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Hom-Jacobi-Jordan and Hom-antiassociative

algebras with symmetric invariant nondegenerate

bilinear forms

Cyrille Essossolim Haliya and Gbévéwou Damien Hounded;i

Abstract. The aim of this paper is first to introduce and study quadratic Hom-Jacobi-Jordan
algebras, which are Hom-Jacobi-Jordan algebras with symmetric invariant nondegenerate bilin-
ear forms. We provide several constructions leading to examples. We reduce the case where
the twist map is invertible to the study of involutive quadratic Jacobi-Jordan algebras. Also ele-
ments of a representation theory for Hom-Jacobi-Jordan algebras, including adjoint and coadjoint
representations are supplied with application to quadratic Hom-Jacobi-Jordan algebras.

Secondly, introduce a hom-antiassociative algebra built as a direct sum of a given hom- anti-
associative algebra (A, -, @) and its dual (A*, 0, a*), endowed with a non-degenerate symmetric
bilinear form B, where - and o are the products defined on A and A*, respectively, o and o*

stand for the corresponding algebra homomorphisms.

1. Introduction

The Hom-algebra structures arose first in quasi-deformation of Lie algebras of
vector fields. Discrete modifications of vector fields via twisted derivations lead to
Hom-Lie and quasi-Hom-Lie structures in which the Jacobi condition is twisted.
The first examples of g-deformations, in which the derivations are replaced by
o-derivations, concerned the Witt and Virasoro algebras, see for example [2, 9,
10, 11, 12, 14, 16]. A general study and construction of Hom-Lie algebras are
considered in [13, 17, 18] and a more general framework bordering color and super
Lie algebras was introduced in [13, 17, 18, 19]. In the subclass of Hom-Lie algebras
skew-symmetry is untwisted, whereas the Jacobi identity is twisted by a single
linear map and contains three terms as in Lie algebras, reducing to ordinary Lie
algebras when the twisting linear map is the identity map.

In [21] and [22], the theory of Hom-coalgebras and related structures are de-
veloped. Further development could be found in [3, 4, 15].

The quadratic Lie algebras, also called metrizable or orthogonal, are inten-
sively studied, one of the fundamental results of constructing and characterizing
quadratic Lie algebras is due to Medina and Revoy (see [23]) using double exten-
sion, while the concept of T*-extension is due to Bordemann (see [7]). The T*-
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extension concerns nonassociative algebras with nondegenerate associative sym-
metric bilinear form, such algebras are called metrizable algebras. In [7], the
metrizable nilpotent associative algebras and metrizable solvable Lie algebras are
described. The study of graded quadratic Lie algebras could be found in [5].
Jacobi-Jordan algebras (JJ algebras for short) were introduced in [8] in 2014 as
vector spaces A over a field k, equipped with a bilinear map - : A x A — A satis-
fying the Jacobi identity and instead of the skew-symmetry condition valid for Lie
algebras the commutativity = -y = y - x, for all z, y € A is imposed. This class of
algebras appear under different names in the literature reflecting, perhaps, the fact
that it was considered from different viewpoints by different communities, some-
times not aware of each other’s results (see [27] for more details). Worz-Busekros
in [26] relates these type of algebras with Bernstein algebras. One crucial remark
is that JJ algebras are examples of the more popular and well-referenced Jordan
algebras [1, 24] introduced in order to achieve an axiomatization for the algebra of
observables in quantum mechanics. In [8] the authors achieved the classification of
these algebras up to dimension 6 over an algebraically closed field of characteristic
different from 2 and 3. There’s two entertaining facts on Jacobi-Jordan algebras.
The first one is that in [1] prove that a finite dimensional JJ algebras is Frobenius
if and only if there exists an invariant non degenerate bilinear form (Proposition
1.8). The other entertaining fact (noted in [25]) is that Jacobi-Jordan algebras
can be produced from antiassociative algebras the same way as they are produced
from associative ones. Hence there’s a strong link in between antiassociative alge-
bras and Jacobi-Jordan algebras. By antiassociative algebras, we mean algebras
subject to operation (a,b) — ab satisfying (ab)c + a(bc) = 0 for each a,b and c.
This class of algebras first arise in the literature specially in [25] where the au-
thors gave their main properties. The purpose of this paper on the first hand is
to study and construct quadratic Hom-Jacobi-Jordan algebras as S. Benayadi and
A. Makhlouf did for the case of Lie algebra structures in [6]. On the other hands
to establish a double construction of hom-antiassociative algebra equipped with a
non degenerate symmetric invariant bilinear form.

In the first Section, we define the notions of Hom-Jacobi-Jordan algebras, Hom-
antiassociative algebras and their related propreties. Some key constructions of
Hom-Jacobi-Jordan algebras are derived. Section 2 is dedicated to a theory of rep-
resentations of Hom-Jacobi-Jordan algebras including adjoint and coadjoint repre-
sentations. In Section 3, we introduce the notion of quadratic Hom-Jacobi-Jordan
algebra and give some properties. Several procedures of construction leading to
some examples are provided in Section 4. We show in Section 5 that there exists
biunivoque correspondence between some classes of Jacobi-Jordan algebras and
classes of Hom-Jacobi-Jordan algebras. In Section 6, we introduce the concepts
of matched pairs of hom-antiassociative algebras and establish some properties.
In Section 7, we give and discuss of double constructions of multiplicative hom-
antiassociative algebras. In section 8, we end with some concluding remarks.
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2. Preliminaries

In the following we give the definitions of Hom-Jacobi-Jordan and Hom- anti-
associative algebraic structures generalizing the well known Jacobi-Jordan and
antiassociative algebras. Also we define in this case the notion of modules over
Hom-algebras.

Throughout the article we let K be an algebraically closed field of characteristic
0. We mean by a Hom-algebra a triple (4, i, @) consisting of a vector space A, a
bilinear map g and a linear map «. In all the examples involving the unspecified
products are either symmetric or zero.

The notion of Hom-Lie algebra was introduced by Hartwig, Larsson and Sil-
vestrov in [13, 17, 18] motivated initially by examples of deformed Lie algebras
coming from twisted discretizations of vector fields. In this article, we follow
notations from [20]. In this part, we analogously define the Hom-Jacobi-Jordan
algebras which is a kind of deformation of Jacobi-Jordan algebras. But first let’s
recall the notions antiassociative and Jacobi-Jordan algebras.

Definition 2.1. [25] Let "-" be a bilinear product in a vector space A. Suppose
that it satisfies the following law:

(@-y)-2=—x-(y-2) (2.1)
Then, we call the pair (A, -) an antiassociative algebra.

Definition 2.2. [27] An algebra (g,[, |) over K is called Jacobi-Jordan if it is
commutative:

[z, 9] = [y, 2], (2.2)
and satisfies the Jacobi identity:
[z, 9, 2] + [[z, =], 4] + [[y, 2], 2] = 0 (2.3)
for any z,y,z € g.
Theorem 2.3. [27] Given an antiassociative algebra (A, ), the new algebra A
with multiplication give by the "anticommutator”

[a,b}:%(a-b—&-bﬂ), (2.4)

is a Jacobi-Jordan algebra.

Since Jacobi-Jordan algebras are commutative, the left and right actions of an
algebra coincide, so we can speak about just modules.

Definition 2.4. [27] A vector space V is a module over a Jacobi-Jordan algebra
g, if there is a linear map (a representation) p : g — End(V') such that

o[z, y])(v) = —p(x)(p(y)v) — p(y)(p(z)v) (2.5)

for any z,y € gand v € V.
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Definition 2.5. A Hom-Jacobi-Jordan algebra is a triple (g,[, ], ) consisting of
a linear space g on which [, ]: g X g — g is a bilinear map and «: g — g a linear
map satisfying

[z,y] = [y,z], (symmetry) (2.6)
Oy, [2(x), [y, 2]] =0 (Hom-Jacobi condition)

for all z,y, z from g, where O, , denotes summation over the cyclic permutation
on x,y, 2.

We recover classical Jacobi-Jordan algebra when a = idy and the identity (2.7)
is the Jacobi identity in this case.

Proposition 2.6. Every symmetric bilinear map on a 2-dimensional linear space
defines a Hom-Jacobi-Jordan algebra.

Proof. The Hom-Jacobi identity (2.7) is satisfied for any triple (x,z,y). O

Let (g, p, ) and g’ = (¢, ¢/, @’) be two Hom-Jacobi-Jordan algebras. A linear
map f :g— g is a morphism of Hom-Jacobi-Jordan algebras if

Wo(fef)=fou amd  foa=d of.

In particular, Hom-Jacobi-Jordan algebras (g, u, ) and (g, ¢/, ') are isomor-
phic if there exists a bijective linear map f such that

p=fltouo(faf) and a=flod of.

A subspace I of g is said to be an ideal if for € I and y € g we have [z,y] € T
and a(x) € I. A Hom-Jacobi-Jordan algebra in which the anticommutator is not
identically zero and which has no proper ideals is called simple.

Example 2.7. Let {x1, 2,23} be a basis of a 3-dimensional linear space g over
K. The following bracket and linear map o on g = K3 define a Hom-Jacobi-Jordan
algebra over K:

[z1,21] = —bxs, [£1, 23] = b(—x1 + 33), a(ry) = 1,
[x2, 2] = axs, (21, 23] = Sao, a(ze) = 2z,
[x3, 23] = axs, [z, 23] = 2(axy + bxs), ax3) = 2x3

with [z2,21], [23,21] and [x3, z2] defined via symmetry. It’s a Jacobi-Jordan alge-
bra only in case b =0 and a =0 or b =0 and a # 0, since

[1, [X2, x3]] + [T3, [x1, 22]] + [22, [T5, 21]] = 5 %2 + abxs.

For simplicity we will use in the sequel the following terminology and notations.
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Definition 2.8. Let (g,[-,"],®) be a Hom-Jacobi-Jordan algebra. The Hom-
algebra is called

o a multiplicative Hom-Jacobi-Jordan algebra if for all z,y € g we have
a([z,y]) = [a(z), a(y)];

e a regular Hom-Jacobi-Jordan algebra if o is an automorphism;

e an involutive Hom-Jacobi-Jordan algebra if o is an involution, that is a? = id.

The center of the Hom-Jacobi-Jordan algebra is denoted Z(g) and defined by

Z(g)={r€g:[r,y=0Vyecg}

We give in the following the definition of Hom-antiassociative algebra which
provide a different way for constructing Hom-Jacobi-Jordan algebras by extend-
ing the fundamental construction of Jacobi-Jordan algebras from antiassociative
algebras via anticommutator bracket multiplication.

Definition 2.9. A Hom-antiassociative algebra is a triple (4, u, ) consisting of
a linear space A, u: A x A — A is a bilinear map and «: A — A is a linear map,

satisfying
(@), p(y, 2)) = —p(p(z, y), a2)). (2.8)

We can talk about functor from the category of Hom-antiassociative algebras
in the category of Hom-Jacobi-Jordan algebras.

Proposition 2.10. Let (A, p, ) be a Hom-antiassociative algebra defined on the
linear space A by the multiplication p and a homomorphism «. Then the triple
(A, [, ],«), where the bracket is defined for x,y € A by [x,y] = u(x,y) + uly, x),
is a Hom-Jacobi-Jordan algebra.

Proof. The bracket is obviously symmetric and with a direct computation we have

[a(), [y, 2]] + [a(2), [z, y]] + [a(y), [2, 2]]
= p(alx), uly, 2)) + (@), (2, 9)) + p(p(y, 2), () + p(u(z,y), o(z))
+ pla(2), (e, y)) + plal(z), ply; ) + p(u(, y), a(2)) + p(ply, ), o(2))
+ulaly), p(z,2)+plaly), (@, 2))+p(p(z, ), ay))+p(p(, 2), aly)) = 0.0

A structure of module over Hom-associative algebras is defined in [21] and [22].
Here we define the analogous notion over Hom-antiassociative algebras as follows.

Definition 2.11. Let (A, 1, @) be a Hom-antiassociative algebra. A (left) A-
module is a triple (M, f,v) where M is a K-vector space and f,~v are K-linear
maps, f : M — M and v : A® M — M, such that the following diagram
commutes:
AcAeM "1 AgM
la®'y it
AeM 5 M
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Remark 2.12. A Hom-antiassociative algebra (A, p,a) is a left A-module with
M=A, f=«oand v =pu.

The following result shows that Jacobi-Jordan algebras deform into Hom-
Jacobi-Jordan algebras via endomorphisms.

Theorem 2.13. Let (g,[ , ]) be a Jacobi-Jordan algebra and o : g — g be a
Jacobi-Jordan algebra endomorphism. Then go = (8,[, Ja, @) is a Hom-Jacobi-
Jordan algebra, where [, |, = ao[, |. Moreover, suppose that (¢/,[, |') is another
Jacobi-Jordan algebra and o' : g’ — ¢’ is a Jacobi-Jordan algebra endomorphism.
If f: g — ¢ is a Jacobi-Jordan algebra morphism that satisfies foa = o' o f then

f : (97[ ) ]Oua) — (g/a[ ’ MX/,O/)
is a morphism of Hom-Jacobi-Jordan algebras.

Proof. Observe that [a(z), [y, z]a]a = a[a(x), aly, 2]] = ?[z, [y, 2]]. Therefore the
Hom-Jacobi identity for g, = (g, [, ]a, @) follows obviously from the Jacobi identity

of (g,[,]). The symmetry and the second assertion are proved similarly. O
In the sequel we denote by g, the Hom-Jacobi-Jordan algebra (g,a o[, ],a)
corresponding to a given Jacobi-Jordan algebra (g, [, ]) and an endomorphism a.

We say that the Hom-Jacobi-Jordan algebra is obtained by composition.

Proposition 2.14. Let (g,[, |,«) be a reqular Hom-Jacobi-Jordan algebra. Then
(g,[, Ja-r =a o[, ]) is a Jacobi-Jordan algebra.

Proof. 1t follows from
Oa,y,2l [ 2la-1]a-1 =Ozy,207 [z, 07 ([, 2])]) =Oay0%[a(@), [y, 2]] =0. O

Remark 2.15. In particular the proposition is valid when « is an involution.

We may also derive new Hom-Jacobi-Jordan algebras from a given multiplica-
tive Hom-Jacobi-Jordan algebra using the following procedure.

Definition 2.16. Let (g,[, ], a) be a multiplicative Hom-Jacobi-Jordan algebra
and n > 0. The nth derived Hom-algebra of g is defined by

In) = (97 [, W =a"ol, ],a"“). (2.9)
Note that gy = g and g1y = (g,[, |V =ao[, ],a?).
Observe that for n > 1 and z,y, z € g we have
[z, 9]™, a1 ()] = @™ ([a" ([, y]), "} (2)]) = ([, y], (2)))-

Hence, one obtains the following result.
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Theorem 2.17. Let (g,], ],a) be a multiplicative Hom-Jacobi-Jordan algebra.
Then its nth derived Hom-algebra is a Hom-Jacobi-Jordan algebra.

In the following we construct Hom-Jacobi-Jordan algebras involving elements
of the centroid of Jacobi-Jordan algebras. Let (g, [-,]) be a Jacobi-Jordan algebra.
An endomorphism 6 € End(g) is said to be an element of the centroid if
Olz,y] = [0(z),y] for any z,y € g. The centroid is defined by

Cent(g) = {0 € End(g) : 0[z,y] = [0(x),y], Vz,y € g}.
The same definition is assumed for Hom-Jacobi-Jordan algebra.

Proposition 2.18. Let (g, [-,"]) be a Jacobi-Jordan algebra and 6 € Cent(g). Set

forxz,yeg
{Ivy} = [Q(Z),y],
[.Qf,y]g = [(9(.13),9(y)]

Then (g,{-,-},0) and (g,[,]9,6) are Hom-Jacobi-Jordan algebras.

Proof. For 6 € Cent(g) we have [0(z),y] = 0([z,y]) = 0([y,z]) = [0(y),z] =
[,0(y)]. Then

{z,y} = [0(x),y] = [0(y), z] = Oy, x| = {y,z}.

Also we have

{0(2), {y. 2}} = [0(2), {y. 2}] = [0°(2), [0(»). 2]
= 0([0(=),0(y), 21]) = [6(x), 0([0(y), 2])]
= [0(x), [0(y), (2)]].

It follows Oy y.» {0(2),{y,2}} =0uy.. [0(x),[0(y), 0(2)]] = 0 since (g, [, ]) is a Lie
algebra. Therefore the Hom-Jacobi is satisfied. Thus (g, {-, -}, 6) is a Hom-Jacobi-
Jordan algebra.

Similarly we have the symmetry and the Hom-Jacobi identity satisfied for
(g,[]0,0). Indeed

z
z

[, ylo = [0(2),6(y)] = [0(y), 6()] = [y, z]o,

and

[0(2), [y: zlolo = [6°(x),0([y, zJo)] = [0*(x), 0([0(y), 0(2)]] = *([0(x), [6(y), 0(2)]],

which leads to oa;’y,z [9($)7 [y7 2]9]9 = 92(©z,y,z [9(1’), [9(:[/)7 9(2’)]]) =0. O
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3. Representations of Hom-Jacobi-Jordan Algebras

In this section we introduce a representation theory of Hom-Jacobi-Jordan algebras
and discuss the cases of adjoint and coadjoint representations for Hom-Jacobi-
Jordan algebras.

Definition 3.1. Let (g, [, ], @) be a Hom-Jacobi-Jordan algebra. A representation
of g is a triple (V, p, §), where V is a K-vector space, § € End(V) and
p:g— End(V) is a linear map satisfying

p([z,y]) o B = —pla(z)) o p(y) — pla(y)) o p(x) Vr,y€g (3.1)

One recovers the definition of a representation in the case of Jacobi-Jordan
algebras by setting o = I'dy and 8 = Idy.

Definition 3.2. Let (g, [, ], «) be a Hom-Jacobi-Jordan algebra. Two representa-
tions (V, p, 8) and (V', p', 3’) of g are said to be isomorphic if there exists a linear
map ¢ : V — V' such that

Vzeg p(x)op=¢op(xr) and poB=pod¢.

Proposition 3.3. Let (g,[ , ]q,a) be a Hom-Jacobi-Jordan algebra and (V, p, ()
be a representation of g. The direct summand g &V with a bracket defined by

[+ u,y + w] = [, ylg + p(@) (W) + p(y)(u) VoyegVuweV  (32)
and the twisted map v:g®V — g@V defined by
Yz +w)=or)+Bu) VregVueV. (3.3)
18 a Hom-Jacobi-Jordan algebra.

Proof. The symmetry of the bracket is obvious. We show that the Hom-Jacobi
identity is satisfied:
Let z,y,z € g and Yu,v,w € V.

Oayu), (w,0),(zw) [V(@ +u), [y +v,2+ w]]
= Oa,u), (o), (=) (@) + B(u), [y, 2]g + p(y) (w) — p(2)(v)
= Oa,u), (), (=,0) [2(2); [y, 2]a]g + pla(@) (p(y) (w) — p(2)(v) + p([y, 2]a) (B(w))
:©<z,u>,<y,v>,<z,w> pla(z)(p(y)(w)) + pla(z)(p(2)(v)) + plaly)(p(2)(u))

+p(a(2)(p(y)(u))

= pla(z)(p(y)(w)) + pla(z)(p(2)(v)) + pla(y)(p(z)(w)p(a(2)(p(y)(u))
+o(a(y)(p(z)(w) + pla(y)(p(z)(w)) + plalz)(p(z)(v))
+p(a(z)(p(z)(v) + pla(2)(p(y) (w) + pla@)(p(y)(w)) + pla
= O7

<

)
)

where O (g u),(y,v),(z,w) denotes summation over the cyclic permutation on

(x7u)7(y7v)7(27w)' D
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Now, we discuss the adjoint representations of a Hom-Jacobi-Jordan algebra.

Proposition 3.4. Let (g,[, |,«) be a Hom-Jacobi-Jordan algebra and
ad : g — End(g) be an operator defined for x € g by ad(z)(y) = [z,y]. Then
(g,ad, @) is a representation of g.

Proof. Since g is a Hom-Jacobi-Jordan algebra, the Hom-Jacobi condition on
z,Y,2 €gis
[a(x), [y, 2]] + [a(y), [z, 2]] + [o(2), [2, 9] = 0

and may be written as
adlz, y|(a(2)) = —ad(a(z))(ad(y)(2)) — ad(a(y))(ad(z)(2))-
Then the operator ad satisfies
adfr,y) o @ = —ad(a(x)) o ad(y) — ad(a(y)) o (ad(x).
Therefore, it determines a representation of the Hom-Jacobi-Jordan algebra g. O

We call the representation defined in the previous proposition the adjoint rep-
resentation of the Hom-Jacobi-Jordan algebra.

In the following, we explore the dual representations and coadjoint representa-
tions of Hom-Jacobi-Jordan algebras.

Let (g,[, ], @) be a Hom-Jacobi-Jordan algebra and (V, p, ) be a representation
of g. Let V* be the dual vector space of V.

We define a linear map p: g — End(V*) by p(z) = —tp(x).

Let f € V*, z,y € g and u € V. We compute the right hand side of the
identity (3.1)

—(pla(x))op(y)—plaly))op(x))(f)(u) = = (ple(x)) (p(y) () = pla(y)) (p(x)(f))) (w)
=p()()pla(@))(w)+p(z)(f)(plaly))(w)
= )(w) = fp(x)p(a(y))(w))

) = p(@)p(a(y))(w)).

On the other hand, we set that the twisted map for p is 5 =t B3, then the left hand
side of (3.1) writes

([, DB () () = (p([z, y))(f © B)(w) = —f o Blp([z,y])(u)).

Therefore, we have the following proposition:

Proposition 3.5. Let (g, [, ], @) be a Hom-Jacobi-Jordan algebra and (V, p, 3) be
a representation of g. The triple (V*,p, 3), where p : g — End(V*) is given
by p(x) = —'p(x), defines a representation of the Hom-Jacobi-Jordan algebra
(g, [, ], @) if and only if

Bop([z,y]) = —p(z)p(aly)) — ply)pla(z)). (3.4)
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We obtain the following characterization in the case of adjoint representation.

Corollary 3.6. Let (g,[, |,«) be a Hom-Jacobi-Jordan algebra and (g,ad, o) be
the adjoint representation of g, where ad : g — End(g). We set ad : g — End(g*)
and ad(z)(f) = —f oad(x). Then (g*,ad, @) is a representation of g if and only if

a[[z,yl, 2]) = [z, [a(y), 2l] + [y, [a(@), 2] Vo,y,2 € g. (3.5)

4. Quadratic Hom-Jacobi-Jordan Algebras

In this section we extend the notion of quadratic Jacobi-Jordan algebra to Hom-
Jacobi-Jordan algebras and provide some properties. But let’s first define quadratic
Jacobi-Jordan algebra.

Definition 4.1. Let (g,[, |) be a Jacobi-Jordan algebra and B : gx g — K a
symmetric nondegenerate bilinear form satisfying

B([z,y],2) = B(z, [y, 2]) Vz,y,z € g. (4.1)

The identity (4.1) may be written B([x,y],z) = —B(y,[z,z]) and is called an
invariance of B. The triple (g, [, ], B) is called the quadratic Jacobi-Jordan algebra.

More generally, for nonassociative algebras (A, ), a triple (A4, -, B) where B is
a symmetric nondegenerate bilinear form satisfying

B(z-y,z) = B(z,y-2z) Vax,y,z€ A (4.2)

defines a quadratic algebra, called also metrizable algebra. A bilinear form B
satisfying (4.2) is said to be invariant form.

Definition 4.2. Let (g, [, ], @) be a Hom-Jacobi-Jordan algebra and B : gxg — K
be an invariant symmetric nondegenerate bilinear form satisfying

B(a(r),y) = B(z,aly)) Vz,y g (4.3)

The quadruple (g, [, |, @, B) is called a quadratic Hom-Jacobi-Jordan algebra.

If « is an involution (resp. invertible), the quadratic Hom-Jacobi-Jordan alge-
bra is said to be involutive (resp. regular) quadratic Hom-Jacobi-Jordan algebra
and we write for shortness IQH-Jacobi-Jordan algebra (resp. RQH-Jacobi-Jordan
algebra).

We recover the notion of quadratic Jacobi-Jordan algebra when « is the identity
map. One may consider a larger class with a definition without condition (4.3).
We may also introduce in the following a generalized quadratic Hom-Jacobi-Jordan
algebra notion where the invariance is twisted by a linear map.
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Definition 4.3. A Hom-Jacobi-Jordan algebra (g, [, |, @) is called Hom-quadratic
if there exist a pair (B,) where B : g x g — K is a symmetric nondegenerate
bilinear form and ~ : g — g is a linear map satisfying

B([z,y],7(2)) = =B(v(y), [z, 2]) Vz,y,z € g. (4.4)

We call the identity (4.4) the y-invariance of B. We recover the quadratic
Hom-Jacobi-Jordan algebras when v = id.

Proposition 4.4. Let (g,[, ], ) be a Hom-Jacobi-Jordan algebra. If there exists
B :gxg— K a bilinear form such that the quadruple (g, [, ], «, B) is a quadratic
Hom-Jacobi-Jordan algebra then

1. (g*, ;LH,&) is a representation of g.
2. The representations (g,ad, ) and (g*,ad, &) are isomorphic.

Proof. To prove the first assertion, we should show that for any z we have

ao ad([z,y])(2) + p(z)ad(a(y))(2) + ad(y)ad(a(z))(z) = 0, (4.5)
that is
of[z,yl, 2] + [z, [a(y), 2] + [y, [a(=), 2]] = 0.
Letueg
B(a[lz, y], 2] + [, [e(y), 2]] + [y, [e(2), 2]], w)
= B(a[[z,y], 2], u) + B([z, [a(y), 2]], u) + B([y, (), 2]], u)
= B([[z,y], 2], a(u)) — B(le(y), 2], [z, u]) — B([e(x), 2], [y, u])
=(B(z [[z, y], e(w)]) + B(z, [a(y), [z, ul]) + B(z, [(), [y, u]]))
—(B(z, [[z, y], (w)] + [a(y), [z, ul]) + (), [y, u]])
= —(B(z [a(u), [y, 2]]) + [a(y), [z, u]]) + [(@), [u, ¥]]))

This proves (4 5) since B is nondegenerate.
For the second assertion let’s consider the map ¢ : g — g* defined by © — B(z, )
which is bijective since B is nondegenerate. It’s obvious to prove that ¢ is also a
module morphism. 0

Definition 4.5. Let (g, [, ], @, B) be a quadratic Hom-Jacobi-Jordan algebra.
1. An ideal I of g is said to be nondegenerate if B, is nondegenerate.

2. The quadratic Hom-Jacobi-Jordan algebra is said to be irreducible (or B-
irreducible) if g doesn’t contain any nondegenerate ideal I such that I # {0}
and I # g.

3. Let I be an ideal of g. The orthogonal I+ of I with respect to B is defined
by {x € g: B(xz,y) =0Vy € I}.
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Remark 4.6. Let I be a nondegenerate ideal of a quadratic Hom-Jacobi-Jordan
algebra (g, [-,-], @, B). Then (I,[, |jrxr, I, Bjrx) is a quadratic Hom-Jacobi-
Jordan algebra.

Lemma 4.7. Let (g, [, ], @) be a multiplicative Hom-Jacobi-Jordan algebra. Then
the center Z(g) is an ideal of g.

Proof. We have [g, Z(g)] = {0} C Z(g). Let v € Z(g) and y € g. For any z € g
the invariance and the symmetry of B leads to B([a(x), ] z) = B(a(z), [y, 2]) =

Bz, [y, 2])) = B(x, [a(y), a(2)]) = B([z,a(y)], a(2)]) = 0 (since z € Z(g)).
Then for any y € g we have [a(x),y] = 0 since B is nondegenerate. Thus

a(z) € Z(g). O

Lemma 4.8. Let (g,[, ], o, B) be a quadratic Hom-Jacobi-Jordan algebra and I
be an ideal of g. Then the orthogonal I of I with respect to B is an ideal of g.

Proof. Tt is clear that [g, 1] C I+. Let y € I and z € I+, then B(a(y), 2)
B(y,a(z)) = 0 since a(I) C I. We conclude that I+ is an ideal of g.

O

Proposition 4.9. Let (g,[,],a, B) be a quadratic Hom-Jacobi-Jordan algebra.
Then g =g1 P - B gn such that

1. g; is an irreducible ideal of g, for any i € {1,--- ,n},
2. B(gugj) = {0}3 fOT’ any i,j € {17 e 7”} such that i 7£ Js
3. (95 [ Jjgsxae> ¥as» Blgixg:) 18 an irreducible quadratic Hom-Jacobi-Jordan

algebra.

Proof. By induction on the dimension of g. O

Now, let g = (g,[ , ], @, B) be a quadratic multiplicative Hom-Jacobi-Jordan
algebra. We provide in the following some observations.

Proposition 4.10. If the linear map « is an automorphism and the center
Z(g) = {0} then « is an involution i.e. o* = id.

Proof. For x,y,z € g we have

Then B([a(x), y]—[a(z), a?(y)], 2) = 0 which may be written B([a(z), y—a?(y)], 2)
= 0. Hence, for any z,y € g we have [a(z), (id — a?)(y)] = 0. Since « is bijective
and Z(g) = {0} then o? = id. O
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Proposition 4.11. There exist two nondegenerate ideals I, J of g = (g,[, |, «, B)
such that

1. B(I,J) = {0},

3. «ayr is milpotent and «; is invertible.

Proof. The fitting decomposition with respect to the linear map « leads to the
existence of an integer n such that g = I'®J, where I = Ker(a™) and J = Im(a™),
such that o(I) C I, a(J) C I, a|; is nilpotent and «y; is invertible.

Let z € g, y € I. We have a™([z,y]) = [@"(x),a"(y)] = 0 since a"(y) = 0,
and [z,y] € I. Then [g,I] C I. In addition a™(a(y)) = o™ (y) = 0 which implies
that a(y) € Ker(a™). Therefore I is an ideal of g.

Let z,y € J then there exist 2/, ¢’ € g such that z = o™ (2’) and y = a™(y'). We
have [z,y] = [@™(2"),a™(y')] = a™([2',¥']) € J. In addition «(J) C J. Therefore
J is a subalgebra.

Let z € I and y € J . There exists ¢y € g such that y = o"(y’). For any
z € g, we have B(['x’y]?Z) = _B([y’xLZ) = _B(yv [$,Z]) = _B(an(y/)7 [x,z]) =
—B(y,a"([z,2]) = =B/, [a"(z),a"(z)]) = 0. Then [z,y] = 0, since B is a
nondegenerate bilinear form. We conclude that I = I'm(a™) is an ideal of g and
[1,J] = 0.

Now let © € T and y = a"(y') € J, where ¢y € g. We have B(x,y) =
B(z,a™(y")) = B(a™(z),y’) = 0 since a™(x) = 0. Therefore B(I,J) = 0. O

Corollary 4.12. Let (g, [, ], «, B) be a quadratic Hom-Jacobi-Jordan algebra which
is B-irreducible. Then either a is nilpotent or « is an automorphism of g.

5. Constructions and Examples

We show in the following some constructions leading to some examples of quadratic
Hom-Jacobi-Jordan algebras. We use Theorem 2.13 and Theorem 2.17 to provide
some classes of quadratic Hom-Jacobi-Jordan algebras starting from an ordinary
quadratic Jacobi-Jordan algebras, respectively from any multiplicative quadratic
Hom-Jacobi-Jordan algebra. Also we provide constructions using elements in the
centroid of a Jacobi-Jordan algebras and constructions of T*-extension type.

Let (g, [, ], B) be a quadratic Jacobi-Jordan algebra. We denote by Auts(g, B)
the set of symmetric automorphisms of g with respect of B, that is automorphisms

f g — gsuch that B(f(z),y) = B(z, f(y)), Vz,y € g.

Proposition 5.1. Let (g,[, |, B) be a quadratic Jacobi-Jordan algebra and o €
[,y]a = [(x), a(y)] (5.1)
Ba(z,y) = B(a(z),y), (5.2)

18 a quadratic Hom-Jacobi-Jordan algebra.



74 C. E. Haliya and G. D. Houndedji

Proof. The triple (g,[, |a, ) is a Hom-Jacobi-Jordan algebra by Theorem 2.13.
The linear form B,, is nondegenerate since B is nondegenerate and « bijective.
We show that the identity (4.1) is satisfied by go = (g, , Ja,, Ba). Let

x,Y,z € g, then

= B([a(z), a(y)], (2))

(Invariance of B)

oy
Q
fa—
&
=,
g
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SN
—
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=
Q
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Therefore B, is invariant.
We have o € Auts(ga, Ba)- Indeed

a([z,9]a) = al[a(z), a(y)]) = [0*(2), o*(y)] = [a(2), a(y)]a,
and
Ba(a(z),y) = Bla(a(z)),y) = Bla(z), a(y)) = Ba(z, a(y)). 0
The following theorem permits to obtain new quadratic Hom-Jacobi-Jordan
algebras starting from a multiplicative quadratic Hom-Jacobi-Jordan algebra.

Proposition 5.2. Let (g,[, |,a, B) be a multiplicative quadratic Hom-Jacobi-
Jordan algebra. For any n > 0, the quadruple

o = (0.1, 1" =a"o[, J,a™", Ban) , (5.3)
where Bon is defined for x,y € g by Ban(z,y) = B(a™(x),y), determine a multi-
plicative quadratic Hom-Jacobi-Jordan algebra.

Proof. The triple g(,) = (g,[ L] =amol, },a”“) is a Hom-Jacobi-Jordan
algebra by Theorem 2.17.

Since a € Aut(g) by induction we have o™ € Aut(g). The bilinear form B is
nondegenerate because B is nondegenerate and o™ is bijective. It is is symmetric.
Indeed

Ban(z,y) = B(a"(2),y) = B(x,a"(y)) = B(a"(y), 2) = Ban (y, ).
The invariance of By~ is given by
Ban([z,y]", 2) = B(a" 0 " ([, 9]), 2) = B(a" ([z,9]), 2" (2)) = B([" (x), a" (y)], 2" (2))
= B(a"(2),[a"(y), " (2)]) = B(a"(z),a"([y, 2])) = Ban(x, [y, 2]").
We have also Byn (a™(x),y) = Ban (z,a™(y)), indeed
Ban(a"(2),y) = B(a®"(2),y) = B(a"(z),a" (y)) = Ban (z, 0" (y)). O

We provide here a construction a Hom-Jacobi-Jordan algebra £ and also the double
extension of {0} by L see [23].
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Proposition 5.3. Let (g,[ , |g) be a Jacobi-Jordan algebra and g* be the under-
lying dual vector space. The vector space L = g ® g* equipped with the following
product

[,]1:LxL—L, (v+f,y+h)—[r,ylg+ foady+hoadr (5.4)
and a bilinear form
B:LxL—=K, (x4 f,y+h)— f(y)+h(z) (5.5)
is a quadratic Jacobi-Jordan algebra, which we denote by L.
In the sequel we denote £ by T*(g) and B by By.

Theorem 5.4. Let (g,[, ]) be a Jacobi-Jordan algebra and o € Aut(g). Then the
endomorphism 0 := a+ ta of T*(g) is a symmetric automorphism of T*(g) with
respect to By if and only if Im(a? —id) C Z(g), where Z(g) is the center of g.

Hence, if Im(a?—id) C Z(g) then (T3 (9)a, |, ]a,?, Ba) is a RQH-Jacobi-Jordan

algebra where Q = a + o

Proof. Let x,y € g and f,h € g*.
Q[z + f,y+h]) = Q[x,ylg + [ o ady + h o adx)
=a([z,ylg) + feadyoa+hoadx o,
and
Qe+ 1), 2y + b)) = [a(2) + f o aya(y) + hoal
— [a(@), a(y)ly + £ o a0 ada(y) + h o a0 ada(a).
Then Q([z + f,y+ h]) = [Qx + f),Qy + k)] if and only if
Ve,y€g, foadyoa+hoadroa= foaocada(y)+ hoaoada(x).
That is for all z € g
f(ly, a@)]) + h([z, a(2)]) = flala(y), 2]) + h(ala(z), 2]).

Hence,  is an automorphism of T*(g) if and only if f([z, a(y)]) = f(a[a(z),y]),
Vf € g* Va,y € g, which is equivalent to [z, a(y)] = o[a(x),y] Yo,y € g.

As a consequence, 2 € Aut(Tj(g)) if and only if [a?(z)—z, a(y)]g = 0V, y € g,
i.e. Im(a? —id) C Z(g), since a € Aut(g).

In the following we show that 2 is symmetric with respect to By. Indeed, let
x,y € gand f, h € g*

Bo(Qa + f),y + h) = Bo(a(e) + f o ayy + h) = f o aly) + ha(x))
= foaly) + hoa(z) = By(x + f,aly) + hoa)
= Byl + f,Qy + ).

The last assertion is a consequence of the previous calculations and Proposition
3.3. O
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In the following we provide examples which show that the class of Jacobi-Jordan
algebras with automorphisms satisfying the condition Im(a?(x) — x) € Z(g) is
large. We consider first Jacobi-Jordan algebras with involutions.

Corollary 5.5. Let (g,[ , |g) be a Jacobi-Jordan algebra and 6 € Aut(g) such
that 6% = id (0 is an involution), then 0*(x) —x = 0 € Z(g) for all x € g. Thus
(Tg(9)a, [, ]a,Q, Ba) is a RQH-Jacobi-Jordan algebra where Q = a+ ‘a.

Example 5.6. Considering an involution on a Jacobi-Jordan algebra g is equiv-
alent to have a Zs-graduation on g. From the above he Jacobi-Jordan algebras
with involutions are symmetric.

Starting from a Jacobi-Jordan algebra one may construct a symmetric Jacobi-
Jordan algebra in the following way :

Let (g, [-,+]) be a Jacobi-Jordan algebra, we consider the Jacobi-Jordan algebra
(£,[,-]e) where £ =g x g and the bracket defined by for all z,y,2’,y’ € g by
[(‘L y)v (xla yl)]S = ([l‘, .13/], [ya y/])

It is easy to check that the map 6 : £ — £, (x,y) — (y, z) is an automorphism
of £. Then the trivial T*-extension of £ has Q = 6 + !0 as a symmetric automor-
phism with respect to By. Moreover, €2 is an involution. According to Corollary
5.5, we have (T§ (£)a, [, la, 2, (Bo)a) is a quadratic Hom-Jacobi-Jordan algebra.
Example 5.7. Let g = V& Z(g), where V # {0} is a subspace of the vector space

g with [V,V] = [g,9] C Z(g). Let A\ : g — Z(g) be a nontrivial linear map and
« : g — g is an endomorphism of g defined by

alv+z)=v+Av)+2z YoeV Vze Z(g).
We have a([v + z,v" + 2']) = a([v,v']) = [v,?'] since [v,v'] € Z(g).
Also [a(v + 2),a(v" + 2')]) = [v,v']. Therefore, the map « is an injective
Jacobi-Jordan algebra morphism. Thus « is an automorphism of g.
Moreover, if v € g and z € Z(g), we have

(@® —id)(v+2) =?(v+2) — (v+2)=alv+Av)+2) — (v+2)
=v+4+2\(v) + 2z —v—2z=2)\(v).
Then o? —id # 0 and Im(a?—id) C Z(g). It follows that (T§ (g)a, [, o, 2, (Bo)a),
where Q = o +! «, is a RQH-Jacobi-Jordan algebra.

It is clear that T{(g)q is 2-nilpotente. It ’s also a quadratic Jacobi-Jordan
algebra.

Proposition 5.8. Let A be an anticommutative antiassociative algebra and g be
a Jacobi-Jordan algebra. If A has an automorphism 0 such that
Im(0* —id) C Ann(A), where Ann(A) denotes the annihilator of A, then the

endomorphism 6 = idg ® 0 of g ® A is an automorphism of the Jacobi-Jordan
algebra (g® A, [, ), where [z®a,y®b] := [z,y]g®ab for all z,y € g and a,b € A.
In addition, Im(6% — idgea) C Z(g®@ A). Then (T§(g® A)a, [, la,Q, (Bo)a) is
a RQH-Jacobi-Jordan algebra. Moreover, if 0% # id 4 then 62 # idgeA-

Proof. Tt follows from direct calculation and Theorem 5.4. O
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6. Connection Between Algebras

We establish a connection between some classes of Jacobi-Jordan algebras (resp.
quadratic Jacobi-Jordan algebras) and classes of Hom-Jacobi-Jordan algebras (resp.
quadratic Hom-Jacobi-Jordan algebras).

Theorem 6.1. There exists a biunivoque correspondence between the class of
Jacobi-Jordan algebras (quadratic Jacobi-Jordan algebras) admitting involutive au-
tomorphisms (symmetric involutive automorphisms) and the class of Hom-Jacobi-
Jordan algebras (quadratic Hom-Jacobi-Jordan algebras) where twist maps are in-
volutive automorphisms (symmetric involutive automorphisms).

Proof. Let (g,[, ]) be a symmetric Jacobi-Jordan algebra with ¢ an involutive
automorphism of g. Then, according to Theorem 2.13, (gg,[ , ]9,0) is a Hom-
Jacobi-Jordan algebra where 6 is an involutive automorphism of gg. Moreover, if
g has an invariant scalar product B such that 6 is symmetric with respect to B,
we have seen that

Bo:go x99 = K, (z,y)— By(x,y) := B(0(x),y) (6.1)

defines a quadratic structure on gg.

Conversely, let (H,[, ]m,0) be a Hom-Jacobi-Jordan algebra where 6 is an
involutive automorphism of H.

We will untwist the Hom-Jacobi-Jordan algebra structure by considering the
vector space H and the bracket

[,]:HxH—=H (z,y) [z,y]:=1[0(x),0y)]n. (6.2)

Obviously the new bracket is bilinear and symmetric. We show that it satisfies
the Jacobi identity.
Indeed, for x,y,z € H we have

[, [y, 2]] = [0(2), 0([y, 2] = [0(2), 0([0(v),0(2)|m)] 1
= [0(2), [6°(v), 0* () )] = [0(2), [y, 2] )] -
Thus
O,z [ [y, 2]] =Oay,2 [0(2), [y, 2]a)]a = 0.

Thus (H,[, ]) is a Jacobi-Jordan algebra.
Furthermore, for =,y € H

0([z,y]) = 0(10(),0(y)|er) = [6°(2),60° ()] = [2,y]u
and
[0(x),0(y)] = [6°(x),60° ()1 = [z, Y]u-

Then 6([z,y]) = [6(z),0(y)]. Therefore # is an involutive automorphism of the
Jacobi-Jordan algebra (H, [, ]).
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Also for z,y € H

[z, ylo = = [0(), 0(y)] = [0°(2), 0* (W) r = [2,]m

Then (H,[, Jg,0) is the Hom-Jacobi-Jordan algebra (H,[, |u,0).
Now, let (H,[, ], 0, B) be a quadratic Hom-Jacobi-Jordan algebra.
The bilinear form

T:HxH=K, (z,y)—=T(x,y) = B(0(x),y) (6.3)

is symmetric and nondegenerate.
Indeed, for Let z,y, 2 € H, we have

T([z,y],2) = B(0([z,y]), 2) = B(0[0(x),0(y))m, 2) = B([2,y]m, 2)
= B(x, [y, z]u) = B(0(x),0([y, 2]m)) 6 is B-symmetric

2]
= B(6(2),[0(y), 0(2)u)) = B(6(2), [y, 2])) = T(, [y, 2]).
Then T is invariant. In the other hand,
T(0(z),y) = B(z,y) = B(0(x),0(y)) = T(z,0(y)).

That is 0 is symmetric with respect to T'. Therefore (H,[, ],T) is a quadratic
Jacobi-Jordan algebra and (H, [, lg,0,Tp) is an IQH-Jacobi-Jordan algebra. O

Now we discuss the connection between Hom-Jacobi-Jordan algebras where the
twist map is in the centroid and quadratic Jacobi-Jordan algebras. Let (g,[, |, B)
be a quadratic Jacobi-Jordan algebra and 6 € Cent(g) such that 6 is invertible
and symmetric with respect to B. We set

Centg(g) = {0 € Cent(g) :  symmetric with respect to B}.
We consider
By:gxg—=K (2,y) = By(z,y) := B(0(z),y). (6.4)

Then By is symmetric, nondegenerate and invariant. Indeed,

Bo({z,y},2) = Bo([0(),y], 2) = B(O([0(),y]), 2)
= B([0(x),4],0(2)) = B(0(x), [y, 0(2)])
= B(0(x), [0(y), 2]) = B(0(x), {y,2})
= Bo(z,{y, 2}).

Also,
BO(G(x)vy) = B(02($)7y) = B(H(x), e(y)) = Bg(l’, H(y))

Then (g,{, },0,Bp) is a quadratic Hom-Jacobi-Jordan algebra.
Notice that By is an invariant scalar product of the Jacobi-Jordan algebra g.
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We have also that (g,[ , ]g,0, Bg) is a quadratic Hom-Jacobi-Jordan algebra.
Indeed,

Observe that

0([x, ylo) = 0[0(x), 0(y)] = [6°(x),0(y)] = [6(x),ylo-
0({z,y}) = 0[0(z),y] = [0°(z),y] = {0(x), y}.

We may say that 0 € Cent(g,{ , }) and 0 € Cent(g,[, o).

Conversely, let (g,[, ], ) be a Hom-Jacobi-Jordan algebra such that
a € Cent(g,[, ], o).

We define a new bracket as {z,y} := [a(z),y]. Then (g,{ , })) is a Jacobi-
Jordan algebra. Indeed, the bracket is symmetric and

{z.{y, 2}} = la(2), [a(y), 2]},

{y:{z,2}} = (), [a(2), 2] = [0*(y), [z, 2],
{z.{z,y}} = [a(2), [a(2), 4]] = [(2), [z, a(y)]]-

=

Then

Ouyz {2 {y: 21} = (@), [ay), 2] + [0 (), [z, 2]] + [a(2), [z, a(y)] = 0.

We may define another bracket which gives rise to also a Jacobi-Jordan algebra
by [z, Y] := [@(z), a(y)]. Indeed, the bracket is symmetric and
[z, [y, 2ala = [a(z), o
[y7 [Z,Jf}a]a = [Oz(y),a( ’ ) )
[z, [z, 4]a)a = [a(2), ala(z), a(y)])] = [a(2), [o®(2), a@)]] = [0*(2),

Therefore

[0® (@), [a(y), a(2)]] + [0® (1), [o(2), al@)]] + [0*(2), [a(), a(y)]] = 0.

Now if there is an invariant scalar product B on (g,[ , |) and assume that « is
invertible and symmetric with respect to B. Consider the bilinear form B, defined
by Ba(z,y) = B(a(z),y). We have
Ba({z,y}, 2) = Bla({z,y})]), 2) = Bla(la(),y], 2) = Bla(x), [y, a(2)])
= B(a(z), [a(y), 2]) = Ba(x,{y,2}).
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Similarly we have

Ba([#,y]a, 2) = Ba([a(z), a(y)]), z) = B([a(z), a(y)], (2))
= B(a(z), [a(y), a(2)]) = Bla(z), [y, 2]a)
= Ba(mv [y,z}a)

Therefore (g,{ , }, Ba) and (g,[ , ]a, Ba) are quadratic Jacobi-Jordan algebras.
Hence, we have the following theorem:

Theorem 6.2. There exists a biunivoque correspondence between the class of
Jacobi-Jordan algebras (quadratic Jacobi-Jordan algebras) admitting an element
in the centroid (symmetric invertible element in the centroid) and the class of
Hom-Jacobi-Jordan algebras (quadratic Hom-Jacobi-Jordan algebras) where twist
map is in the centroid (symmetric invertible element in the centroid).

7. Bimodules of Hom-antiassociative Algebras

Definition 7.1. A hom-antiassociative algebra is said to be multiplicative if the
triple (A, -, a) consisting of a linear space A, K-bilinear map - A® A — A and a
linear space map « : A — A satisfies

alz-y) = a(z) - aly) (multiplicativity). (7.1)

Example 7.2. Let {e1, ez} be a basis of a 2-dimensional vector space A over K.
The following multiplication - and map on A define a hom-antiassociative algebra:

e1-e1 = e,
aler) = ajer + azes, alez) =0, (7.2)

where a1,as € K.

Definition 7.3. A hom-module is a pair (V, 5) where V is a K-vector space and
B :V — V is a linear map.

Definition 7.4. Let (A, -, a) be a hom-antiassociative algebra and let (V, 8) be a
hom-module. Let I,r : A — gl(V') be two linear maps. The quadruple (I,r,5,V)
is called a bimodule of A if

- y)B(v) = =l(a(@)l(y)v, r(z-y)Bv) = —r(aly))r(@)v,

forall z,y € A,veV.



Hom-Jacobi-Jordan algebras 81

Proposition 7.5. Let (I,7,5,V) a hom-bimodule of a hom-antiassociative algebra
(A,-,«). Then the direct sum A @V of vectors spaces is turned into a hom-
antiassociative algebra by defining multiplication in A SV by

(1 4+ v1) * (2 +v2) = 21 - w2 + (I(x1)va + 7(22)V1),
(@ B)(z1 +v1) = a(z1) + B(v1)
for all x1,x5 € A,v1,v9 € V.

Proof. Let vy,v9,v3 € V and x1, 22, x3 € A. Set
[(z1+v1)*(z2+v2)]* (az3) +B(v3)) = — (a(x1) +B(v1)) * (w2 +v2) * (x5 +v3)].  (7.6)

After computation of (7.6), one easily obtains the conditions of (7.3). Hence the
proposition is established. O

We denote such a hom-antiassociative algebra (A®V, x, a+ ) or A xlf:a_ﬂ V.

Example 7.6. Let (A, -, ) be a multiplicative hom-antiassociative algebra. Let
L.(z) and R.(z) denote the left and right multiplication operators, respectively,
that is, L.(z)(y) = x-y, R.(x)(y) = y -z for any =,y € A. Let L. : A — gl(A) with
x — L.(x) and R. : A — gl(A) with  — R.(x) (for every z € A) be two linear
maps. Then (L.,0,«), (0, R., ) and (L., R., &) are bimodules of (A, -, a).

Proposition 7.7. Let (I,r,3,V) be a bimodule of a multiplicative hom-antiassocia-
tive algebra (A, -, «). Then (loa™ roa™, 3,V) is a bimodule of A for any entiger
n>1.

Proof. We have:
Loa™(x-y)B(v) =l(a"(x) - a"(y))B(v) = —l(a(a”(x)))l(" (y))v
— U™ (@) (y))o = —L o a™(a(x))l o 0™ (y)v.

Similarly, the other relations are established. O

Example 7.8. Let (A, -, @) be a multiplicative hom-antiassociative algebra. Then
(L.oa™ R.oa™ «, A) is a bimodule of A for any entiger n > 1.

Example 7.9. Let (A, -, «) be a multiplicative antiassociative algebra. Also let
B : A — Abe a morphism. Then Ag = (A,-3 = Bo-,ag = foa)is also a
multiplicative hom-antiassociative algebra. Hence (L., o af, R., o ag, ag, A) is a
bimodule of A for any integer n > 0.

Theorem 7.10. Let (A, ,«) and (B,0,8) be two hom-antiassociative algebras.
Suppose that there are linear maps la,r4 : A — gl(B) and lg,rg : B — gl(A)
such that (La,7ra,8,B) is a bimodule of A and (Ig,rg,®, A) is a bimodule of B,
satisfying the following conditions:

la(e(z))(aob) = —la(rs(a)z)B(b) — (La(x)a) o B(b), (7.7)
ra(a(@))(acd) = —ra(ls(b)z)b(a) — f(a) o (ra(z)b), (7.8)
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o~

5(B(a))(z - y) = —ls(ra()a)aly) - (Is(a)z) - aly), (7.9)
5(B(a))(z - y) = —rs(la(y)a)a(z) — a(z) - (rs(a)y), (7.10)
La(ls(a)z)B(b) + (ra(z)a) o f(b) + ra(rs(b)x)B(a) + B(a) o (La(z)b) = 0, (7.11)
)

(
l( (z)a)aly) + (rs(a)z) - aly) + r(ra(y)a)e(z) + a(z) - (s(a)y) =0, (7.12

for any x,y € A,a,b € B. Then, there is a hom-antiassociative algebra structure
on the direct sum A & B of the underlying vector spaces of A and B given by

<

(z+a)*(y+b) = (z - y+is(a)y+rs(b)r)+(a o b+la(x)b+ra(y)a), (7.13)
(a @ B)(z+a) = a(z)+B(a) (7.14)
forall x,y € A,a,b € B.
Proof. Let vy,v2,v3 € V and x1, 22,23 € A. Set

[(z1+v1)*(z2+v2)]*(a(z3)+B(vs)) = —(a(z1)+B(v1)) * [(z2+v2)* (z3+v3)]. (7.15)

After computation of (7.15), we obtain (7.7) — (7.12). Hence the theorem is
proved. O

This hom-antiassociative algebra will be denoted by (A >i_1 B, *,a+ ) or by
A |>4_1 la,ra,B B

lg,rg,a

Definition 7.11. Let (A, -, a) and (B, o, ) be two hom-antiassociative algebras.
Suppose that there are linear maps [ 4,74 : A — gl(B) and Ig,r5 : B — gl(A)
such that (I4,7.4,08) is a bimodule of A and (Iz,rg,«) is a bimodule of B. If
the equations (7.7) - (7.12) are satisfied, then (A, B, 14,74, 53,l5,78,a) is called a
matched pair of hom-antiassociative algebras.

8. Quadratique Hom-antiassociative Algebras

In this section, we consider the multiplicative hom-antiassociative algebra (A, -, )
such that o involutive, i.e., o = id4.

Definition 8.1. Let V7, V5 be two vector spaces. For a linear map ¢ : V3 — Vs,
we denote the dual (linear) map by ¢* : V5* — V{* given by

(v,¢*(u*)) = (p(v),u*) for all v € Vi, u* € Vy.

Lemma 8.2. Let (I,r,8,V) be a bimodule of a multiplicative hom-antiassociative
algebra (A, -, a).
(1) Let I*,r* : A — gl(V*) be the linear maps given by

(I*(z)u*, v) = ({(z)v,u"), (r* (z)u”, v) = (r(z)v,u) (8.1)

forallz € A, u* € V*,v € V. Then, (r*,1*,8*,V*) is a bimodule of (A, -, «).
(i) (r*,0,B*,V*) and (0,1*,5*,V*) are also bimodules of A.
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Proof. (i): Let (I,7,8,V) be a bimodule of a multiplicative hom-antiassociative
algebra (A, -, «). Show that (r*,1*, 8*,V*) is a bimodule of A.
Let z,y € A,u* € V* v € V, we have
(r*(z - y)B*(u"),v) = (B(r(z - y)v),u*) = (r(a(z - y))B(v), u*)
(r(a(z) - a(y)B(v),u*) = (=r(a®(y))r(a(z))v,u”)
= (=(r()r(a(x))) v’ v) = (=r*(a(z))r* (y)u", v)

leading to r*(z - y)B* (v*) = —r*(a(z))r* (y)u*.

(r*(a(@))l" (y)u*, v) = ((y)r(alz))v, u")
= (le®(y)r(a(@))v,u”) = (Lo a)(a(y))(r o a)(w))v, u*)
= (=r(a®(@)l(a(y))v, u*)
= (=r(@)l(a(y))v,u”) = (=" (a(y))r* (z)u, v)

Then *(r* (2))u* = r* (a(2))8* (u").

Similarly, we show that g*(I*(x))u* = I*(a(z))8*(u*). Hence, (r*,1*,5*,V*)
is a bimodule of A.

(#4): Similarly, we can show also that (r*,0,8*,V*) and (0,1*, 8*,V*) are well
bimodules of A. O

Definition 8.3. Let (A4, -, a) be a hom-antiassociative algebra and B : Ax A — K
be a non degenerate symmetric bilinear form on A. B is said a-invariant if

B(a(z) - a(y), a(z)) = Bla(z), ay) - a(2)).

Definition 8.4. We call (A, i, B) a double construction of an involutive quadratic
hom-antiassociative algebra associated to (A, 1) and (A3, af) if

(1) A= A; & Af as the direct sum of vector spaces;

(2) (A1, 1) and (A7, o) are hom-antiassociative subalgebras of (A, o) with
a=o1 ®aj;
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(3) B is the natural non-degenerate (a; @af)-invariant symmetric bilinear form
on Ay & A} given by

Bz +a",y+b") = (z,b%) + (a",y), (8.2)
B((a+a*)(x+a*),y+b") = Bz +a*, (a+ a*)(y + %)) (8.3)

for all z,y € Ay,a*,b* € Af where (, ) is the natural pair between the vector
space A; and its dual space A;j.

Let (A, -, @) be an involutive hom-antiassociative algebra. Suppose that there
is an involutive hom-antiassociative algebra structure ” o” on its dual space A*.
We construct an involutive hom-antiassociative algebra structure on the direct
sum A @ A* of the underlying vector spaces of A and A* such that (A, -, «) and
(A*, 0, a*) are hom-subalgebras and equipped with the non-degenerate (v ® o )-
invariant symmetric bilinear form on A @& A* given by the equation (8.2). That
is, (A ® A*, a ® a*, B) is an involutive quadratic hom- antiassociative algebra.
Such a construction is called a double construction of an involutive quadratic
hom-antiassociative algebra associated to (A, -, a) and (A*, o, a*).

Theorem 8.5. Let (A,-,a) be an involutive hom-antiassociative algebra. Sup-
pose that there is an involutive hom-antiassociative algebra structure ” o” on its
dual space A*. Then, there is a double construction of an involutive quadratic
hom-antiassociative algebra associated to (A,-,«) and (A*, o,a*) if and only if
(A, A" R*, L* o* R, L% ) is a matched pair of involutive hom-antiassociative
algebras.

Proof. Let us consider the four maps

Ly A" — gl(A), (Li(x")u,v*y = (Lo (x™)v™, u) = (x* o v™,u),

for all z,v,u € A, x*,v*,u* € A*.

If (A, A*, R*,L*, o*, R}, L%, o) is a matched pair of multiplicative hom-anti-
associative algebras, then (A<i_; A*, %, a + a*) is a multiplicative hom-antiasso-
ciative algebra with its product % given by the equation (7.13) and the bilinear
form B(-,-) defined by the equation (8.2) is (a @ «*)-invariant, that is

Bl(a(z) + a*(a”)) * (a(y) + a (b")), (a(z) + a™(c"))]

= Bla(z) + a*(a”), (a(y) + a* (b")) = (a(z) + o (c"))]
for all x,y € A*,a*,b* € A* and

(z+a")x(y+0b°) = (z-y+isa)y +rpb)z) + (a0 b+ la(z)b+ra(y)a)
with {4 = R*,rqa = L*,lg = R, rg = L.
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Indeed,

Bl(a(z) + a*(a%)) * (a(y) + (b)), (a(2) + a*(c"))]

= Bl(a(z) - aly) + la- (a*(a"))a(y) + 74+ (a" (07))a(2)) + (" (a”) 0 ™ (b7)
+ La(a(@))a” (b7) + ralaly))a” (@), a(z) + a*(c7)]

é*(b*)oa*(C*),a(ﬂcD

~a(y), a*(c")) + {a*(c) o a¥(a¥), a(y)) + (a
oa”(b), a®(b%)) + (aly) - a(z), a”(a"))

a®(b%), a(2)) + (a(2) - (),

Bla(z) + a”(a”), (a(y) + a*(0%)) * (a(z) + " (c"))]
= Bla(z) + a*(a”), (a(y) - a(2) + La- (a" (b%))a(z) + ra-(a”(c"))a(y))
+ (@ (b7) 0 @™ (c") +Lalaly))a™(c") + rala(z))a”(b7))]
= (a(z),a”(b") 0 a™(c")) + (a7 (¢7), a(2) - aly)) + (@ (b7), (2) - ()
+(ay) - a(z),a(@")) + (a*(a”) 0 ™ (b7), a(z)) + (a(c) 0 a”(a"), a(y)).

Thus, B is well (o @ a*)-invariant. Conversely, let
xxa* =lg(x)a" +rg-(a)z,a” xx =1y (a™)x +r4(x)a”,

for x € A,a* € A*. Then, (A, A*, R*, L*, o*, R%, L, o) is a matched pair of mul-
tiplicative hom-antiassociative algebras, since the double construction of the invo-
lutive quadratic hom-antiassociative algebra associated to (A, -, @) and (A*, 0, a*)
produces the equations (7.7) — (7.12). O

Theorem 8.6. Let (A, -, a) be an involutive hom-associative algebra. Suppose
that there is an involutive hom-associative algebra structure” o” on its dual space
(A*,a*). Then, (A, A*, R*, L*, o*, R:, L%, «) is a matched pair of involutive hom-
associative algebras if and only if for any x € A and a*,b* € A*,
R (a(z))(a” 0 %) = =R (Lg(a")x)a™(b") — (RY(z)a’) o a™(b"),  (8.4)
R (R} (a®)x)a* (b 4+ LY (x)a*oa(b*)=—L*(L:(b")z)a™ (a*) —a*(a®) o (RX(x)b"). (8.5)
Proof. Obviously, (8.4) gives (7.7) and (8.5) reduces to (7.11) when l4 = R,
ra=0L* lg =14« =R:, rg =714+ = L}. Now, show that
(7.7)  (7.8) & (7.9) & (7.10) and (7.11) < (7.12).
Suppose (8.4) and (8.5) are satisfied and show that one has:
L (a(z))(a” o b") = =LI (R (b%)z)a” (a”) — o (a”) o (L7 (z)b"),
Ri(a*(a"))(z - y) = —R(L7(
Li(a”(a®))(z - y) = Lo (R (y (
Ro(RY(z)a™)aly) + (Ls(a")z) - aly) + Lo(L.(y)a®

a)a(x) + alx) -

)
Ja(zr) +o(z) - (R5(a)y) = 0.
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We have:
(R (x)a”,y) = (LI (y)a”,z) = (y - x,a"),
(R3(b")x,a") = (Lg(a")z,b%) = (a” o b, x),
o (R*(z)a”) = R (a(z))a”(a%), o (LT (x)a”) = LT (a(x))a"(a”),  (8.6)
a(Rg(a™)z) = Ry(a”(a%))a(z), a(Li(a®)z) = Li(a”(a”))a(), (8.7)

leading to (7.7) < (7.8).

(L*(alz))(a® 0 b%),y) = (=a” 0 b", alx) - y) = (=R (b%) () - ), 0")
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(R (Lo(a®)x)a™ (b%),y) = (y - Lo(a®)z, ™ (b7)) = (aly) - a(Ls(a®)z), b")
= {a(y) - Ls(a™(a"))e(x), b") = (a(y) - L5(c)z,0%)

providing that (7.7) < (7.10).

(L

(@ (a”) o (BRI (2)b"),y) = (R (R5(x

H(Ls(0%)z)at(a”), y) =

(L3 (0%)z) -y, a”(a")) = (a*, (L5 (0%)) -
(a”, L(a®(b%))a(z) - a(y)) = (a”, Le(d*)z -

( by, a*(a%)) = {a*(a®) o (R¥(2)b"),y
= ([R5 (R5(2)b%)yl, a*) = (RS[RS(a(x))a”
= (B3 (R (2)d")a(y), a”),
=
=
(
(
=

~
Q
—~
<
~—~
~

O-)(-

Ry (@ (b))y, L (x)a”) = (x - (R(d")y), a”)
a(z) - (Rg(d%)y), a™),

a®)z,a”(b%)) = (" (b"), L.(y)(Rs(a")x))
y)(d"), Bs(a”)x) = (L7 (y)d* oa®, x)
LZ(L*( Jd*)x, a”) = (Ls(L7 (y)d")a(z), a")

implying that (7.11) <= (7.12). O
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