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Annihilator graph of a commutative semigroup

whose zero-divisor graph is a refinement

of a star graph

Mojgan Afkhami, Kazem Khashyarmanesh

and Seyed Mohammad Sakhdari

Abstract. Suppose that G is a refinement of a star graph with center c and G∗ is the subgraph
of G induced on the vertices V (G) \ {x ∈ V (G) | x = c or x is an end vertex adjacent to c}. Let
S be a commutative semigroup with zero and Γ(S) be the zero-divisor graph of S. In this paper,
we determine the structure of the annihilator graph of S by using the zero-divisor graph Γ(S),
which is a refinement of a star graph with center c, and Γ(S)∗ has at least two components or
Γ(S)∗ is isomorphic to a cycle graph or a path.

1. Introduction
Throughout the paper S is a commutative semigroup with zero whose operation is
written multiplicatively. The set of all zero-divisors of S is denoted by Z(S) and
Z(S)∗ = Z(S) \ {0}.

There are many papers which interlink graph theory and ring theory. Several
classes of graphs associated with algebraic structures have been actively investi-
gated (see for example, [2, 3, 4, 5, 6, 7, 8, 11, 12, 18, 19]).

For any commutative semigroup S with zero element 0, there is a simple undi-
rected graph, which is called the zero-divisor graph and is denoted by Γ(S) (cf.
[17]). The vertex set of Γ(S) is Z(S)∗ and x is adjacent to y in Γ(S) if and only if
xy = 0, for each two distinct elements x and y in Z(S)∗. It was proved that Γ(S)
is connected and the diameter of Γ(S) is less than or equal to three. Also if Γ(S)
contains a cycle, then its girth is less than or equal to four. For more details on
zero-divisor graphs see [9], [13], [15], [16], [17], [21].

In [10], A. Badawi introduced the concept of the annihilator graph for a com-
mutative ring R, denoted by AG(R), with vertices Z(R)∗ and x ∼ y is an edge in
AG(R) if and only if annR(xy) 6= annR(x) ∪ annR(y), where annR(x) = {r ∈ R |
xr = 0}.

In [1], the present authors introduced the annihilator graph for a commutative
semigroup S, which is denoted by AG(S). The graph AG(S) is an undirected
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graph with vertex set Z(S)∗ and two distinct vertices x and y are adjacent if and
only if annS(xy) 6= annS(x) ∪ annS(y), where annS(x) = {s ∈ S | xs = 0}. Some
basic properties of AG(S) are investigated in [1]. For example, it was proved that
if Z(S) 6= S, then Γ(S) is a subgraph of AG(S), and so AG(S) is connected. Also
if Z(S) = S and there exists x ∈ S∗ = S \ {0} such that annS(x) ⊇ Z(S) \ {x},
then x is an isolated vertex in AG(S).

Recall that a graph G with n+ 1 vertices is called a star graph, and is denoted
by K1,n, if there exists a vertex x ∈ V (G) such that d(x) = n, and for each
vertex y ∈ V (G) \ {x}, we have d(y) = 1. The vertex x is called the center of
K1,n. Suppose that G and H are two graphs. H is called a refinement of G if
V (G) = V (H) and each edge in G is an edge in H. The subgraph induced on
vertices V (G) \ {x ∈ V (G) | x = c or x is an end vertex adjacent to c} is denoted
by G∗.

In this paper, we study the annihilator graph associated to a commutative
semigroup with zero by using the zero-divisor graph Γ(S), where Γ(S) is a refine-
ment of a star graph with center c, and Γ(S)∗ has at least two components or
Γ(S)∗ is isomorphic to a cycle graph or a path.

2. Preliminaries

Now we recall some definitions and notations of graphs. We use the standard
terminology of graphs is contained in [14]. Let G be a graph with vertex set V (G)
and edge set E(G). We use the notation x ∼ y to denote that x is adjacent to y
in G and edge between x and y will denote by {xy}. Also the distance between
two distinct vertices a and b, denoted by d(a, b), is the length of the shortest path
connecting a and b, if such a path exists; otherwise, we use d(a, b) := ∞. The
diameter of a graph G is diam(G) = sup{d(a, b) : a and b are distinct vertices
of G}. The girth of G, denoted by gr(G), is the length of the shortest cycle in
G, if such a cycle exists; otherwise, we use gr(G) := ∞. A graph G is said to be
connected if there exists a path between any two distinct vertices, and it is complete
if it is connected with diameter one. We use Kn to denote a complete graph with
n vertices. Also, we say that G is totally disconnected if no two vertices of G are
adjacent. We use nK1 to denote the totally disconnected graph with n vertices.
For a vertex x of a graph G, the neighborhood of x, denoted by N(x), is the set
of vertices which are adjacent to x, moreover the degree of x, denoted by d(x), is
the cardinality of N(x). Also, a vertex u is an end vertex, if there is only one edge
incident to u, and it is an isolated vertex if d(u) = 0. Let G and H be two graphs.
We use the notation H 6 G (resp, H ∼= G) to denote that H is a subgraph of G
(resp, H is isomorphic to G). Also we use G\{{x1y1}, {x2y2}, {x3y3}, ..., {xnyn}}
to denote a graph G, such that the edges {x1y1}, {x2y2}, {x3y3}, ..., {xnyn} are
deleted.

As usual Pn and Cn will denote the path of length n and the cycle of length
n, respectively. Suppose that G is a graph with m components such that each



Annihilator graph of a commutative semigroup 159

component of G is isomorphic to Kn. Then we will denote G by mKn. Let H and
G be two graphs such that V (G) ∩ V (H) = ∅ and E(G) ∩ E(H) = ∅. Then the
union of the graphs H and G, which is denoted by H ∪G, is a graph with vertex
set V (G) ∪ V (H) and edge set E(H) ∪ E(G).

Throughout the paper, we assume that |Z(S)∗| > 3. The case that |Z(S)∗| 6 2
is easy. Indeed, if |Z(S)∗| = 1, then AG(S) ∼= Γ(S) ∼= K1. Let |Z(S)∗| = 2. Then
Γ(S) ∼= K2. Now if Z(S) = S, then clearly AG(S) ∼= 2K1, and if Z(S) 6= S, then
AG(S) ∼= Γ(S) ∼= K2. Moreover, in [1, Section 4 ], the case that |Z(S)∗| = 3 and
in [20] the case that |Z(S)∗| = 4, have been discussed.

3. Properties of AG(S)

In this section, we determine the structure of the annihilator graph of a commu-
tative semigroup S whose Γ(S) is a refinement of a star graph with center c and
Γ(S)∗ satisfies one of the properties: (1) Γ(S)∗ has at least two components, (2)
Γ(S)∗ is a cycle graph, (3) Γ(S)∗ is a path. Also since Γ(S) is a refinement of
a star graph with center c, if c2 = 0, then annS(c) = Z(S). Moreover, in this
section, we show that if Z(S) = S, then 5 is sharp for the girth of AG(S), while
if Z(S) 6= S, then gr(AG(S)) 6 4.

Proposition 3.1. [22, Corollary 2.4] Suppose that Γ(S) is a refinement of a star
graph with center c, and Γ(S)∗ has at least two components. Then S2 = {0, c},
where S2 = {xy|x, y ∈ S}.

By Proposition 3.1, it is clear that if Γ(S) is a refinement of a star graph and
Γ(S)∗ has at least two components, then if there exists a vertex z which is not
adjacent to some vertices x and y in Γ(S), then x and y are adjacent in AG(S).
Also, note that if Γ(S) is a refinement of a star graph with center c and S2 = {0, c},
then annS(xy) = Z(S), for all x, y ∈ Z(S). Now, the proof of the next theorem
follows from [1, Theorems 3.1 and 3.8].

Theorem 3.2. Suppose that Γ(S) is a refinement of a star graph with center c.
Also assume that Γ(S)∗ has at least three components and |V (Γ(S))| = n+1. Then
the following statements hold.

1. If x and y are two distinct non adjacent vertices in Γ(S), then x ∼ y in
AG(S).

2. If Z(S) 6= S, then AG(S) ∼= Kn+1.
3. Z(S) = S, then AG(S) ∼= Kn ∪K1, where c is an isolated vertex in

AG(S).

A graph G is called a friendship graph (or a fan graph) if G is a refinement
of a star graph with center c such that G \ {c} ∼= nK2 and it is denoted by Fn.
Clearly |V (Fn)| = 2n + 1.
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Corollary 3.3. Suppose that Γ(S) ∼= Fn with center c and n > 3. Then the
following statements hold.

1. If Z(S) 6= S, then AG(S) ∼= K2n+1.
2. If Z(S) = S, then AG(S) ∼= K2n ∪K1, where c is an isolated vertex in

AG(S).

Proof. Since Γ(S) ∼= Fn with center c and n > 3, we have Γ(S)∗ ∼= nK2, and
so Γ(S)∗ has at least three components. Therefore, by Theorem 3.2, the results
hold.

Lemma 3.4. Suppose that Γ(S) is a refinement of a star graph with center c such
that Γ(S)∗ has exactly two components A and B. Then the following statements
hold.

1. If x, y ∈ A, then x∼y in AG(S). Similarly, if x, y ∈ B, then x∼y in AG(S).

2. Suppose that x, y ∈ Z(S)∗ \ {c}. Then x � y in AG(S) if and only if there
exists no end vertex adjacent to c in Γ(S) and x ∈ A, annS(x) = A ∪ {0, c}
and y ∈ B, annS(y) = B ∪ {0, c}.

Proof. (1). It follows by Proposition 3.1.
(2). First suppose that x, y ∈ Z(S)∗\{c} and x � y inAG(S). Then, by (i), x ∈

A, y ∈ B, and so xy 6= 0 and, by Proposition 3.1, we have xy = c which follows that
c2 = (xy)c = x(yc) = 0, and hence annS(c) = Z(S). Since x � y in AG(S), we see
that annS(x) ∪ annS(y) = annS(xy) = annS(c) = Z(S). If there exists u such that
u is an end vertex adjacent to c in Γ(S), then u /∈ annS(x)∪annS(y) = Z(S), which
is impossible. Thus there exists no end vertex adjacent to c in Γ(S). Now if x2 6= 0
or y2 6= 0, then x /∈ annS(x) ∪ annS(y) = Z(S), or y /∈ annS(x) ∪ annS(y) = Z(S),
which is impossible. Therefore x2 = y2 = 0. Finally, if there exists a ∈ A such
that x � a in Γ(S), then a /∈ annS(x) ∪ annS(y) = annS(xy) = annS(c) = Z(S),
which is impossible. Hence for each a ∈ A, we have x ∼ a in Γ(S), and so
annS(x) = A ∪ {0, c}. Similarly, annS(y) = B ∪ {0, c}.

Conversely, since x ∈ A and y ∈ B, which implies that xy 6= 0 and, by
Proposition 3.1, we have xy = c. So annS(xy) = annS(c) = Z(S). Since there
exists no end vertex adjacent to c in Γ(S) and annS(x) = A∪{0, c} and annS(y) =
B ∪ {0, c}, we have annS(x) ∪ annS(y) = A ∪ B ∪ {0, c} = Z(S) = annS(xy).
Therefore x � y in AG(S).

The next theorem follows from Lemma 3.4.

Theorem 3.5. Suppose that Γ(S) is a refinement of a star graph with center c
such that there exists no end vertex adjacent to c in Γ(S) and |V (Γ(S)∗| = n.
Also assume that Γ(S)∗ has exactly two components A and B. Then the following
statements hold.

1. If Z(S) 6= S, then AG(S) ∼= Kn+1 \ {{xy}| x ∈ A, y ∈ B and annS(x) =
A ∪ {0, c} and annS(y) = B ∪ {0, c}}.
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2. If Z(S) = S, then AG(S) ∼= K1 ∪Kn \ {{xy}| x ∈ A, y ∈ B and annS(x) =
A∪{0, c} and annS(y) = B∪{0, c}}, where c is an isolated vertex in AG(S).

The next two corollaries immediately follows from Theorem 3.5 and [1, Theo-
rems 3.1 and 3.8].

Corollary 3.6. Suppose that Γ(S) ∼= F2 with center c. Also assume that Z(S) 6= S
and V (Γ(S)∗) = {x, y, z, w} with x ∼ y and w ∼ z. Then the following statements
hold.

1. AG(S) ∼= F2 if and only if x2 = y2 = z2 = w2 = 0.
2. AG(S) ∼= K5 \ {{wy}, {wx}} if and only if z2 = c and y2 = w2 = x2 = 0.
3. AG(S) ∼= K5 \ {{yz}} if and only if x2 = w2 = c and y2 = z2 = 0.
4. AG(S) ∼= K5 if and only if x2 = y2 = c or w2 = z2 = c.

Corollary 3.7. Suppose that Γ(S) ∼= F2 with center c. Also assume that Z(S) = S
and V (Γ(S)∗) = {x, y, z, w} with x ∼ y and w ∼ z. Then the following statements
hold.

1. AG(S) ∼= K1 ∪ 2K2, where c is an isolated vertex in AG(S), if and only if
x2 = y2 = z2 = w2 = 0.

2. AG(S) ∼= K1 ∪K4 \ {{wy}, {wx}}, where c is an isolated vertex in AG(S),
if and only if z2 = c and y2 = w2 = x2 = 0.

3. AG(S) ∼= K1 ∪K4 \ {{yz}}, where c is an isolated vertex in AG(S), if and
only if x2 = w2 = c and y2 = z2 = 0.

4. AG(S) ∼= K1 ∪K4, where c is an isolated vertex in AG(S), if and only if
x2 = y2 = c or w2 = z2 = c.

Theorem 3.8. Suppose that Γ(S) is a refinement of a star graph with center c
and T = {u | u is an end vertex adjacent to c in Γ(S)} and | T |= m > 1. Also
assume that Γ(S)∗ has exactly two components A and B and |V (Γ(S)∗)| = n.
Then the following statements hold.

1. If x ∈ A and y ∈ B, then x ∼ y in AG(S).
2. If x ∈ A, y ∈ B and u ∈ T , then u ∼ x and u ∼ y in AG(S).
3. If u, v ∈ T , then u ∼ v in AG(S).

The next corollary immediately follows from Theorem 3.8 and [1, Theorems
3.1 and 3.8].

Corollary 3.9. Suppose that Γ(S) is a refinement of a star graph with center c
and T = {u | u is an end vertex adjacent to c in Γ(S)} and | T |= m > 1. Also
assume that Γ(S)∗ has exactly two components and |V (Γ(S)∗)| = n. Then the
following statements hold.

1. If Z(S) 6= S, then AG(S) ∼= Km+n+1.
2. If Z(S) = S, then AG(S) ∼= Km+n ∪K1, where c is an isolated vertex in

AG(S).
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Proposition 3.10. [22, Theorem 2.5] Suppose that Γ(S) is a refinement of a star
graph with center c such that Γ(S)∗ is isomorphic to Cn, where n > 5. Then
S2 = {0, c}.

Lemma 3.11. Suppose that Γ(S) is a refinement of a star graph with center c
such that there exists no end vertex adjacent to c in Γ(S). Also assume that
Γ(S)∗ ∼= Cn, where n > 5 and x, y ∈ Z(S)∗ \ {c}. Then the following statements
hold.

1. If x ∼ y in Γ(S), then x ∼ y in AG(S).
2. If x � y in Γ(S) and x2 6= 0 or y2 6= 0, then x ∼ y in AG(S).
3. If x � y in Γ(S) and n > 7, then x ∼ y in AG(S).
4. x � y in AG(S) if and only if x2 = y2 = 0, xy = c and n = 5, or

x2 = y2 = 0, d(x, y) = 3 in Γ(S) and n = 6.

Proof. The proof of (1) and (2) is clear.
(3). Since Γ(S) ∼= Cn and n > 7, we have |V (Γ(S)∗)| > 7, and so |Z(S)| > 9,

since Z(S) = Cn∪{0, c}. On the other hand, for each two distinct vertices x and y
in Γ(S)∗, we see that |annS(x)∪annS(y)| 6 8. Since x � y in Γ(S), by Proposition
3.10, we have xy = c, and so annS(xy) = Z(S). Hence annS(x) ∪ annS(y) 6=
annS(xy), and therefore x ∼ y in AG(S).

(4). First suppose that x � y in AG(S). Then, by (i), (ii), (iii) and Proposition
3.10, we have x2 = y2 = 0, xy = c and n = 5, or n = 6. If n = 6 and d(x, y) = 2
in Γ(S), then there exists a vertex z, such that z /∈ annS(x) ∪ annS(y), and so
annS(x)∪ annS(y) 6= Z(S) = annS(c) = annS(xy). Thus x ∼ y in AG(S), which is
impossible. Also if d(x, y) = 1 in Γ(S), then x ∼ y in Γ(S) and, by (i), x ∼ y in
AG(S), which is again impossible. Therefore d(x, y) = 3 in Γ(S).

Conversely, first suppose that n = 5, x2 = y2 = 0 and xy = c. Then, since
x � y in Γ(S) and x, y ∈ C5, we have annS(x) ∪ annS(y) = Z(S) = annS(c) =
annS(xy). Thus x � y in AG(S).
Now suppose that x2 = y2 = 0, d(x, y) = 3 in Γ(S) and n = 6. Then Z(S) = C6 ∪
{0, c}, and so |Z(S)| = 8. Also since d(x, y) = 3, we see that annS(x)∩ annS(y) =
{0, c} and |annS(x)| = |annS(y)| = 5, and so |annS(x) ∪ annS(y)| = 8 = |Z(S)| =
|annS(c)| = |annS(xy)|. Thus annS(x) ∪ annS(y) = annS(xy). Therefore x � y in
AG(S).

The following three theorems immediately follows from Lemma 3.11, [1, The-
orems 3.1 and 3.8].

Theorem 3.12. Assume that all the hypothesis of Lemma 3.11 hold and n > 7.
Then we have the following statements.

1. If Z(S) 6= S, then AG(S) ∼= Kn+1.
2. If Z(S) = S, then AG(S) ∼= Kn∪K1, where c is an isolated vertex in AG(S).

Theorem 3.13. Suppose that all the hypothesis of Lemma 3.11 hold and n = 6.
Then we have the following statements.
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1. If Z(S) 6= S, then AG(S) ∼= K7 \ {{xy}|x2 = y2 = 0,d(x, y) = 3 in Γ(S)}.
2. If Z(S) = S, then AG(S) ∼= K1 ∪K6 \ {{xy}|x2 = y2 = 0,d(x, y) = 3 in

Γ(S)}, where c is an isolated vertex in AG(S).

Theorem 3.14. Suppose that all the hypothesis of Lemma 3.11 hold and n = 5.
Then we have the following statements.

1. If Z(S) 6= S, then AG(S) ∼= K6 \ {{xy}|x2 = y2 = 0, xy = c}.
2. If Z(S) = S, then AG(S) ∼= K1 ∪K5 \ {{xy}|x2 = y2 = 0, xy = c}, where c

is an isolated vertex in AG(S).

If Z(S) 6= S, then, by [1, Theorem 3.1], Γ(S) 6 AG(S), and since gr(Γ(S)) 6 4,
we have gr(AG(S)) 6 4. But if Z(S) = S, then the following example shows that
5 is sharp for the girth of AG(S).

Example 3.15. Suppose that S = {0, c, a1, a2, a3, a4, a5}, with a1a2 = a2a3 =
a3a4 = a4a5 = a5a1 = 0, cS = 0 and a2i = c2 = 0, for each 1 6 i 6 5. Otherwise
aiaj = c. Then Z(S) = S and, by [22, Theorem 2.5], S is a semigroup and Γ(S)
is a refinement of a star graph with center c such that there exists no end vertex
adjacent to c in Γ(S) and Γ(S)∗ ∼= C5.

Now, by Theorem 3.14 (ii), AG(S) ∼= K1∪C5 which means that gr(AG(S)) = 5.

Theorem 3.16. Suppose that all the hypothesis of Lemma 3.11 hold and n = 3.
Then we have the following statements. 1. If Z(S) 6= S, then AG(S) ∼= K4.

2. If Z(S) = S, then AG(S) ∼= 4K1.

Proof. Since there exists no end vertex adjacent to c in Γ(S) and Γ(S)∗ ∼= C3
∼= K3,

we have Γ(S) ∼= K4. Now, by [1, Theorems 3.1 and 3.9], the results hold.

For the case n = 4, we have the following lemma.

Lemma 3.17. Suppose that all the hypothesis of Lemma 3.11 hold and n = 4.
Also assume that V (Γ(S)∗) = {x, y, z, w} with x ∼ y ∼ z ∼ w ∼ x. Then we have
the following statements.

1. annS(x) ∪ annS(y) = annS(y) ∪ annS(z) = annS(z) ∪ annS(w) = annS(w)∪
annS(x) = Z(S).

2. xz ∈ {x, z, c} and wy ∈ {w, y, c}.
3. x � z in AG(S) if and only if xz = x, or xz = z, or xz = c and x2 = z2 =

0. Also w � y in AG(S) if and only if wy = w, or wy = y, or wy = c and
w2 = y2 = 0.

4. x ∼ z in AG(S) if and only if xz = c and x2 6= 0 or z2 6= 0. Also w ∼ y in
AG(S) if and only if wy = c and w2 6= 0 or y2 6= 0.

Proof. (1). Since V (Γ(S)∗) = {x, y, z, w} with x ∼ y ∼ z ∼ w ∼ x, we have
Z(S) = {0, c, x, y, z, w}, and annS(x) ⊇ {0, c, y, w} and annS(y) ⊇ {0, c, x, z}.
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Thus annS(x) ∪ annS(y) = Z(S). Similarly, annS(y) ∪ annS(z) = annS(z) ∪
annS(w) = annS(w) ∪ annS(x) = Z(S).

(2). Since x � z and w � y in Γ(S), we have xz 6= 0 and wy 6= 0. If xz = y,
then wy = w(xz) = (wx)z = 0, which is impossible. So xz 6= y. Similarly xz 6= w.
Thus xz ∈ {x, z, c}. By a similar argument, wy ∈ {w, y, c}.

(3). Suppose that x � z in AG(S), xz 6= x and xz 6= z. Then, by (ii), xz = c.
If x2 6= 0, then x /∈ annS(x) ∪ annS(z), and so annS(x) ∪ annS(z) 6= Z(S) =
annS(c) = annS(xz). This implies that x ∼ z in AG(S), which is impossible.
Therefore x2 = 0, and similarly z2 = 0.

Conversely, if xz = x or xz = z, then x � z in AG(S). Now suppose that xz = c
and x2 = z2 = 0. Then annS(x) = {0, c, x, y, w} and annS(z) = {0, c, y, z, w}, and
so annS(x) ∪ annS(z) = {0, c, x, y, z, w} = Z(S) = annS(c) = annS(xz). Therefore
x � z in AG(S). In the same manner we can see that w � y in AG(S) if and only
if wy = w, or wy = y, or wy = c and w2 = y2 = 0.

(4) By (3), it is clear.

The following two corollaries follow from Lemma 3.17 and [1, Theorems 3.1
and 3.8].

Corollary 3.18. Suppose that all the hypothesis of Lemma 3.17 hold and Z(S) 6=
S. Then one of the following statements hold.

1. AG(S) ∼= K5 if and only if the conditions:
(1) xz = wy = c,
(2) x2 6= 0 or z2 6= 0,
(3) w2 6= 0 or y2 6= 0 hold.

2. AG(S) ∼= K5 \ {{xz}} if and only if the conditions:
(1) wy = c, and w2 6= 0 or y2 6= 0,
(2) xz = x, or xz = z, or xz = c and x2 = z2 = 0 hold.

3. AG(S) ∼= K5 \ {{xz}, {wy}} if and only if the conditions:
(1) wy = w, or wy = y, or wy = c and w2 = y2 = 0,
(2) xz = x, or xz = z, or xz = c and x2 = z2 = 0 hold.

Corollary 3.19. Suppose that all the hypothesis of Lemma 3.17 hold and Z(S) =
S. Then one of the following statements holds.

1. AG(S) ∼= 2K2 ∪K1, where c is an isolated vertex and x ∼ z and y ∼ w, if
and only if the conditions:
(1) xz = wy = c,
(2) x2 6= 0 or z2 6= 0,
(3) w2 6= 0 or y2 6= 0 hold.

2. AG(S) ∼= K2 ∪ 3K1, where c, x, z are isolated vertices and w ∼ y if and only
if the conditions:
(1) wy = c,
(2) w2 6= 0 or y2 6= 0,
(3) xz = x, or xz = z, or xz = c and x2 = z2 = 0 hold.
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3. AG(S) ∼= 5K1 if and only if the conditions:
(1) wy = w, or wy = y, or wy = c and w2 = y2 = 0,
(2) xz = x, or xz = z, or xz = c and x2 = z2 = 0 hold.

The next theorem follows from [1, Theorems 3.1 and 3.8].

Theorem 3.20. Suppose that Γ(S) is a refinement of a star graph with center c
and Γ(S)∗ ∼= Cn, where n > 5. Also assume that

T = {u | u is an end vertex adjacent to c in Γ(S)}
and | T |= m > 1. Then the following statements hold.

1. If x, y ∈ V (Γ(S)∗), then x ∼ y in AG(S).
2. If x ∈ V (Γ(S)∗) and u ∈ T , then x ∼ u in AG(S).
3. If u, v ∈ T , then u ∼ v in AG(S).
4. If Z(S) 6= S, then AG(S) ∼= Kn+m+1.
5. If Z(S) = S, then AG(S) ∼= Kn+m ∪K1, where c is an isolated vertex in

AG(S).

Proposition 3.21. [22, Theorem 2.6] Suppose that Γ(S) is a refinement of a star
graph with center c and Γ(S)∗ ∼= Pn, where n > 5. Then S2 = {0, c} and c2 = 0.

Theorem 3.22. Suppose that Γ(S) is a refinement of a star graph with center c
and Γ(S)∗ ∼= Pn, where n > 6. Also assume that

T = {u | u is an end vertex adjacent to c in Γ(S)}
and | T |= m > 0. Then we have the following statements.

1. If x, y ∈ V (Γ(S)∗), then x ∼ y in AG(S).
2. If x ∈ V (Γ(S)∗) and u ∈ T , then x ∼ u in AG(S).
3. If u, v ∈ T , then u ∼ v in AG(S).
4. If Z(S) 6= S, then AG(S) ∼= Kn+m+2.
5. If Z(S) = S, then AG(S) ∼= Kn+m+1 ∪K1, where c is an isolated vertex in

AG(S).

Proof. The proof follows from Proposition 3.21 and [1, Theorems 3.1 and 3.8].

Lemma 3.23. Suppose that Γ(S) is a refinement of a star graph with center c
and Γ(S)∗ ∼= P5, with a1 ∼ a2 ∼ a3 ∼ a4 ∼ a5 ∼ a6. Also assume that there exists
no end vertex adjacent to c in Γ(S). Then a2 ∼ a5 in AG(S) if and only if a22 6= 0
or a25 6= 0. Otherwise, ai ∼ aj in AG(S), for each 1 6 i < j 6 6.

Proof. By proposition 3.15, for each 1 6 i < j 6 6, we have aiaj = 0 or aiaj = c
and c2 = 0, which follows that annS(aiaj) = Z(S). Now if a22 6= 0 or a25 6= 0, then
annS(a2)∪ annS(a5) 6= Z(S) = annS(a2a5), which implies that a2 ∼ a5 in AG(S).

Conversely, suppose on the contrary that a2 ∼ a5 in AG(S) and a22 = a25 = 0.
Then annS(a2) ∪ annS(a5) = Z(S) = annS(a2a5), which is a contradiction. Thus
a22 6= 0 or a25 6= 0.
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Finally, since Γ(S)∗ ∼= P5, it implies that, for each 1 6 i < j 6 6, other than
the case i = 2 and j = 5, we have annS(ai) ∪ annS(aj) 6= Z(S) = annS(aiaj),
which implies that ai ∼ aj in AG(S).

Theorem 3.24. Suppose that all the hypothesis of Lemma 3.23 hold. Then we
have the following statements.

1. If Z(S) 6= S, then AG(S) ∼= K7 if and only if a22 6= 0 or a25 6= 0. Otherwise
AG(S) ∼= K7 \ {a2a5}.

2. If Z(S) = S, then AG(S) ∼= K1 ∪K6 if and only if a22 6= 0 or a25 6= 0.
Otherwise AG(S) ∼= K1 ∪ K6 \ {a2a5}, where c is an isolated vertex in

AG(S).

Proof. By Lemma 3.23 and [1, Theorems 3.1 and 3.8], it is clear.

Lemma 3.25. Suppose that Γ(S) is a refinement of a star graph with center
c and Γ(S)∗ ∼= P5, with a1 ∼ a2 ∼ a3 ∼ a4 ∼ a5 ∼ a6. Also assume that
T = {u | u is an end vertex adjacent to c in Γ(S)} and | T |= m > 1. Then we
have the following statements.

1. If Z(S) 6= S, then AG(S) ∼= K7+m.
2. If Z(S) = S, then AG(S) ∼= K6+m ∪K1, where c is an isolated vertex in

AG(S).

For the case n 6 4, Proposition 3.21 doesn’t hold. For the case n = 4, we have
the following two lemmas.

Lemma 3.26. Suppose that Γ(S) is a refinement of a star graph with center c
and Γ(S)∗ ∼= P4, with a1 ∼ a2 ∼ a3 ∼ a4 ∼ a5. Then the following statements
hold.

1. Γ(S)∗ 6 AG(S).
2. a1a3 ∈ {a3, c}, a1a4 = c, a1a5 ∈ {a3, c}, a2a4 = c, a2a5 = c and a3a5 ∈
{a3, c}.

Proof. (1). Since a5 /∈ annS(a1) ∪ annS(a2) ∪ annS(a3) and a1 /∈ annS(a3) ∪
annS(a4) ∪ annS(a5), which follows that Γ(S)∗ ∼= P4 6 AG(S).
(2). Since a1 � a3 in Γ(S), we have a1a3 6= 0. If a1a3 = a1, then a1a4 =
(a1a3)a4 = a1(a3a4) = 0, and if a1a3 = a2, then a2a4 = 0, which are impossible.
Also if a1a3 = a4, then a2a4 = 0, and if a1a3 = a5, then a2a5 = 0, which are
again impossible. Thus a1a3 ∈ {a3, c}. The similar arguments applies to the other
cases.

If a1a3 = a3, then a1 � a3 in AG(S), and if a1a3 = c, then a1 ∼ a3 in AG(S),
since a5 /∈ annS(a1) ∪ annS(a3). Also if a21 = 0 and a24 = 0, then annS(a1) ∪
annS(a4) = {a1, a2, a3, a4, a5, c, 0} = annS(c) = annS(a1a4). Thus a1 ∼ a4 in
AG(S) if and only if a21 6= 0 or a24 6= 0. Since a3 /∈ annS(a1) ∪ annS(a5) and
a3 ∈ annS(c) = annS(a1a5), if a1a5 = c, then a1 ∼ a5 in AG(S). If a1a5 = a3,
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then a21a5 = a1a3 6= 0 and a25a1 = a5a3 6= 0, and so a21 6= 0 and a25 6= 0. Now if
a23 6= 0, then annS(a1)∪annS(a5) = {a2, a4, c, 0} = annS(a3) = annS(a1a5). Hence
if a1a5 = a3, then a1 ∼ a5 in AG(S) if and only if a23 = 0. Similarly, a2 ∼ a4
in AG(S) if and only if a22 6= 0 or a24 6= 0, and a2 ∼ a5 in AG(S) if and only
if a22 6= 0 or a25 6= 0. Clearly, if a3a5 = a3, then a3 � a5 in AG(S), and since
a1 /∈ annS(a3) ∪ annS(a5), if a3a5 = c, then a3 ∼ a5 in AG(S).

For example, suppose that S = {0, c, a1, a2, a3, a4, a5}, with a1a2 = a2a3 =
a3a4 = a4a5 = 0, a1a3 = a1a5 = a3a5 = a3, a1a4 = a2a4 = a2a5 = c, a21 = a23 =
a25 = a3 and a22 = c, a24 = 0. Then, by [22, Exampe 2.7], S is a commutative
semigroup and Γ(S) is a refinement of a star graph with center c and Γ(S)∗ ∼= P4,
with a1 ∼ a2 ∼ a3 ∼ a4 ∼ a5. Also there exists no end vertex adjacent to c in
Γ(S). See Figure 1.

Figure 1. Γ(S) AG(S), Z(S) = S AG(S), Z(S) 6= S

Lemma 3.27. Suppose that Γ(S) is a refinement of a star graph with center c
and Γ(S)∗ ∼= P4, with a1 ∼ a2 ∼ a3 ∼ a4 ∼ a5. Also assume that

T = {u | u is an end vertex adjacent to c in Γ(S)}
and | T |= m > 1. Then the following statements hold.

1. For each u, v ∈ T , if uv /∈ T , or uv = t ∈ T \ {u, v} and t2 = 0, then u ∼ v
in AG(S). Otherwise u � v in AG(S).

2. For each ai ∈ V (Γ(S)∗) and u ∈ T , we have aiu /∈ T and ai ∼ u in AG(S)
if and only if aiu 6= ai, for 1 6 i 6 5.

Proof. (1). If uv /∈ T , then uv = c or uv = ai, (1 6 i 6 5). If uv = c, then
c2 = 0 and clearly u ∼ v in AG(S). Assume that uv = ai, (1 6 i 6 5). Then
there exists aj , (1 6 j 6 5 and j 6= i) such that aiaj = 0, uaj 6= 0 and vaj 6= 0.
Thus aj ∈ annS(ai) = annS(uv) and aj /∈ annS(u) ∪ annS(v), and hence u ∼ v in
AG(S).

Now suppose that uv = t ∈ T \ {u, v} and t2 = 0. Then u2v = ut 6= 0, and so
u2 6= 0 also v2 6= 0. Thus annS(u) ∪ annS(v) = {0, c} 6= {0, c, t} = annS(t), which
implies that u ∼ v in AG(S). Otherwise if uv = u, or uv = v, or uv = t and
t2 6= 0, then clearly u � v in AG(S).
(2). If aiu = t ∈ T , then there exists aj ∈ annS(ai), j 6= i, such that ajt =
aj(aiu) = (ajai)u = 0, which is impossible. Thus aiu /∈ T , and so aiu = c or
aiu = aj and 1 6 j 6 5. If aiu = c, then clearly ai ∼ u in AG(S), since there
exists aj , (1 6 j 6 5 and j 6= i), such that aiaj 6= 0, uaj 6= 0 and caj = 0.
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Now if a1u = a4, then a2a4 = a2(a1u) = (a2a1)u = 0, and if a1u = a5, then
a2a5 = 0, which are impossible. Thus a1u ∈ {c, a1, a2, a3}. Similarly we have
a5u ∈ {c, a3, a4, a5}, a2u ∈ {c, a2}, a3u ∈ {c, a3}, and a4u ∈ {c, a4}.

Now by the above discussion the statement (2) holds.

In this case, by Lemma 3.26, Γ(S)∗ 6 AG(S) and we have a1 ∼ a4 ∼ a2 ∼ a5
in AG(S) and a1 ∼ a3 in AG(S) if and only if a1a3 = c and a3 ∼ a5 in AG(S) if
and only if a3a5 = c. Also a1 ∼ a5 in AG(S) if and only if a1a5 = c, or a1a5 = a3
and a23 = 0.

For the case n = 3, we have the following two lemmas.

Lemma 3.28. Suppose that Γ(S) is a refinement of a star graph with center c
and Γ(S)∗ ∼= P3, with a1 ∼ a2 ∼ a3 ∼ a4. Also assume that there exists no end
vertex adjacent to c in Γ(S). Then the following statements hold.

1. a1 ∼ a2 and a3 ∼ a4 in AG(S), but if Z(S) = S, then a2 � a3 in AG(S).
2. a1a3 ∈ {a3, c}, a1a4 ∈ {a2, a3, c}, a2a4 ∈ {a2, c}. Also if a1a4 = a2, then

a22 = 0, and a24 6= 0, and if a1a4 = a3, then a23 = 0 and a21 6= 0.

Proof. (1). Since a4 /∈ annS(a1)∪annS(a2) and a1 /∈ annS(a3)∪annS(a4), we have
a1 ∼ a2 and a3 ∼ a4 in AG(S). Also we see that annS(a2)∪ annS(a3) = Z(S) and
annS(a2a3) = S, and so if Z(S) = S, then a2 � a3 in AG(S).

(2). Since a1 � a3 in Γ(S), we have a1a3 6= 0. If a1a3 = a1, then a1a4 =
(a1a3)a4 = a1(a3a4) = 0, and if a1a3 = a2, then a2a4 = 0, which are impossible.
Also if a1a3 = a4, then a2a4 = 0, which is again impossible. Thus a1a3 ∈ {a3, c}.
Since a1 � a4 in Γ(S), we have a1a4 6= 0. If a1a4 = a1, then a1a3 = (a1a4)a3 =
a1(a4a3) = 0, and If a1a4 = a4, then a2a4 = 0, which are again impossible.
Thus a1a4 ∈ {a2, a3, c}. Similarly, a2a4 ∈ {a2, c}. Also if a1a4 = a2, then a22 =
a2(a1a4) = (a2a1)a4 = 0, and since a1a

2
4 = a2a4 6= 0, we have a24 6= 0. Similarly, if

a1a4 = a3, then a23 = 0 and a21 6= 0.

If a1a3 = a3, then a1 � a3 in AG(S), and if a1a3 = c, then a1 ∼ a3 in AG(S)
if and only if a21 6= 0 or a23 6= 0. If a1a4 = c, then a1 ∼ a4 in AG(S) if and only if
a21 6= 0 or a24 6= 0. Assume that a1a4 = a2. Then a22 = 0 and a24 6= 0. If a21 = 0,
then annS(a1)∪annS(a4) = {0, c, a1, a2, a3} = annS(a2), and so a1 � a4 in AG(S).
Thus if a1a4 = a2, then a1 ∼ a4 in AG(S) if and only if a21 6= 0. Similarly, if
a1a4 = a3, then a1 ∼ a4 in AG(S) if and only if a24 6= 0. Moreover a2 ∼ a4 in
AG(S) if and only if a2a4 = c and a22 6= 0 or a24 6= 0. Clearly, if a2a4 = a2, then
a2 � a4 in AG(S).

Lemma 3.29. Suppose that Γ(S) is a refinement of a star graph with center c
and Γ(S)∗ ∼= P3, with a1 ∼ a2 ∼ a3 ∼ a4. Also assume that

T = {u | u is an end vertex adjacent to c in Γ(S)}
and | T |= m > 1. Then the following statements hold.

1. Γ(S)∗ 6 AG(S).
2. a1a3 ∈ {a3, c}, a1a4 ∈ {a2, a3, c}, a2a4 ∈ {a2, c}. Also if a1a4 = a2, then
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a22 = 0, and also if a1a4 = a2, then a22 = 0 and a24 6= 0, and if a1a4 = a3,
then a23 = 0 and a21 6= 0.

3. For each u, v ∈ T , if uv /∈ T , or uv = t ∈ T \ {u, v} and t2 = 0, then u ∼ v
in AG(S). Otherwise u � v in AG(S).

4. For each ai ∈ V (Γ(S)∗) and u ∈ T , we have aiu /∈ T and ai ∼ u in AG(S)
if and only if aiu 6= ai, for 1 6 i 6 5.

Proof. Since a2a3 = 0, ua2 6= 0 and ua3 6= 0, we have u /∈ anns(a2)∪ anns(a3) and
u ∈ anns(a2a3). Thus a2 ∼ a3 in AG(S). Now, by using argument similar to that
we used in the proof of Lemmas 3.27 and 3.28, the results hold.

In this case, a1 ∼ a3 in AG(S) if and only if a1a3 = c, and if a1a4 = c, then
a1 ∼ a4 in AG(S). Also if a1a4 = a2, then a1 ∼ a4 in AG(S) if and only if a21 6= 0.
Similarly, if a1a4 = a3, then a1 ∼ a4 in AG(S) if and only if a24 6= 0. Moreover
a2 ∼ a4 in AG(S) if and only if a2a4 = c and a22 6= 0 or a24 6= 0

Assume that Γ(S) is a refinement of a star graph with center c and Γ(S)∗ ∼= P2,
with a1 ∼ a2 ∼ a3 such that there exists no end vertex adjacent to c in Γ(S). Then
Γ(S) ∼= K4 \ {a1a2} and we can see [20, Lemmas 3.11, 3.15, 4.12, 4.16]. Also for
the case n = 1, we can see [20, Lemmas 3.17, 3.12, 3.21, 4.9, 4.17] and [1, Section
4].
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