b · yx)(a · yx).

In the same way from xy · a = xy · b we obtain (a · yx)(b · yx) = (b · yx)2, which together with
the previous equality implese a · yx = b · yx.
(E). Follows from (D) and (A); (F ) – from (A) and (D); (G) – from (F ) and (A); (H) – from
(D) and (G).

The following theorem is an analog of the Burmistrovich’s theorem for semigroups from [1].

Theorem 1. A cyclic-associative AG-groupoid is quasi-cancellative if and only if it is a semi-
lattice of cancellative cyclic-associative AG-subgroupoids.

Proof. Necessity. Let a cyclic-associative AG-groupoid be quasi-cancellative. Let σ by the
relation on H such that xσ y if for any p, q ∈ H, xp = xq ⇐⇒ yp = yq. It is an equivalence
relation. To prove that σ is a congruence, let xσ y and z ∈ H. If xz ·p = xz ·q, then pz ·x = qz ·x.
Thus, x · pz = x · qz, by Lemma 1 (A). Hence z · xp = z · xq, which by our assumption gives
z ·yp = z ·yq. So, p ·zy = q ·zy, i.e. y ·pz = y · qz. The last, by Lemma 1 (A), gives pz ·y = qz ·y.
Consequently, yz · p = yz · q. By symmetry yz · p = yz · q implies xz · p = xz · q. Hence xz σ yz.
Therefore, σ is right compatible.

Now if zx · p = zx · q, then xz · p = xz · q, by Lemma 1 (E). So, as it is proved above,
yz · p = yz · q. This, by Lemma 1 (E), implies zy · p = zy · q. By symmetry zy · p = zy · q implies
zx · p = zx · q. Hence, zx σ zy, therefore σ is left compatible. Consequently, σ is a congruence.
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Then H/σ, by Lemma 1 (A) and (B), is an AG-band, By Lemma 1 (E), it is commutative.
Consequently, σ is a semilattice congruence.

Suppose zx = zy, xσ z and y σ z. Since xσ z, zx = zy implies that x2 = xy and since yσz,
thus yx = y2. This, by quasi-cancellativity, gives x = y. If xz = yz with xσ z and y σ z, then
zx = zy, by Lemma 1 (A), and this reduces to the case just considered before. Hence, each
σ-class is cancellative.

Sufficiency. Let H is a semilattice of cancellative cyclic-associative AG-subgroupoids and
x, y are elements such that x2 = yx and y2 = xy. Suppose η be the component of H that
contains yx. As H is semilattice, consequently H is commutative, thus xy ∈ η as well. Hence,
x2, y2 ∈ η. As η is a cyclic-associative AG-groupoid, thus by the closure property in η we have
x, y ∈ η. But η is cancellative and therefore the equality xx = xy implies x = y. By similar
argument if x2 = xy and y2 = yx, then x = y. Hence, H is quasi-cancellative.

The following example illustrate Theorem 1.

Example 1. The Cayley table given below defines a quasi-cancellative cyclic-associative AG-
groupoid H that is a semilattice of cancellative cyclic-associative AG-subgroupoids I = {1} and
J = {2, 3, 4, 5} such thst I, J commute and I2 = I, J2 = J .

· 1 2 3 4 5
1 1 1 1 1 1
2 1 2 3 4 5
3 1 3 2 5 4
4 1 4 5 2 3
5 1 5 4 3 2

Theorem 2. Every AG-3-band is quasi-cancellative.

Proof. Suppose H is AG-3-band and x, y ∈ H.
To prove that x2 = xy and y2 = yx imply x = y suppose x2 = xy and y2 = yx. then, by the

definition of AG-3-band, supposition, L.I.Law and M.Law we obtain

x = x2x = xy · x = ((xx · x)y)x = (yx · xx)x = (x · xx) · yx = x · yx = xy2

= (xx · x) · yy = (xx · y) · xy = (yx · x) · xy = (y2x) · xy = (yy · x) · xy
= (xy · y) · xy = (xy · x) · yy = (((xx · x)y)x) · yy = ((yx · xx)x) · yy

= ((x · xx) · yx) · yy = (x · yx) · yy = xy2 · yy = xy · y2y = xy · y

= yy · x = yy · (x · xx) = yx · (y · xx) = y2 · yx2 = y2 ((yy · y) · xx)

= y2 ((yy · x) · yx) = y2 ((xy · y) · yx) = y2
(
x2y · yx

)
= y2 ((xx · y) · yx)

= y2 ((yx · x) · yx) = y2 ((yx · y) · xx) = y2 ((((yy · y)x)y) · xx)

= y2 (((xy · yy)y) · xx) = y2 (((y · yy) · xy) · xx) = y2 ((y · xy) · xx)

= y2
(
yx2 · xx

)
= y2

(
yx · x2x

)
= y2 (yx · x) = y2(y2x) = y2 (yy · x)

= y2 (xy · y) = y2(xy · y2y) = y2
(
xy2 · yy

)
= y2 ((x · yx) · yy)

= y2(((x · xx) · yx) · yy) = y2 (((yx · xx)x) · yy) = y2 ((((xx · x)y)x) · yy)

= y2 ((xy · x) · yy) = y2 ((xy · y) · xy) = y2 ((yy · x) · xy) = y2
(
y2x · xy

)
= y2 ((yx · x) · xy) = y2 ((xx · y) · xy) = y2 ((xx · x) · yy) = y2 · xy2

= yy · xy2 = yx · yy2 = y2y = y.

This shows that x2 = xy and y2 = yx imply x = y.
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To prove that x2 = yx and y2 = xy imply x = y suppose x2 = yx and y2 = xy. Then, as in
the previous case,

x = x2x = yx · x = xx · y = x2y = yx · y = (y2y · x)y
= ((xy · y)x)y = ((yy · x)x)y = (xx · yy)y = (xy · xy)y

= (y2 · y2)y = (yy · yy)y = ((yy · y)y)y = yy · y = y.

Hence x = y. This completes the proof.
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