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Translatable isotopes of finite groups

Wieslaw A. Dudek and Robert A. R. Monzo

Abstract. We prove the main result, that if (Q, ∗) is a k-translatable isotope of a finite group
(Q,⊕) of order n then (Q,⊕) is isomorphic to the additive group Zn of integers modulo n.
Given a k-translatable ordering of a left cancellative groupoid Q of order n, we determine all
k-translatable orderings of Q. We also prove that a left-cancellative, k-translatable groupoid Q

is translatable for a single value of k. Finally, we prove that a left (or right) linear isotope of
Zn is linear and we give examples of k-translatable isotopes of Z4 that are neither left nor right
linear.

1. Introduction

We assume that all sets considered in this note are finite and have form Q =
{1, 2, . . . , n} with the natural ordering 1, 2, . . . , n.

A groupoid (Q, ∗) of order n is called k-translatable, where 1 6 k < n, if its
Cayley table is obtained by the following rule: If the first row of the Cayley table
is a1, a2, . . . , an, then the q-th row is obtained from the (q − 1)-st row by taking
the last k entries in the (q− 1)−st row and inserting them as the first k entries of
the q-th row and by taking the first n−k entries of the (q−1)-st row and inserting
them as the last n − k entries of the q-th row, where q ∈ {2, 3, . . . , n}. Then the
(ordered) sequence a1, a2, . . . , an is called a k-translatable sequence of (Q, ∗) with
respect to the ordering 1, 2, . . . , n. A groupoid of order n is called translatable if
it has a k-translatable sequence for some k ∈ {1, 2, . . . , n − 1}. A quasigroup of
order n may be k-translatable only for k relatively prime to n. A group of order
n is translatable if and only if it is cyclic. It is (n− 1)-translatable.

It is important to note that a k-translatable sequence depends on the ordering
of the elements in the Cayley table. A groupoid may be k-translatable for one
ordering but not for another (see Example 2.4 below). Unless otherwise stated we
will assume that the ordering of the Cayley table is 1, 2, . . . , n and the first row of
the table is a1, a2, . . . , an.

The concept of translatability was first explored in [1] and [2]. It arose through
the examination of the fine structure of quadratical quasigroups. Translatability
determines the structure of certain types of quasigroups [3]. The question of when
quadratical quasigroups, which are idempotent, are translatable was answered
in [4] and [5]. There it was proved that a naturally ordered groupoid (Q, ∗) is
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idempotent and k-translatable if and only if for all i, j ∈ Q there exist a, b ∈ Zn

such that i∗j = (ai+bj)(modn), where (a+b) = 1(modn) and (a+bk) = 0(modn).
Now we are interested in the k-translatability of (α, β)-isotopes of a group

(Q,⊕), i.e. quasigroups (Q, ∗) with product x ∗ y = αx ⊕ βy, where α, β are
bijections of Q. We will prove our main result in Theorem 5.1, that if an isotope
of a group (Q,⊕) is k-translatable then (Q,⊕) is isomorphic to the additive group
Zn of integers modulo n. Then, for a given a bijection α of Zn, for particular
values of k and n we will determine all possible bijections β for which (Q, ∗) is
k-translatable.

2. Preliminaries
For simplicity instead of i ≡ j(modn) we will write [i]n = [j]n. Additionally, in
calculations of modulo n, we assume that 0 = n. Also the neutral element of a
group (Q,⊕) will be denoted by 0. The inverse elements in (Q,⊕) and Zn will be
denoted by the same symbol; namely, as −x. The set {1, 2, . . . , n} will be denoted
by {1, n}. For k ∈ {1, n}, (k, n) = 1 denotes that k and n are relatively prime.

With this convention a naturally ordered groupoid (Q, ∗) is k-translatable if
and only if i ∗ j = [i + 1]n ∗ [j + k]n for all i, j ∈ Q. Then a1, a2, . . . , an, where
ai = 1 ∗ i, is a k-translatable sequence.

We will need the following results proven in our previous publications.

Lemma 2.1. (cf. [4, Lemma 9.1]) The quasigroup (Zn, ∗) with the operation
i ∗ j = [ai+ c+ bj]n, where a, b, c ∈ Zn and (a, n) = (b, n) = 1 is k-translatable if
and only if [a+ kb]n = 0.

Lemma 2.2. (cf. [2, Lemma 2.5]) Let a1, a2, . . . , an be the first row of the Cayley
table of a quasigroup (Q, ∗) of order n. Then (Q, ∗) is k-translatable if and only if
for all i, j ∈ Q the following (equivalent) conditions are satisfied.

(i) i ∗ j = a[k−ki+j]n ,

(ii) i ∗ j = [i+ 1]n ∗ [j + k]n,

(iii) i ∗ [j − k]n = [i+ 1]n ∗ j.

Lemma 2.3. (cf. [2, Lemma 2.7]) If a quasigroup (Q, ∗) of order n is k-translatable
with respect to the ordering a1, a2, . . . , an then it is k-translatable with respect to
the ordering an, a1, a2, . . . , an−1.

Example 2.4. Consider the following tables:

∗ 1 2 3 4

1 1 2 3 4
2 2 3 4 1
3 3 4 1 2
4 4 1 2 3

∗ 4 1 2 3

4 3 4 1 2
1 4 1 2 3
2 1 2 3 4
3 2 3 4 1

∗ 1 3 4 2

1 1 3 4 2
3 3 1 2 4
4 4 2 3 1
2 2 4 1 3
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These tables define the same quasigroup isomorphic to the additive group Z4.
The first table shows that with respect to the natural ordering this quasigroup is
3-translatable. The second table is an example of Lemma 2.3. The third table
shows that in another ordering this quasigroup is not translatable.

Lemma 2.5. Let (Q, ∗) be a k-translatable groupoid with respect to the natural
ordering 1, 2, . . . , n, with k-translatable sequence a1, a2, . . . , an. Then (Q, ∗) is
k-translatable with respect to the ordering n, n − 1, . . . , 2, 1, with k-translatable
sequence ak, ak−1, . . . , a1, an, an−1, . . . , ak+1.

Proof. The ordering n, n − 1, n − 2, . . . , 2, 1 can be expressed as 1′, 2′, 3′, . . . , n′,
where i′ = [1− i]n. Then, by Lemma 2.2(ii) we have i′ ∗ j′ = [1− i]n ∗ [1− j]n =
[(1−i)−1]n∗[(1−j)−k]n = [−i]n∗[1−(j+k)]n = (i+1)′∗(j+k)′. So, 1′, 2′, . . . , n′

is a k-translatable ordering on (Q, ∗). Since n ∗ j = ak−kn+j = ak+j , this ordering
has the k-translatable sequence ak, ak−1, . . . , a1, an, an−1, . . . , ak+1.

Lemma 2.6. Let (Q, ∗) be a k-translatable groupoid with respect to the natural
ordering with k-translatable sequence a1, a2, . . . , an and suppose that (s, n) = 1.
Then (Q, ∗) is k-translatable with respect to the ordering 1, [1 + s]n, [1 + 2s]n, . . . ,
[1 + (n− 1)s]n with k-translatable sequence a1, a1+s, a1+2s, . . . , a1+(n−1)s.

Proof. Since (s, n) = 1, we can introduce the new ordering 1′, 2′, . . . , n′ where
i′ = [1 + (i− 1)s]n. Then, using Lemma 2.2(ii), we obtain i′ ∗ j′ = [1 + (i− 1)s]n ∗
[1 + (j − 1)s]n = [(1 + is)− s]n ∗ [(1 + js)− s]n = [1 + is]n ∗ [(1 + js)− s+ ks]n =
[1+ is]n ∗ [1+((j+k)−1)s]n = (i+1)′ ∗(j+k)′. So, 1′, 2′, . . . , n′ is a k-translatable
ordering on (Q, ∗). Since 1′∗j′ = 1∗[1+(j−1)s]n = a[1+(j−1)s]n the corresponding
k-translatable sequence for this order is a1, a1+s, a1+2s, . . . , a1+(n−1)s.

3. Translatable left cancellative groupoids

A groupoid (Q, ∗) is left cancellative if for all a, b, c ∈ Q a ∗ b = a ∗ c implies b = c.
Note that if a1, a2, . . . , an is a k-translatable sequence of a left cancellative

groupoid Q then for all i ∈ {1, n}, ai = aj if and only if i = j.

Definition 3.1. Let Q = {1, 2, . . . , n} be a groupoid of order n, with a1, a2, . . . , an
an ordering of Q. For i ∈ {1, n} we define the set Ai as the set consisting of
the sequence ai, ai+1, . . . , an, a1, a2, . . . , ai−1 and Bj as the set consisting of the
sequence ai, ai−1, . . . , a1, an, an−1, . . . , ai+1. Then we call

⋃
(Ai ∪ Bi), i ∈ {1, n},

the set of cyclic versions of the ordering a1, a2, . . . , an.

Note that by Lemmas 2.3 and 2.5, a cyclic version of a k-translatable ordering
is k-translatable.

Henceforth, −j′ will denote −(j′) and not (−j)′. Similarly [x]′n denotes ([x]n)′.
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Theorem 3.2. Let a left cancellative groupoid (Q, ∗) be k-translatable with respect
to the natural ordering, with k-translatable sequence a1, a2, . . . , an. Then an or-
dering is k-translatable on (Q, ∗) if and only if it is a cyclic version of the ordering
1, [1 + s]n, [1 + 2s]n, . . . , [1 + (n− 1)s]n for some s ∈ {1, n}, where (s, n) = 1.

Proof. (⇐). This follows from Lemma 2.6 and the fact that a cyclic version of a
k-translatable ordering is k-translatable.

(⇒). By Lemma 2.2(ii) we can choose a k-translatable ordering 1′, 2′, . . . , n′

on (Q, ∗), with 1′ = 1 and with k-translatable sequence a1, a2, . . . , an say. Then,
by Lemma 2.6(i), the first two rows of the multiplication table are as follows, with
all subscripts of the entries being calculated modulo n.

1 2′ . . . (−k)′ (1− k)′ . . . (n− 1)′ n′

1 a1 a
2′ . . . a

(−k)′ a
(1−k)′ . . . a

(n−1)′ a
n′

2′ a
k−k2′+1

a
k−k2′+2′ . . . a

k−k2′+(−k)′ ak−k2′+(1−k)′ . . . a
k−k2′+(n−1)′ ak−k2′+n′

Then, since the groupoid (Q, ∗) is left cancellative and k-translatable, modulo
n we have k − k2′ = (1 − k)′ − 1 = (2 − k)′ − 2′ = . . . = (n − 1)′ − (k − 1)′ =
n′ − k′ = 1 − (k + 1)′ = 2′ − (k + 2)′ = . . . = (−1 − k)′ − (n − 1)′ = (−k)′ − n′,
which implies the following n identities:

(1) (1− k)′ − 1 = (2− k)′ − 2′

(2) (2− k)′ − 2′ = (3− k)′ − 3′

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
(k) n′ − k′ = 1− (k + 1)′

(k + 1) 1− (k + 1)′ = 2′ − (k + 2)′

(k + 2) 2′ − (k + 2)′ = 3′ − (k + 3)′

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
(n− 1) (−1− k)′ − (n− 1)′ = (−k)′ − n′

(n) (−k)′ − n′ = (1− k)′ − 1.

We note that in any one of these n identities

(A) If j′ is the first term on the left-hand side of the identity then (j + 1)′ is the
first term on the right-hand side of that identity.

(B) If −(j′) is the second term on the left-hand side of the identity then −(j+1)′

is the first term on the right-hand side of that identity.

(C) If j′ is the first term on the left (right)-hand side of the identity the second
term on the left (right)-hand side of the identity is −(j + k)′.

It follows that for all j = 1, 2, . . . , n,

(D) j′ − (j + k)′ = (j + 1)′ − (j + 1 + k)′.



Translatable isotopes of finite groups 197

Now n′ − 1
(k)
= k′ − (k + 1)′. But (D) implies k′ − (2k)′ = (k + 1)′ − (2k + 1)′.

So, k′ − (k + 1)′ = (2k)′ − (2k + 1)′ and n′ − 1 = k′ − (k + 1)′ = (2k)′ − (2k + 1)′.
Continuing in this manner we get n′ − 1 = k′ − (k + 1)′ = (2k)′ − (2k + 1)′ =
(3k)′ − (3k + 1)′ = . . . = (−2k)′ − (−2k + 1)′ = (−k)′ − (1− k)′.

Since (k, n) = 1, the elements k′, (2k)′, . . . , (−2k)′, (−k)′ are all different.
Therefore n′ − 1 = 1 − 2′ = 2′ − 3′ = . . . = (n − 1)′ − n′ and this implies
j′ = (j + 1)′ + n′ − 1. Hence, j′ = 1 + (1 − j)(n′ − 1), (n′ − 1, n) = 1 and
1′, 2′, 3′, . . . , n′ is the order 1, 1 − (n′ − 1), 1 − 2(n′ − 1), . . . , 1 − (n − 1)(n′ − 1),
a cyclic version of which returns us to the original k-translatable ordering, as
required.

Theorem 3.3. If a left cancellative groupoid (Q, ∗) is k-translatable then it is
k-translatable for a single value of k.

Proof. Suppose that 1, 2, 3, . . . , n is a k-translatable ordering on (Q, ∗), with k-
translatable sequence a1, a2, a3, . . . , an and that 1′, 2′, 3′, . . . , n′ is a k∗-translatable
ordering on (Q, ∗), with the k∗-translatable sequence b1, b2, b3, . . . , bn. By Lemma
2.5, there is a k∗-translatable ordering 1′′, 2′′, 3′′, . . . , n′′ with a k∗-translatable se-
quence c1, c2, c3, . . . , cn and with 1′′ = 1. Then, 1 ∗ j′′ = ak−k+j′′ = ck∗−k∗+j′′ .
Therefore, aj = cj for all j ∈ {1, n}. Then, 2 ∗ n = a[k−2k+n]n = c[k∗−2k∗+n]n =
a[k∗−2k∗+n]n and, since (Q, ∗) is left cancellative, −k = −(k∗) and k = k∗, com-
pleting the proof.

Note that the condition of left cancellation is necessary in the previous theorem.
For example, a constant groupoid of order n > 1 is k-translatable for all k =
1, 2, . . . , n − 1. Similarly, the groupoid (Q, ∗) of order 2m, with x ∗ y = 1 for all
odd y and x ∗ y = 2 for all even y, is 2k-translatable for every k = 1, . . . ,m− 1.

4. Translatable T-quasigroups
A quasigroup (Q, ∗) is called a T -quasigroup if there exist an abelian group (Q,⊕)
and its automorphisms ϕ,ψ such that x ∗ y = ϕ(x) ⊕ ψ(y) ⊕ c for all x, y ∈ Q
and some fixed c ∈ Q. Obviously, each T -quasigroup induced by (Q,⊕) is (α, β)-
isotope of (Q,⊕).

By the Toyoda theorem (cf. for example [6] or [7]) a quasigroup (Q, ∗) is medial
if and only if it is a T -quasigroup with ϕψ = ψϕ.

Theorem 4.1. A translatable T -quasigroup (Q, ∗) of order n is isomorphic to a
translatable medial quasigroup induced by the group Zn.

Proof. Let (Q, ∗) be a finite quasigroup of order n induced by the group (Q,+),
Then x ∗ y = ϕ(x) + ψ(y) + c for some fixed c ∈ Q and automorphisms ϕ,ψ
of (Q,+). Denote the k-translatable ordering of Q by 1, 2, 3, . . . , n. By Lemma
2.2(ii), (Q, ∗) is k-translatable (1 6 k < n) with respect to the ordering 1, 2, . . . , n
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if and only if ϕ(i)+ψ(j)+c = i∗j = [i+1]n∗ [j+k]n = ϕ([i+1]n)+ψ([j+k]n)+c,
i.e. if and only if ϕ(i) + ψ(j) = ϕ([i+ 1]n) + ψ([j + k]n) for all i, j ∈ {1, 2, . . . , n}.

By Lemma 2.3, we can choose the ordering such that the group element in the n-
th position in this ordering is 0, the identity element of (Q,+). We define ti = i−1,
where i is the group element of (Q,+) located in the ith position of the ordering
1, 2, . . . , n. Note that t1 = 0 and tn = −1. Then, ϕ(i)+ψ(j) = ϕ([i+1]n)+ψ([j+
k]n)⇔ ϕ(i)+ψ(j) = ϕ([i+ 1]n)+ψ([j + k]n)⇔ ψ(j−[j + k]n) = ϕ([i+ 1]n−i)⇔
ψ((1+tj)−(1+t[j+k]n)) = ϕ((1+t[i+1]n)−(1−ti))⇔ ψ(tj−t[j+k]n) = ϕ(t[i+1]n−ti)
for all i, j ∈ {1, n}.

For j = 1 and i ∈ {1, n}, ψ(−t[1+k]n) = ϕ(t[i+1]n − ti). So, ψ(−t[1+k]n) =

ϕ(t[s+1]n − ts) for all s ∈ {1, n}. Hence, tn − tn−1 = tn−1 − tn−2 = . . . = t2 − t1 =

t1 − tn = 0 − (−1) = 1. Thus, t2 = 1, ti = (i − 1)1 and i = i1. This means that
1 generates the group (Q,+) and so (Q,+) is a cyclic group isomorphic to Zn.
Hence, by Lemma 2.1, (Q, ∗) is isomorphic to a translatable medial quasigroup
i � j = [ai+ bj + c]n, where (a, n) = 1 = (b, n) and [a+ bk]n = 0.

Corollary 4.2. A medial quasigroup of order n is translatable if and only if it is
induced by a group isomorphic to the additive group Zn.

Proof. The necessity follows from Theorem 4.1. To prove the sufficiency observe
that a medial quasigroup of order n induced by the group Zn has the form x ∗ y =
[ax + by + c]n, where a, b, c ∈ Zn and (a, n) = (b, n) = 1. By Lemma 2.1 this
quasigroup is k-translatable if and only if [a + bk]n = 0. This equation is always
uniquely solvable with k = [−ab ]n, where [bb ]n = 1.

5. Translatability of isotopes of a finite group

Theorem 5.1. If an (α, β)-isotope (Q, ∗) of a group (Q,⊕) of order n is k-
translatable then there is an ordering 1, 2, . . . , n on Q such that for some s ∈ {1, n}
and all i, j ∈ {1, n}

(i) αn = 0 = βs,

(ii) α[i+ 1]n = αi⊕ α1,

(iii) αi = α1⊕ α1⊕ . . .⊕ α1︸ ︷︷ ︸
i times

= i(α1),

(iv) (Q,⊕) is isomorphic to the group Zn,

(v) β[j + k]n = βj − α1 and β[s+ jk]n = j(−α1).

Proof. From Lemma 2.3, there is a k-translatable ordering 1, 2, . . . , n on Q such
that αn = 0 and, since β is a bijection, βs = 0 for some s ∈ Q.
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Then, using k-translatability and Lemma 2.2(ii), 0 = n ∗ s = 1 ∗ [s + k]n =
α1⊕ β[s+ k]n. Hence, β[s+ k]n = −α1.

Thus, αi = αi⊕0 = i∗s = [i+1]n∗[s+k]n = α[i+1]n⊕β[s+k]n = α[i+1]n−α1,
which implies

α[i+ 1]n = αi⊕ α1. (1)

Then, by induction on i, it is easy to prove that for all i ∈ {1, n}, αi =
α1 ⊕ α1 ⊕ . . . ⊕ α1, (with i number of summands). Consequently, αi ⊕ αj =
α[i + j]n. We then define a bijection ϕ : Q → Zn as ϕαi = i and so, we have
ϕ(αi⊕αj) = ϕ(α[i+ j]n) = [i+ j]n = [ϕαi+ϕβj]n. Hence, ϕ is an isomorphism.

Finally, βj = 0 ⊕ βj = n ∗ j = 1 ∗ [j + k]n = α1 ⊕ β[j + k]n and, since the
groups (Q,⊕) and (Z,+) are isomorphic, the operation ⊕ is commutative, for all
j ∈ {1, n} we have β[j+ k]n = βj−α1. By induction on j it is then easy to prove
that for all j ∈ {1, n}, β[s+ jk]n = −α1− α1− . . .− α1 (j times).

Proposition 5.2. If an (α, β)-isotope (Q, ∗) of the commutative group (Q,⊕)
satisfies (ii) and (v) of Theorem 5.1, then it is k-translatable.

Proof. [i+1]n∗[j+k]n = α[i+1]n⊕β[j+k]n
(ii),(v)

= αi⊕α1⊕βj−α1 = αi⊕βj = i∗j,
for all i, j ∈ {1, n}. By Lemma 2.2(ii), (Q, ∗) is k-translatable.

The following Corollary follows readily from Theorem 5.1 and Proposition 5.2.
The proof is omitted.

Corollary 5.3. The quasigroup (Zn, ∗) with i ∗ j = [αi + βj]n, where α, β are
bijections of Zn is k-translatable for some k if and only if there is an ordering
1′, 2′, . . . , n′ of Zn such that for some s ∈ {1, n} and all i ∈ {1, n}

(i) αn′ = 0 = βs′,

(ii) α([i+ 1]′n) = [αi′ + α1′]n,

(iii) αi′ = [i(α1′)]n for i ∈ {1, n},

(iv) β([i+ k]′n) = βi′ − α1′ and β([s+ ik]′n) = [i(−α1′)]n,

(v) (α1′, n) = 1.

Corollary 5.4. For a given ordering on Zn and any k, t ∈ {1, n} such that (k, n) =
(t, n) = 1 there are bijections αt and βs (s ∈ {1, n}) on Zn such that the quasigroup
(Zn, ∗s) defined by i∗sj = [αti+βsy]n is k-translatable with respect to this ordering.

Proof. Suppose that 1′, 2′, . . . , n′ is a fixed ordering on Zn and that k, t ∈ {1, n}
be such that (k, n) = (t, n) = 1. Then, we define the bijection αt on Zn by putting
αti
′ = [it]n for any i ∈ {1, n}. It is easy to see that αt[i + t]′n = [αti

′ + t]n for
any i ∈ {1, n}. Now for any s ∈ {1, n} we define the bijection βs by putting
βs[s + ik]n = [−it]n for any i ∈ {1, n}. Since (k, n) = 1, we have {1, 2, . . . , n} =
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{[s + k]n, [s + 2k]n, . . . , [s + nk]n = s}. It follows that βs([i + k]′n) = [βsi
′ − t]n

for any i ∈ {1, n}. Then [i + 1]′n ∗s [j + k]′n = [αt([i + 1]′n) + βs([j + k]′n)]n =
[αti

′ + t + βsj
′ − t]n = [αti

′ + βsj
′]n = i′ ∗s j′. So, by Lemma 2.2(ii). (Zn, ∗s) is

k-translatable with respect to this ordering.

Note that, as a result of Theorem 5.1 and Corollary 5.4, a finite group of
order n is isomorphic to Zn if and only if it has a k-translatable isotope for some
k ∈ {1, n− 1}. In fact, a finite group of order n either has no k-translatable
isotope or it has k-translatable isotopes for all values of k ∈ {1, n− 1}.

Example 5.5. Let n = 8. Then (t, 8) = 1 for t ∈ {1, 3, 5, 7}. Then for t = 5, s = 1,
k = 3 and the given ordering 4, 6, 1, 3, 2, 8, 5, 7 we see that α5 = (1, 7, 8, 6, 2)(3, 4, 5)
and β1 = (1, 2, 4, 8, 5, 6)(3)(7). The Cayley table of i′ ∗1 j′ = [α5i

′+ β1j
′]8 follows.

∗1 4 6 1 3 2 8 5 7
1′ = 4 5 6 7 8 1 2 3 4
2′ = 6 2 3 4 5 6 7 8 1
3′ = 1 7 8 1 2 3 4 5 6
4′ = 3 4 5 6 7 8 1 2 3
5′ = 2 1 2 3 4 5 6 7 8
6′ = 8 6 7 8 1 2 3 4 5
7′ = 5 3 4 5 6 7 8 1 2
8′ = 7 8 1 2 3 4 5 6 7

Example 5.6. For t = 5 we want to determine all the k-translatable quasigroups
(Z8.∗) of the form i ∗ j = [αi + βj]8, where α is an automorphism of the group
Z8. Such automorphisms are of the form αi = [mi]8, where m ∈ {1, 3, 5, 7}. Then
α51′ = 5, α52′ = 2, α53′ = 7, α54′ = 4, α55′ = 1, α56′ = 6, α57′ = 3, α58′ = 8.

Now let α = α5 be an automorphism of Z8. If αi = 1i = i, then i′ = 5i.
If αi = 3i, then i′ = 7i. If αi = 5i, then i′ = i. If αi = 7i, then i′ = 3i.
These automorphisms, respectively, give the following orderings: αi = i gives the
ordering 5, 2, 7, 4, 1, 6, 3, 8; αi = 3i gives the ordering 7, 6, 5, 4, 3, 2, 1, 8; αi = 5i
gives 1, 2, 3, 4, 5, 6, 7, 8; αi = 7x gives 3, 6, 1, 4, 7, 2, 5, 8.

By Corollary 5.4, for each s ∈ {1, 2, . . . , 8} and each k ∈ {1, 3, 5, 7} we can
calculate βs. It turns out that βs is an automorphism of Z8 if and only if s = 8
(as long as α is an automorphism of Z8). These calculations give: for α5i = i and
k = 1, β8i = 7i; for α5i = 3i and k = 1, β8i = 5i; for α5i = 5x and k = 1, β8i = 3i
and for α5i = 7i and k = 1, β8i = i, which matches Lemma 2.1.

For s 6= 8, i ∗s j = [αti + βsj]n is a 1-translatable, left linear quasigroup. For
example, in the case when α5i = i, k = 1, the ordering 5, 2, 7, 4, 1, 6, 3, 8 and s = 1,
β1 = (1, 4)(2, 3)(5, 8)(6, 7) is not an automorphism of Z8. This quasigroup has the
following Cayley table that is clearly 1-translatable. It has a right neutral element;
namely, 5, and it is unipotent.
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∗1 5 2 7 4 1 6 3 8
5 5 8 3 6 1 4 7 2
2 2 5 8 3 6 1 4 7
7 7 2 5 8 3 6 1 4
4 4 7 2 5 8 3 6 1
1 1 4 7 2 5 8 3 6
6 6 1 4 7 2 5 8 3
3 3 6 1 4 7 2 5 8
8 8 3 6 1 4 7 2 5

An (α, β)-isotope (Q, ∗) of the group (Q,⊕) is left (right) linear over (Q,⊕)
if α (respectively, β) is an automorphism of (Q,⊕). If an (α, β)-isotope can be
written as x ∗ y = α̂x⊕ c⊕ β̂y for automorphisms α̂, β̂ of (Q,⊕) and some c ∈ Q,
then the quasigroup (Q, ∗) is called linear over (Q,⊕).

The following Theorem finds all k-translatable quasigroups that are left linear
over Zn.

Theorem 5.7. If an (α, β)-isotope (Zn, ∗) of the group Zn is left linear over
Zn, then it is k-translatable if and only if there exist m, s, t ∈ {1, n} such that
(t, n) = 1 = (m,n) and βsj = [k(st −mj)]n for all j ∈ {1, n}, where αi = [mi]n
and [kk]n = 1.

Proof. (⇒): Since α is an automorphism of the group Zn, αi = [mi]n for some
(m,n) = 1. Using Corollary 5.3, there exists an ordering 1′, 2′, . . . , n′ on Zn and
s ∈ {1, n} such that αn′ = 0 = βs′ and, for all i ∈ {1, n}, αi′ = [i(α1′)]n,
(α1′, n) = 1 and βs([s + ik]′n) = −[i(α1′)]n. Thus for t = α1′ we obtain [mi′]n =
αi′ = [i(α1′)]n = [it]n. Hence, for (m,m) = 1 i′ = [mti]n and [s + ik]′n =
[mt(s+ ik)]n = [mts+mtki]n. Therefore, −[it]n =
betas([s + ik]′n) = βs[mts + mtki]n. This for i = [−ks + ktmj]n gives βsj =
[−(−ks+ ktmj)t]n = [k(st−mj)]n.

(⇐): For all i, j ∈ Zn, [i + 1]n ∗ [j + k]n = [mi + m + k(st −m(j + k))]n =
[mi + m + k(st −mj) −m]n = [mi + k(st −mj)]n = i ∗ j. So, k-translatability
follows from Lemma 2.2(ii).

Theorem 5.8. If a k-translatable quasigroup (Q, ∗) is an (α, β)-isotope of the
group (Q,⊕), then there is an ordering 1, 2, . . . , n on Q such that

(i) αs = 0 = βn for some s ∈ {1, n},

(ii) α[i+ 1]n = αi⊕ α[s+ 1]n for all i ∈ {1, n},

(iii) α[s+ i]n = i(α[s+ 1]n) for all i ∈ {1, n},

(iv) (Q,⊕) is isomorphic to (Zn,+),

(v) β[jk]n = j(−α[s+ 1]n) for all j ∈ {1, n}.
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Proof. From Lemma 2.3, there is a k-translatable sequence 1, 2, . . . , n on Q such
that βn = 0 and, since α is a bijection, αs = 0 for some s ∈ {1, n}. Then, using
k-translatability and Lemma 2.2, 0 = s ∗ n = [s+ 1]n ∗ k = α[s+ 1]n⊕ βk. Hence,

βk = −α[s+ 1]n. (2)

Also, αi = i ∗ n = [i + 1]n ∗ k = α[i + 1]n ⊕ βk = α[i + 1]n − α[s + 1]n, which
implies α[i + 1]n = αi ⊕ α[s + 1]n. This proves (ii). Then, by induction on i, we
can prove (iii).

Now, βj = s ∗ j = [s + 1]n ∗ [j + k]n = α[s + 1]n ⊕ β[j + k]n. Therefore
α[s+ 1]n = βj − β[j + k]n, which together with (2) implies βj − β[j + k]n = −βk.
From this, by induction, we obtain β[jk]n = βk ⊕ βk ⊕ . . . ⊕ βk (with j number
of summands). This, by (2), proves (v).

Since α is a bijection Q = {α[s+ i]n : i ∈ {1, n}}. So we can define a bijection
ϕ : Q→ Zn as ϕα[s+ i]n = i. Then we have ϕ(α[s+ i]n ⊕ α[s+ j]n) = ϕ(iα[s+
1]n ⊕ jα[s + 1]n) = ϕ([i + j]nα[s + 1]n) = ϕα[s + [i + j]n]n = [i + j]n = [ϕα[s +
i]n + ϕα[s+ j]n]n. Hence, ϕ is an isomorphism between (Q,⊕) and (Zn,+). This
completes the proof of Theorem 5.8.

Proposition 5.9. If an (α, β)-isotope of the commutative group (Q,⊕) satisfies
(ii), (iii) and (v) of Theorem 5.8 then it is a k-translatable quasigroup.

Proof. Suppose that i, j ∈ Q. By (ii), (iii) and (v) of Theorem 5.8 we see that
Q = {iα[s + 1]n : i ∈ {1, n}} = { [ik]n : i ∈ {1, n}} and so j = [ĵk]n for some
ĵ ∈ {1, n}. Then, [i+ 1]n ∗ [j + k]n = α[i+ 1]n ⊕ β[(ĵ + 1)k]n = αi⊕ α[s+ 1]n ⊕
[ĵ + 1]n(−α[s + 1]n) = αi ⊕ ĵ(−α[s + 1]n) = αi ⊕ β[ĵk]n = αi ⊕ βj = i ∗ j and
k-translatability follows from Lemma 2.2.

The following Corollary follows directly from Theorem 5.8.

Corollary 5.10. An (α, β)-isotope of the group Zn is k-translatable if and only
if there is an ordering 1′, 2′, . . . , n′ on Zn such that for some s ∈ {1, n} and all
i ∈ {1, n}

(i) αs′ = n = βn′,

(ii) (α([s+ 1]′n), n) = 1,

(iii) α([i+ 1]′n) = αi′ + α([s+ 1]′n),

(iv) (α([s+ i]′n) = iα([s+ 1]′n),

(v) β([ik]′n) = −iα([s+ 1]′n).

Theorem 5.11. If an (α, β)-isotope (Zn, ∗) of the group Zn is right linear over
Zn, then it is k-translatable if and only if there exist m, s.t ∈ {1, n} such that
(t, n) = 1 = (m,n) and αi = [−st−mki]n for all i ∈ {1, n}, where βj = [mj]n.
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Proof. (⇒): Since β is an automorphism of the group Zn, βj = [mj]n for some
(m,n) = 1. Using Corollary 5.10(ii) with t = α([s + 1]′n) and αs′ = n, for all
i ∈ {1, n} we have [m([ik]′n)]n = [−it]n and so [i′]n = −[mkit]n, where [mm]n = 1.
By Corollary 5.10(iv), [jt]n = α([mkt(s + j)]n, which for j = [−s −mkti]n gives
αi = [−st−mki]n.

(⇐): For all i, j ∈ {1, n} we have [i + 1]n ∗ [j + k]n = [−st −mki + mj]n =
[αi+ βj]n = i ∗ j. Therefore, by Lemma 2.2(ii), (Zn, ∗) is k-translatable.

Corollary 5.12. For any ordering 1′, 2′, . . . , n′ on Zn and any k, t ∈ {1, n} such
that (k, n) = (t, n) = 1 there is a bijection βt on Znand bijections αs, s ∈ {1, n},
such that the quasigroups (Zn, ∗s) defined by i∗s j = [αsi+βtj]n are k-translatable
with respect to this ordering.

Proof. Suppose that 1′, 2′, . . . , n′ is an order on Zn and that k, t ∈ {1, n}, with
(k, n) = 1 = (t, n). Then, we define αs([s + i]′n) = [it]n. It follows that for all
i ∈ {1, n}, α([i+ 1]′n) = [αi′ + t]n. Then, we define βt([ik]′n) = [−it]n. It follows
that for all i ∈ {1, n}, βt[j + k]′n = [βtj

′ − t]n. Then, [i + 1]′n ∗s [j + k]′n =
[αs([i+ 1]′n) + βt([j + k]′n)]n = [αsi

′ + t+ βtj − t]n = i′ ∗s j′. The required result
then follows from Lemma 2.2(ii).

Theorem 5.13. A k-translatable quasigroup left or right linear over Zn is medial
and linear over Zn. If [k2]n = 1 then it is also paramedial.

Proof. By Theorem 5.7 a k-translatable quasigroup left linear over Zn has the
operation i ∗ j = [αi + kst + δj]n, where αi = [mi]n and δj = [−kmj]n. A k-
translatable quasigroup right linear over Zn has, by Theorem 5.11, the operation
i∗j = [γi−st+βj]n, where γi = [−mki]n and βj = [mj]n. Since (k, n) = (m,n) =
1, α, β, δ, γ are automorphisms of the group Zn. If [k2]n = 1 then α2 = δ2 and
γ2 = β2. This means (cf. [6, Theorem 9]) that this quasigroup is paramedial.

We have seen in Theorem 5.13 that k-translatable left linear and k-translatable
right linear quasigroups over Zn are linear. This leads to the question of whether
there are k-translatable isotopes over Zn of the form x ∗ y = [αx + βy]n where
both α and β are not automorphisms of Zn and (Zn, ∗) cannot be written as
x∗y = [α̂x+ c+ β̂y]n, where either α̂ or β̂ are automorphisms of Zn. (That is, the
k-translatable quasigroup (Zn, ∗) has no representation as a linear, k-translatable
quasigroup over Zn.) In fact, there are many such k-translatable quasigroups over
Z4, as we show in the example below.

The proofs of Theorem 5.14 and Corollary 5.15 are similar to the proofs of
Theorems 5.1 and 5.8 and Corollaries 5.3 and 5.10 and are therefore omitted.
Corollary 5.15 will be applied to give the examples just referred to in the preceding
paragraph.

Theorem 5.14. If an (α, β)-isotope (Q, ∗) of a group (Q,⊕) of order n is k-
translatable then there is an ordering 1, 2, . . . , n on Q such that for some r, s ∈
{1, n} and all i, j ∈ {1, n}
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(i) αr = 0 = βs,

(ii) α[i+ 1]n = αi⊕ α[r + 1]n,

(iii) α[r + i]n = α[r + 1]n ⊕ α[r + 1]n ⊕ . . .⊕ α[r + 1]n︸ ︷︷ ︸
i times

= i(α[r + 1]n),

(iv) (Q,⊕) is isomorphic to the group Zn,

(v) β[j + k]n = βj ⊕ β[s+ k]n and β[s+ jk]n = j(−α[r + 1]n).

Corollary 5.15. An (α, β)-isotope of the group Zn is k-translatable for some k if
and only if there is an ordering 1′, 2′, . . . , n′ of Zn such that for some r, s ∈ {1, n}
and all i ∈ {1, n}

(i) αr′ = n = βs′,

(ii) α([i+ 1]′n) = [αi′ + α([r + 1]′n)]n,

(iii) α([r + i]′n) = [iα([r + 1])′n]n,

(iv) β([i+ k]′n) = [βi′ + β([s+ k]′n)]n and β([s+ ik]′n) = [i(−α([r + 1]′n)]n,

(v) (α([r + 1]′n), n) = 1.

Theorem 5.16. If an (α, β)-isotope of the group Zn is (n − 1)-translatable for
some ordering 1′, 2′, . . . , n′ with βs′ = n, then βi′ = [αi′ − αs′]n for all i ∈ {1, n}.

Proof. An (n−1)-translatable quasigroup of order n is commutative. Hence in an
(n−1)-translatable (α, β)-isotope of the group Zn we have [αi+βj]n = [αj+βj]n.
In particular, αi′ = [αi′ + βs′]n = [αs′ + βi′]n. So, βi′ = [αi′ − αs′]n.

6. 3-translatable isotopes of Z4

We proceed to calculate the 3-translatable (α, β)-isotopes of the group Z4. By
Theorem 5.16, for all i ∈ {1, 4}, βi′ = [αi′ − αs′]4. Using Corollary 5.15, there
is a 3-translatable ordering 1′, 2′, 3′, 4′ on Z4 and r, s ∈ {1, 4} such that αr′ =
4 = βs′, (α([r + 1]′4), 4) = 1 and α([r + i]′4) = iα([r + 1]′4) for all i ∈ {1, 4}. So,
α([r+1]4)′ ∈ {1, 3}. If we choose α([r+1]′4) = 1 then α([r+ i]′4) = iα([r+1]′4) = i
for all i ∈ {1, 4}. Therefore, β([r + i]′4) = [α([r + i]′4) − αs′]4 = [i − αs′]4. Since
αs′ = α([r − (r − s)]′4) = [s− r]4 we have β([r + i]′4) = [i− αs′]4 = [i+ r − s]4.

Note that since 1′, 2′, 3′, 4′ is a 3-translatable ordering, by Lemma 2.3 so is the
ordering [r + 1]′4, [r + 2]′4, [r + 3]′4, r

′. If we define xi = [r + i]′4 then we obtain the
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following 3-translatable Cayley table for Z4, where d = [r − s]4 and each entry is
calculated modulo 4.

∗ x1 x2 x3 x4
x1 2 + d 3 + d d 1 + d
x2 3 + d d 1 + d 2 + d
x3 d 1 + d 2 + d 3 + d
x4 1 + d 2 + d 3 + d d

Note that in the Cayley table above, changing the ordering to x3x4x1x2 in the
leftmost column and also in the top row gives exactly the same quasigroup. That
is, not only is the main body of the Cayley table the same, all the products are
the same. For a fixed value of d, any other ordering gives a different quasigroup.

Note also that, given a fixed r, s and t = α([r + 1]′n), any chosen ordering
x1x2x3x4 determines precisely one bijection α which in turn by Corollary 5.15
and Theorem 5.16 determines the bijection β, as indicated in the table below, the
entries of which are calculated modulo 4.

There are all 24 possible orderings listed in the table below, twelve pairs of
which give 12 distinct 3-translatable quasigroups induced by Z4. The first 4 pairs
of those are linear over Z4, namely, the quasigroups determined by the orderings
1234, 3412, 2341, 4123, 4321, 2143, 1432 and 3214, as will be shown below. None
of the quasigroups determined by the eight other pairs of orderings is linear over
Z4.

x1x2x3x4 α β1 β2 β3 β4
1234 ε 1 + d 2 + d 3 + d d
3412 (13)(24) 3 + d d 1 + d 2 + d
2341 (1432) d 1 + d 2 + d 3 + d
4123 (1234) 2 + d 3 + d d 1 + d
4321 (14)(23) d 3 + d 2 + d 1 + d
2143 (12)(34) 2 + d 1 + d d 3 + d
1432 (24) 1 + d d 3 + d 2 + d
3214 (13) 3 + d 2 + d 1 + d d

1243 (34) 1 + d 2 + d d 3 + d
4312 (1324) 3 + d d 2 + d 1 + d
1321 (23) 1 + d 3 + d 2 + d d
2413 (1342) 3 + d 1 + d d 2 + d



206 W. A. Dudek and R. A. R. Monzo

1342 (243) 1 + d d 2 + d 3 + d
4213 (134) 3 + d 2 + d d 1 + d
1423 (234) 1 + d 3 + d d 2 + d
2314 (132) 3 + d 1 + d 2 + d d
2134 (12) 2 + d 1 + d 3 + d d
3421 (1423) d 3 + d 1 + d 2 + d
2431 (142) d 1 + d 3 + d 2 + d
3124 (123) 2 + d 3 + d 1 + d d
3142 (1243) 2 + d d 1 + d 3 + d
4231 (14) d 2 + d 3 + d 1 + d
3241 (143) d 2 + d 1 + d 3 + d
4132 (124) 2 + d d 3 + d 1 + d

Given that the only automorphisms of Z4 are of the form ϕi = i and ϕi = 3i,
using Lemma 2.1 it is easy to calculate that the only 3-translatable quasigroups
linear over Z4 are of the form i∗j = [ϕi+ϕj+c]4, where c ∈ Z4 is fixed. Examining
the Cayley table of the quasigroups determined by the first eight pairs in the table,
in their natural ordering, shows that they each are of one of these linear forms.

In particular, the orderings 1234 and 3412 give i ∗ j = [i + j − d]4, 2341 and
4123 give i ∗ j = [i+ j + 2− d]4, 4321 and 2143 give i ∗ j = [3i+ 3j + 2− d]4 and
1432 and 3214 give i ∗ j = [3i+ 3j − d]4.

Any of the other quasigroups determined by the remaining 8 pairs of orderings
is not of a linear form because, in their natural ordering, there is always an increase
in the value of a particular two consecutive, increasing entries by a value of 2. This
is not possible for a 3-translatable quasigroup linear over Z4, where the values of
two consecutive, increasing entries always increases by a value of 1 or 3.

If we had chosen α([r + 1]′4) = 3 then by Corollary 5.15, for all i ∈ {1, 4},
(α[r+1]′4) = [3i]4 and β([s+3i]′4) = [−3i]4 = i = β([s−i]′4). Therefore, β([r+i]′4) =
[s − r − i]4. As previously, if we define xi = [r + i]′4 then any ordering x1x2x3x4
gives the following 3-translatable Cayley table.

∗ x1 x2 x3 x4
x1 2− d 1− d −d 3− d
x2 1− d −d 3− d 2− d
x3 −d 3− d 2− d 1− d
x4 3− d 2− d 1− d −d

The first eight orderings of the table below give different values of the mapping
α, but for each ordering the value of βi, i ∈ {1, 4} is the additive inverse of the
corresponding entries in the table on the previous page.
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x1x2x3x4 α β1 β2 β3 β4
1234 (13) −d− 1 −d− 2 −d− 3 −d
3412 (24) −d− 3 −d −d− 1 −d− 2
2341 (14)(23) −d −d− 1 −d− 2 −d− 3
4123 (12)(34) −d− 2 −d− 3 −d −d− 1
4321 (1432) −d −d− 3 −d− 2 −d− 1
2143 (1234) −d− 2 −d− 1 −d −d− 3
1432 (13)(24) −d− 1 −d −d− 3 −d− 2
3214 ε −d− 3 −d− 2 −d− 1 −d

In particular, the orderings 1234 and 3412 give i ∗ j = [3i+ 3j − d]4, 2341 and
4123 give i ∗ j = [3i+ 3j + 2− d]4, 4321 and 2143 give i ∗ j = [i+ j + 2− d]4 and
1432 and 3214 give i ∗ j = [i+ j − d]4.

Note that, whether α([r+1]′4) = 1 or α([r+1]′4) = 3, since [r−s]4 ∈ {1, 4} every
possible 3-translatable linear isotope appears for any of the first eight orderings in
Tables 2 or 4. The remainder of the non-linear, 3-translatable isotopes are of one
of the following 8 forms in their natural ordering.

∗1 1 2 3 4

1 2 1 3 4
2 1 4 2 3
3 3 2 4 1
4 4 3 1 2

∗2 1 2 3 4

1 2 4 1 3
2 4 2 3 1
3 1 3 4 2
4 3 1 2 4

∗3 1 2 3 4

1 2 3 1 4
2 3 4 2 1
3 1 2 4 3
4 4 1 3 2

∗4 1 2 3 4

1 2 4 3 1
2 4 2 1 3
3 3 1 4 2
4 1 3 2 4

∗5 1 2 3 4

1 4 1 3 2
2 1 2 4 3
3 3 4 2 1
4 2 3 1 4

∗6 1 2 3 4

1 4 3 1 2
2 3 2 4 1
3 1 4 2 3
4 2 1 3 4

∗7 1 2 3 4

1 4 2 1 3
2 2 4 3 1
3 1 3 2 4
4 3 1 4 2

∗8 1 2 3 4

1 4 2 3 1
2 2 4 1 3
3 3 1 2 4
4 1 3 4 2

The quasigroups (Z4, ∗1), (Z4, ∗3), (Z4, ∗7) and (Z4, ∗8) are isomorphic to each
other, as are the quasigroups (Z4, ∗2), (Z4, ∗4), (Z4, ∗5) and (Z4, ∗6).
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