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On the torsion in multiplicatively closed subsets
of power associative algebras

Evgenii L. Bashkirov

Abstract. Let A be a commutative ring with 1, M an ideal of A, E a power associative algebra
over A having a basis and a unit element e. In the paper, the torsion in the multiplicatively
closed subset e + ME of E has been studied when A is an integral domain of characteristic 0
with a theory of divisors. The main theorem of the paper generalizes a result concerning the
torsion in the congruence subgroup of the general linear group over A.

One of the most useful way to study an algebraic system with a single binary
operation is to ask whether or not a property satisfied by some class of groups is
valid for the system in question. The present short note has its origin in the obser-
vation that the results of [4] concerning the torsion in the congruence subgroups
of the general linear groups over rings can not only be proved for matrix groups
over commutative integral domains that have a theory of divisors (this kind of
commutative rings is more general than that considered in [4]) but also can be
carried over to some multiplicatively closed sets in power associative algebras over
rings belonging to the family indicated. In particular, this features to investigate
the torsion in Moufang loops because these are power associative by Moufang’s
theorem ([3], p. 117). To pose the problem properly as well as to formulate the
main result one must, first, introduce and recall some terminology and notation.

Let A be a commutative ring with 1. Let E be an algebra over A with unit
element e. IfM is an ideal of A, thenME denotes the set of all finite sums

∑
i aixi

with ai ∈M,xi ∈ E. Define S(M) to be the set of all elements e+x where x ∈ME.
Since ME is a two-sided ideal of E, the subset S(M) is multiplicatively closed,
that is, the product uv is in S(M) whenever u and v are in S(M).

Hereafter A is assumed to be an integral domain. Recall that the requirement
A to have a theory of divisors means that there is a commutative semigroup D
with identity and with unique factorization such that there exists a homomorphism
a 7→ (a) of the semigroup A∗ = A \ {0} into D satisfying conditions (1)–(3) listed
on p. 171 [2]. In particular, an element a ∈ A∗ is divisible by b ∈ A∗ in the ring A
if and only if (a) is divisible by (b) in the semigroup D. Also an element a ∈ A∗ is
said to be divisible by an element a ∈ D, in symbols a|a, if (a) is divisible by a in
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the semigroup D. Accordingly, the notation a - a means that (a) is not divisible
by a in D. The set of all elements of A that are divisible by a form an ideal of A,
written I(a). Under the settings established, the following result is valid.

Theorem. Let A be a commutative integral domain of characteristic 0 with an
identity 1. Suppose that A has a theory of divisors A∗ → D such that D contains
a prime element P satisfying the following conditions: P - 2 and P2 - p for
every prime rational integer p. Let E be a power associative algebra over A with
unit element e. Suppose that the underlying A-module of E is free. Then the set
S(I(P)) contains no element of finite order.

Proof. Suppose that S(I(P)) contains an element of finite order other than e.
Then it contains an element a of prime order p. Let a = e + b with b ∈ I(P)E.
By the condition of the theorem, the module E admits a basis, say (eλ)λ∈Λ where
Λ is an index set which need not be finite. Write b =

∑
λ∈Λ bλeλ with all bλ in A,

only a finite number of bλ being nonzero. Moreover, since b ∈ I(P)E, all bλ must
be in the ideal I(P). Now due to the power associativity of the algebra E, one
gets

ap = (e+ b)p = e+ bp+
p(p− 1)

2!
b2 + . . .+ bp = e,

whence it follows that

pb+
p(p− 1)

2!
b2 + . . .+ bp = 0. (1)

For any integer t > 1, write

bt =
∑
λ∈Λ

b
(t)
λ eλ, b

(t)
λ ∈ A, (2)

where certainly b
(1)
λ = bλ for each λ ∈ Λ. If t ranges from 1 through p, then

equations (2) contains only a finite number of nonzero coefficients b(t)λ and, in fact,
a finite number of basis elements eλ. Therefore the set of all indices λ occurring
in (2) with t ranging from 1 through p is finite and so it can be identified with the
set of positive integers {1, 2, . . . , n} for an appropriate n. Thus equations (2) with
t ∈ {1, 2, . . . , p} can be rewritten as

bt =

n∑
i=1

b
(t)
i ei. (3)

Since each bi = b
(1)
i is divisible by P (it should be kept in mind that the zero

element of A is supposed to be divisible by all elements of D), one can find an
integer l > 1 such that Pl divides all b1, . . . , bn while Pl+1 does not divide some
bj(j ∈ {1, 2, . . . , n}). This means that

(bj) = Plpm1
1 . . . pmr

r , (4)
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where r > 0, mi are positive integers and p1, . . . , pr are prime elements of D such
that

P /∈ {p1, . . . , pr}. (5)

On substituting (3) into (1), one obtains

p

n∑
i=1

biei +
p(p− 1)

2!

n∑
i=1

b
(2)
i ei + . . .+

n∑
i=1

b
(p)
i ei = 0.

Matching the coefficients of ej gives the equation

pbj = −
p−1∑
i=2

p(p− 1) . . . (p− i+ 1)

i!
b
(i)
j − b

(p)
j . (6)

There are two possibilities to consider: (a) P - p; (b) P|p.
Consider (a). Assume first that Pl+1|pbj . This assumption means that

(pbj) = Pl+uqk11 . . . qkss . (7)

for some integers u > 1, s > 0, some positive integers ki and some prime elements
q1, . . . , qs ∈ D different from P. In view of (4),

(pbj) = (p)Plpm1
1 . . . pmr

r . (8)

Equations (8) and (7) are combined to yield

(p)pm1
1 . . . pmr

r = Puqk11 . . . qkss . (9)

Here u > 1, so P arises on the right-hand side of (9) and consequently it must
coincide with some of p1, . . . , pr which is false by (5). This shows that Pl+1 - pbj .
On the other hand for each i = 2, . . . , p, Pli divides b(i)j , and hence Pl+1 divides
all b(2)

j , . . . , b
(p)
j . Thus Pl+1 divides each summand on the right-hand side of (6),

and therefore Pl+1|pbj . This contradiction shows that possibility (a) is in fact
impossible.

Consider (b). Assume first that Pl+2|pbj . In other words,

(pbj) = Pl+vrd11 . . . rdtt , (10)

where v > 2, all di are positive integers and r1, . . . , rt(t > 0) are prime elements of
D different from P. By the condition of the theorem, P2 - p, and hence

(p) = Pqk11 . . . qkss , (11)

where ki are positive integers and q1, . . . , qs(s > 0) are prime elements of D such
that

P /∈ {q1, . . . , qs}. (12)
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Further, by (4) and (11),

(p)(bj) = P1+lqk11 . . . qkss pm1
1 . . . pmr

r ,

and comparing the last relation with (10), one concludes, after cancelling Pl, that

Pvrd11 . . . rdtt = Pqk11 . . . qkss pm1
1 . . . pmr

r .

Since v > 2, the last equation can be rewritten as

Pv−1rd11 . . . rdtt = qk11 . . . qkss pm1
1 . . . pmr

r ,

where v − 1 > 1, and so P must occur on the right-hand side of the last equality
which is impossible in view of (12) and (5). Thus the assumption Pl+2|pbj has
led to a contradiction, and therefore, Pl+2 - pbj , or, to put it another way, Pl+2

is not a divisor of the left-hand side of (6). On the other hand, if 2 6 i 6 p − 1,
the element

p(p− 1) . . . (p− i+ 1)

i!
b
(i)
j

of A has P(Pl)i = P1+li as a divisor, and so Pl+2 is its divisor too. Also Plp|b(p)j .
Now notice that p > 2 due to the assumption P|p defining possibility (b) and in
view of the relation P - 2 which is true by the condition of the theorem. Therefore,
one has lp > l+2, and consequently Pl+2|b(p)j . Thus every term on the right-hand
side of (6) has Pl+2 as a divisor, and hence Pl+2 divides the entire expression on
the right-hand side of (6). This final contradiction completes the proof.

As a special case of the preceding theorem, the following assertion dealing with
general alternative algebras deserves to be formulated.

Corollary 1. Let A,E and P be as in Theorem. Suppose that the algebra E is
alternative. Then the set of invertible elements of E that are contained in S(I(P))
is a Moufang loop without torsion.

Proof. By [1], p. 81, the set of invertible elements in E is a Moufang loop. So
having in view Theorem, it suffices to show that for any invertible x ∈ S(I(P)), its
inverse x−1 is also in S(I(P)). Now one can write x−1 = e+b with b ∈ E. Recalling
that x = e+a with a ∈ I(P)E, one has e = xx−1 = (e+a)(e+ b) = e+a+ b+ab,
whence b = −a − ab. But I(P)E is a two-sided ideal of E, and so b must lie in
I(P)E as required.

To obtain an application of Theorem in a more concrete situation of the split
Cayley-Dickson algebra O(A) as well as in the case of associative matrix algebras,
the following portion of notation is needed.

The set O(A) is formed by all symbols ( a αβ b ) such that a, b ∈ A and α, β ∈ A3,
where A3 is the rank 3 free A-module of length 3 columns with components in
A. In O(A), equality, addition and multiplication by elements of A are fulfilled
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componentwise so that O(A) is a free A-module of rank 8. The operation of
multiplication in O(A) is defined by(
a α
β b

)(
c γ
δ d

)
=

(
ac+ α · δ aγ + αd− β × δ

βc+ bδ + α× γ β · γ + bd

)
(a, b, c, d ∈ A,α, β, γ, δ ∈ A3),

where · and × denote the usual dot product and crossed product, respectively, in
A3. This makes O(A) a non-associative alternative algebra over A. The algebra
O(A) is called the (split) octonion (or Cayley–Dickson) algebra over A, and its
elements ( a αβ b ) are called octonions. The identity of the algebra O(A) is the
octonion ( 1 0

0 1 ), where 0 denotes the element of A3 all of whose components are
zeros. The Moufang loop of invertible elements of O(A) is denoted G(A).

Now let M be an ideal of A. It is a straightforward verification that the
canonical homomorphism fM : A→ A/M = B can be extended to an epimorphism
of alternative rings hM : O(A)→ O(B),

a1

a2

a3

a4

a5

a6

a7

 a8

 7→


fM (a1)

fM (a2)
fM (a3)
fM (a4)

fM (a5)
fM (a6)
fM (a7)

 fM (a8)

 .

This hM determines, in turn, a loop homomorphism gM : G(A) → G(B) : x 7→
hM (x). The kernel of gM , denoted CL(A,M), will be termed the M -congruence
subloop by analogy with the corresponding concept in the theory of matrix groups
(see [4], p. 65) and it is appropriate to recall this concept here.

First, if n > 2 and R is an associative ring with identity, then the group
of all invertible n × n matrices over R is denoted by GL(n,R) and called the
general linear group (of degree n over R). Now the canonical homomorphism fM
determines the group homomorphism βM : GL(n,A) → GL(n,B) which sends a
matrix a ∈ GL(n,A) whose element in row i, column j is denoted aij(1 6 i, j 6 n)
to the matrix of GL(n,B) whose element in row i, column j is equal to fM (aij).
The kernel of βM is just the M -congruence subgroup GL(n,A,M).

Corollary 2. Let A and P be such as in Theorem. Let n be an integer, n > 3.
Then the I(P)-congruence subloop C(A, I(P)) as well as the I(P)-congruence sub-
group CL(n,A, I(P)) are torsion free.

Proof. Note that the subloop C(A, I(P)) (the subgroup CL(n,A, I(P)), respec-
tively) coincides with the set of invertible elements in the multiplicatively closed
subset S(I(P)) of the algebra O(A) (the algebra of n×n matrices over A, respec-
tively). Using Corollary 1 completes the proof.
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