SS-supplemented property in the lattices

Shahabaddin Ebrahimi Atani, Mehdi Khoramdel, Saboura Dolati Pish Hesari and Mahsa Nikmard Rostam Alipour

Abstract. Let L be a lattice with the greatest element 1. We introduce and investigate the latticial counterpart of the filter-theoretical concepts of ss-supplemented. The basic properties and possible structures of such filters are studied.

1. Introduction

Since Kasch and Mares [13] have defined the notions of perfect and semiperfect for modules, the notion of a supplemented module has been used extensively by many authors. For submodules U and V of a module M, V is said to be a supplement of U in M or U is said to have a supplement V in M if U + V = Mand $U \cap V \ll V$. The module M is called supplemented if every submodule of M has a supplement in M. In a series of papers, Zöschinger has obtained detailed information about supplemented and related modules [17]. Supplemented modules are also discussed in [14]. Recently, several authors have studied different generalizations of supplemented modules. Rad-supplemented modules have been studied in [15] and [3]. See [15]; these modules are called generalized supplemented modules. For submodules U and V of a module M, V is said to be a rad-supplement of U in M or U is said to have a rad-supplement V in M if U + V = M and $U \cap V \subseteq \operatorname{rad}(V)$. M is called a rad-supplemented module if every submodule of M has a rad-supplement in M. We shall say that a module M is w-supplemented if every semisimple submodule of M has a supplement in M [1]. We say that V is an ss-supplement U in M if M = U + V and $U \cap V \ll V$ and $V \cap U$ is semisimple. We call a module M is ss-supplemented if every submodule of M has an ss-supplement in M [12]. Recently, the study of the supplemented property in the rings, modules, and lattices has become quite popular (see for example [2, 3, 4, 10, 11, 12, 13]. Supplemented property (resp. w-supplemented property) in the lattices have already been investigated in [7] (resp. [6]). This paper is based on another variation of supplemented filters. In fact, in the present paper, we are interested in investigating strongly local filters and (amply) ss-supplemented filters in a distributive lattice with 1 to use other notions of ss-supplemented, and associate which exist in the literature as laid forth in [12] (see Sections 2, 3, 4).

²⁰¹⁰ Mathematics Subject Classification: 06B05.

 $^{{\}sf Keywords: \ Lattice; \ Filter; \ Small; \ semisimple; \ SS-supplemented.}$

Let us briefly review some definitions and tools that will be used later [2]. By a lattice we mean a poset (L, \leq) in which every couple elements x, y has a g.l.b. (called the meet of x and y, and written $x \wedge y$) and a l.u.b. (called the join of x and y, and written $x \vee y$). A lattice L is complete when each of its subsets Xhas a l.u.b. and a g.l.b. in L. Setting X = L, we see that any nonvoid complete lattice contains a least element 0 and greatest element 1 (in this case, we say that L is a lattice with 0 and 1). A lattice L is called a distributive lattice if $(a \vee b) \wedge c = (a \wedge c) \vee (b \wedge c)$ for all a, b, c in L (equivalently, L is distributive if $(a \wedge b) \vee c = (a \vee c) \wedge (b \vee c)$ for all a, b, c in L). A non-empty subset F of a lattice L is called a filter, if for $a \in F$, $b \in L$, $a \leq b$ implies $b \in F$, and $x \wedge y \in F$ for all $x, y \in F$ (so if L is a lattice with 1, then $1 \in F$ and $\{1\}$ is a filter of L). A proper filter P of L is said to be maximal if E is a filter in L with $P \subsetneq E$, then E = L. If F is a filter of a lattice L, then the radical of F, denoted by $\operatorname{rad}(F)$, is the intersection of all maximal subfilters of F.

Let L be a lattice. If A is a subset of L, then the filter generated by A, denoted by T(A), is the intersection of all filters that is containing A. A filter F is called finitely generated if there is a finite subset A of F such that F = T(A). A subfilter G of a filter F of L is called *small* in F, written $G \ll F$, if, for every subfilter H of F, the equality $T(G \cup H) = F$ implies H = F [7]. A subfilter G of F is called essential in F, written $G \subseteq F$, if $G \cap H \neq \{1\}$ for any subfilter $H \neq \{1\}$ of F. Let G be a subfilter of a filter F of L. A subfilter H of F is called a supplement of G in F if $F = T(G \cup H)$ and H is minimal with respect to this property, or equivalently, $F = T(G \cup H)$ and $G \cap H \ll H$. H is said to be a supplement subfilter of F if H is a supplement of some subfilter of F. F is called a *supplemented* filter if every subfilter of F has a supplemented in F. A subfilter G of a filter F of L has ample supplements in F if, for every subfilter H of F with $F = T(H \cup G)$, there is a supplement H' of G with $H' \subseteq H$. If every subfilter of a filter F has ample supplements in F, then we call F amply supplemented. Let G, H be subfilters of a filter F of L. If $F = T(G \cup H)$ and $G \cap H \subseteq \operatorname{rad}(H)$, then H is called a rad-supplement of G in F. If every subfilter of F has a rad-supplement in F, then F is called a rad-supplemented filter.

A lattice L is called *semisimple*, if for each proper filter F of L, there exists a filter G of L such that $L = T(F \cup G)$ and $F \cap G = \{1\}$). In this case, we say that F is a *direct summand* of L, and we write $L = F \oplus G$. A filter F of L is called a *semisimple* filter, if every subfilter of F is a direct summand. A *simple* lattice (resp. filter), is a lattice (resp. filter) that has no filters besides the $\{1\}$ and itself. For a filter F, $\operatorname{Soc}(F) = T(\bigcup_{i \in \Lambda} F_i)$, where $\{F_i\}_{i \in \Lambda}$ is the set of all simple filters of L contained in F. In [17], Zhou and Zhang generalized the concept of socle a module M to that of $\operatorname{Soc}_g(M)$ by considering of all simple submodules of M that are small in M in place of the class of all simple submodules of M, that is, $\operatorname{Soc}_g(M) = \sum \{N \ll M : N \text{ is simple}\}$. For a filter F, we define $\operatorname{Soc}_g(F) = T(\bigcup_{i \in \Lambda} F_i)$, where $\{F_i\}_{i \in \Lambda}$ is the set of all simple filters of L contained in F and $F_i \ll F$ for each $i \in \Lambda$. Clearly, $\operatorname{Soc}_g(F) \subseteq \operatorname{Soc}(F)$ and $\operatorname{Soc}_g(F) \subseteq \operatorname{rad}(F)$. Let F be a filter of a lattice L. F is called hollow if $F \neq \{1\}$ and every proper subfilter G of F is small in F. F is called local if it has exactly one maximal subfilter that contains all proper subfilters.

Proposition 1.1. (cf. [9], [8]) A non-empty subset F of a lattice L is a filter if and only if $x \lor z \in F$ and $x \land y \in F$ for all $x, y \in F$, $z \in L$. Moreover, since $x = x \lor (x \land y), y = y \lor (x \land y)$ and F is a filter, $x \land y \in F$ gives $x, y \in F$ for all $x, y \in L$.

Proposition 1.2. (cf. [6]) Let F be a filter of a distributive lattice L with 1.

- (1) If $A \ll F$ and $C \subseteq A$, then $C \ll F$.
- (2) If A, B are subfilters of F with A ≪ B, then A is a small subfilter in subfilters of F that contains the subfilter of B. In particular, A ≪ F.
 (3) rad(F) = T(∪_{G≪F}G).
- (4) Every finitely generated subfilter of rad(F) is small in rad(F).
- (5) $x \in \operatorname{rad}(F)$ if and only if $T(\{x\}) \ll F$.
- (6) If F_1, F_2, \ldots, F_n are small subfilters of F, then $T(F_1 \cup F_2 \cup \cdots \cup F_n)$ is also small in F.

Lemma 1.3. (cf. [6])

- (1) $T(A) = \{x \in L : a_1 \land a_2 \land \dots \land a_n \leq x \text{ for some } a_i \in A \ (1 \leq i \leq n)\}$ an arbitrary non-empty subset A of L. Moreover, if F is a filter and A is a subset of L with $A \subseteq F$, then $T(A) \subseteq F$, T(F) = F and T(T(A)) = T(A).
- (2) $T(T(A \cup B) \cup C) \subseteq T(A \cup T(B \cup C))$ for subfilters A, B, C of a filter F of L. In particular, $F = T(T(C \cup B) \cup A) = T(T(A \cup C) \cup B)$ for all $F = T(T(A \cup B) \cup C)$.
- (3) (Modular law) $F_1 \cap T(F_2 \cup F_3) = T(F_2 \cup (F_1 \cap F_3))$ for filters F_1, F_2, F_3 of *L* such that $F_2 \subseteq F_1$.

Proposition 1.4. (cf. [11])

- (a) Let G be a semisimple subfilter of a filter F of L such that $G \subseteq rad(F)$. Then $G \ll F$.
- (b) Let H and G be subfilters of a filter F of L. Then the following hold: (1) If H is semisimple, then $\frac{T(H\cup G)}{G}$ is a semisimple subfilter in $\frac{F}{G}$.
 - (2) If $\operatorname{Soc}(F) = \bigcap_{K \lhd F} K$.
 - (3) $\operatorname{Soc}(G) = G \cap \operatorname{Soc}(F).$
- (c) Let U, V be subfilters of a filter F of L such that V is a direct summand of F with $U \subseteq V$. Then $U \ll F$ if and only if $U \ll V$.

2. Strongly Local Filters

Throughout this paper, we shall assume unless otherwise stated, that L is a distributive lattice with 1. In this section we collect some properties concerning strongly local filters of L. Our starting point is the following lemma.

Lemma 2.5. Let F be a filter of L. Then the following hold:

- (1) If E is a simple subfilter of F, then $E = T(\{a\})$ for some $1 \neq a \in E$.
- (2) If $f_1, f_2, \ldots, f_n \in F$, then $T(T(\{f_1\}) \cup \ldots \cup T(\{f_n\})) = T(\{f_1, \ldots, f_n\})$.
- (3) If F is semisimple, then F is a direct sum of a finite family of simple subfilters if and only if F is finitely generated.

Proof. (1). Since E is simple, there is an element $1 \neq a \in E$ such that $T(\{a\}) \neq \{1\}$ is a subfilter of E; hence $E = T(\{a\})$.

(2). Since the inclusion $A = T(\{f_1, \ldots, f_n\}) \subseteq T(T(\{f_1\}) \cup \ldots \cup T(\{f_n\})) = B$ is clear we will prove the reverse inclusion. Let $x \in B$. Then $a_1 \land a_2 \land \cdots \land a_n \leqslant x$ for some $a_i \in T(\{f_i\})$ $(1 \leqslant i \leqslant n)$. By assumption, there exist $s_1, s_2, \ldots, s_n \in L$ such that $a_i = f_i \lor s_i$ $(1 \leqslant i \leqslant n)$. Then $(f_1 \lor s_1) \land \ldots \land (f_n \lor s_n) \leqslant x$. Since for each $i, f_i \leqslant f_i \lor s_i$ and $f_i \in A$, we get $f_i \lor s_i \in A$ $(1 \leqslant i \leqslant n)$; so $x \in A$, and so we have equality.

(3). Let $F = F_1 \oplus \cdots \oplus F_n$, where for each i $(1 \leq i \leq n)$, F_i is a simple subfilter of F, so by (1), $F_i = T(\{f_i\})$ for some $1 \neq f_i \in F_i$. Then by (2), $F = T(T(\{f_1\}) \cup \cdots \cup T(\{f_n\})) = T(\{f_1, \ldots, f_n\})$. Thus F is finitely generated. Conversely, suppose that F = T(A), where $A = \{e_1, \ldots, e_m\}$. As F is semisimple, we can write $F = T(\cup_{i \in I} F_i)$, where for each $i \in I$, F_i is simple. We can now pick out a finite collection i_1, i_2, \ldots, i_r of elements of I such that $e_i \in T(F_{i_1} \cup \cdots \cup F_{i_r})$ for $1 \leq i \leq m$. But then $F = T(F_{i_1} \cup \cdots \cup F_{i_r})$, that is, $F = F_{i_1} \oplus \cdots \oplus F_{i_r}$. \Box

Proposition 2.6. If F is a filter of L, then $Soc_q(F) = rad(F) \cap Soc(F)$.

Proof. It suffices to show that $\operatorname{rad}(F) \cap \operatorname{Soc}(F) \subseteq \operatorname{Soc}_g(F)$. Let $a \in \operatorname{rad}(F) \cap \operatorname{Soc}(F)$. Then $T(\{a\})$ is semisimple and so there exist simple subfilters F_i of F such that $T(\{a\}) = F_1 \oplus \cdots \oplus F_n$ by Lemma 2.5 (3). By Proposition 1.2 (5), $T(\{a\}) \ll \operatorname{rad}(F)$; hence it is small in F by Proposition 1.2 (2). Since for each i, $F_i \subseteq T(\{a\})$, we get $F_i \ll F$ by Proposition 1.2 (1). Thus $a \in T(\{a\}) \subseteq \operatorname{Soc}_g(F)$, and so we have equality.

A filter F is called *indecomposable* if $F \neq \{1\}$ and $F = T(G \cup H)$ with $G \cap H = \{1\}$, then either $G = \{1\}$ or $H = \{1\}$.

Lemma 2.7. Let F be an indecomposable filter of L. Then F is either simple or $Soc(F) \subseteq rad(F)$.

Proof. If *F* is simple, we are done. Thus we may assume that *F* is not simple. It suffices to show that $\operatorname{Soc}(F) \ll F$ by Proposition 1.2 (3). Let $F = T(K \cup \operatorname{Soc}(F))$ for some subfilter *K* of *F*. By assumption, there is a semisimple subfilter *H* of $\operatorname{Soc}(F)$ such that $\operatorname{Soc}(F) = (\operatorname{Soc}(F) \cap K) \oplus H$, and so by Lemma 1.3 (2), $F = T(K \cup T(H \cup (\operatorname{Soc}(F) \cap K))) = T(K \cup H)$ and $K \cap H = H \cap (\operatorname{Soc}(F) \cap K) = \{1\}$. Since *F* is indecomposable and not simple, we get $H = \{1\}$; hence F = K. Thus $\operatorname{Soc}(F) \ll F$, as required. □

By [6, Remark 2.19 (2)], every local filter is hollow and by [6, Remark 2.19 (1)], every hollow filter is indecomposable. Using Proposition 2.6 and Lemma 2.7 we have the following Corollary:

Corollary 2.8. Let F be a local filter of L such that it is not simple. Then $Soc_q(F) = Soc(F)$.

Definition 2.9. A filter F of L is called strongly local if it is local and rad(F) is semisimple. A filter F of L is called radical if F has no maximal subfilters, that is, F = rad(F).

Assume that F is a filter of L and let P(F) be the filter generated by $\bigcup_{G \subseteq F} G$, where for each subfilter G of F, $G = \operatorname{rad}(G)$, that is, $P(F) = T(\bigcup_{G \subseteq F} G)$, where $G = \operatorname{rad}(G)$. It is easy to see that $P(F) \subseteq \operatorname{rad}(F)$.

Lemma 2.10. If F is a filter of L, then P(F) is the largest radical subfilter of F.

Proof. It suffices to show that $P(F) \subseteq \operatorname{rad}(P(F))$. If $x \in P(F)$, then there exist radical subfilters G_1, \ldots, G_n of F and $g_1 \in G_1, \ldots, g_n \in G_n$ such that $g_1 \wedge \cdots \wedge g_n \leqslant x$. Since $g_1 \in G_1 = \operatorname{rad}(G_1), \ldots, g_n \in G_n = \operatorname{rad}(G_n)$, by Proposition 1.2 (5) we have $T(\{g_i\}) \ll G_i$, for each $1 \leqslant i \leqslant n$. By Proposition 1.2 (2), $T(\{g_i\}) \ll P(F)$, for each $1 \leqslant i \leqslant n$. Therefore $g_i \in \operatorname{rad}(P(F))$, for each $1 \leqslant i \leqslant n$. This implies that $x \in \operatorname{rad}(P(F))$.

Proposition 2.11. If a filter F of L is strongly local, then F is reduced (that is, $P(F) = \{1\}$).

Proof. Since $\operatorname{rad}(F)$ is semisimple and $P(F) \subseteq \operatorname{rad}(F) \subseteq \operatorname{Soc}(F)$, we get P(F) is semisimple and so $P(F) = \operatorname{rad}(P(F)) = \{1\}$ by [6, Proposition 2.16 (2)] and Lemma 2.10, as required.

Example 2.12. The collection of ideals of Z, the ring of integers, form a lattice under set inclusion which we shall denote by L(Z) with respect to the following definitions: $mZ \lor nZ = (m, n)Z$ and $mZ \land nZ = [m, n]Z$ for all ideals mZ and nZ of Z, where (m, n) and [m, n] are greatest common divisor and least common multiple of m, n, respectively. Note that L(Z) is a distributive complete lattice with least element the zero ideal and the greatest element Z. Then by [7, Proposition 2.1 (iii) and Theorem 3.1 (ii)], every simple filter of L(Z) is of the form $F = \{Z, pZ\}$ for some prime number p. Let **P** be the set of all prime numbers. For each $p \in \mathbf{P}$, set $F_p = \{Z, pZ\}$. Then $\{F_p\}_{p \in \mathbf{P}}$ is the set of all simple filters of L(Z). Moreover, by [7, Lemma 3.1], $\mathbf{m} = L(Z) \setminus \{0\}$ is the only maximal filter of L(Z); so L(Z)is a local filter of L(Z) (so it is hollow). If G is a proper subfilter of L(Z) with $G \neq \operatorname{rad}(G)$, then G has a maximal subfilter, say H. There exists $x \in G$ such that $x \notin H$; hence $T(H \cup T(\{x\})) = G$. By [6, Remark 2.19 (4)], G has a supplement K in L(Z); so by Lemma 1.3,

$$L(Z) = T(T(H \cup T(\{x\})) \cup K) = T(H \cup T(K \cup T(\{x\})));$$

hence L(Z) = H which is impossible since $T(K \cup T(\{x\})) \ll L(Z)$. Thus $P(L(Z)) = \mathbf{m} \neq \{1\}$. If $L(Z) = T(\cup_{p \in \mathbf{P}} F_p)$, then $\{0\} = p_{i_1}Z \wedge \cdots \wedge p_{i_k}Z = p_{i_1} \cdots p_{i_k}Z$, a contradiction. So L(Z) is not semisimple. Similarly, $\operatorname{rad}(L(Z)) = \mathbf{m}$ is not semisimple. Therefore the condition "strongly" in the Proposition 2.11 is necessary.

3. SS-supplemented Filters

In this section, the basic properties and possible structures of *ss*-supplemented filters are investigated. Our starting point is the following lemma.

Lemma 3.1. Let G and H be subfilters of a filter F of L. If G is a maximal subfilter of F, then H is a supplement of G in F if and only if $F = T(G \cup H)$ and H is local.

Proof. Let H be a supplement of G in F. By [6, Theorem 2.9 (4)], H is cyclic, and $G \cap H = \operatorname{rad}(H)$ is a (the unique) maximal subfilter of H; so H is local. Conversely, let H be local (so it is hollow) and $F = T(G \cup H)$. If $H \cap G = H$, then F = G which is impossible. Thus $H \cap G \neq H$. Now H is hollow gives $H \cap G \ll H$. Thus H is a supplement of G in F.

Definition 3.2. Let G be any subfilter of a filter F of L. We say that H is an ss-supplement G in F if $F = T(G \cup H)$ and $G \cap H \ll H$ and $G \cap H$ is semisimple. We call a filter F ss-supplemented if every its subfilter has an ss-supplement in F.

A subfilter G of F has ample ss-supplements in F if every subfilter K of F such that $F = T(K \cup G)$ contains an ss-supplement of G in F. We call a filter F amply ss-supplemented if every subfilter of F has ample ss-supplements in F.

We next give two other characterizations of ss-supplements filters.

Proposition 3.3. Let G, H be subfilters of a filter F of L. Then the following statements are equivalent:

(1) $F = T(G \cup H)$ and $G \cap H \subseteq \text{Soc}_q(H)$;

(2) $F = T(G \cup H)$ and $G \cap H \subseteq rad(H)$ and $G \cap H$ is semisimple;

(3) $F = T(G \cup H)$ and $G \cap H \ll H$ and $G \cap H$ is semisimple.

Proof. (1) \Rightarrow (2). By (1) and Proposition 2.6, $G \cap H$ is semisimple and $G \cap H \subseteq \operatorname{rad}(H) \cap \operatorname{Soc}(H) \subseteq \operatorname{rad}(H)$.

 $(2) \Rightarrow (3)$. It is clear by (2) and Proposition 1.4 (a).

 $(3) \Rightarrow (1)$. It is clear by (3) and Proposition 2.6.

Analogous to that Lemma 3.1 we have the following proposition:

Proposition 3.4. Let G and H be subfilters of a filter F of L. If G is a maximal subfilter of F, then H is a ss-supplement of G in F if and only if $F = T(G \cup H)$ and H is strongly local.

Proof. Let H be an *ss*-supplement of G in F. By [6, Theorem 2.9 (4)], H is local with the unique maximal subfilter $G \cap H = \operatorname{rad}(H)$; so H is strongly local since $G \cap H$ is semisimple. Conversely, since H is local and $F = T(G \cup H)$, we can write $G \cap H \subseteq \operatorname{rad}(H)$. Now $\operatorname{rad}(H)$ is semisimple gives $G \cap H$ is semisimple. Hence, H is an *ss*-supplement of G in F.

Lemma 3.5. Let G be a subfilter of a ss-supplemented filter F of L. If $G \ll F$, then $G \subseteq \text{Soc}_q(F)$. In particular, if $\text{rad}(F) \ll F$, then $\text{rad}(F) \subseteq \text{Soc}(F)$.

Proof. Let H be an *ss*-supplement of G in F. Then $F = T(G \cup H)$ and $G \ll F$ gives H = F and $G = G \cap H$ is semisimple; so $G \subseteq \operatorname{rad}(F) \cap \operatorname{Soc}(F) = \operatorname{Soc}_g(F)$ by Proposition 2.6. The in particular statement is clear. \Box

Let F be a local filter of L (so it is hollow). It is easy to see that F has no supplement subfilter except for $\{1\}$ and F. Thus every local filter is amply supplemented. Analogous to that we have:

Proposition 3.6. Every strongly local filter of L is amply ss-supplemented.

Proof. Let F be a strongly local filter (so $\operatorname{rad}(F)$ is semisimple). Then F is local and so it is amply supplemented. If G is a proper subfilter of F, then $F = T(F \cup G)$ and $G = G \cap F \ll F$; so $G \subseteq \operatorname{rad}(F)$; hence G is semisimple. Thus F is amply *ss*-supplemented.

Proposition 3.7. If F is a hollow filter of L, then F is (amply) ss-supplemented if and only if it is strongly local.

Proof. Assume that F is ss-supplemented and let $x \in \operatorname{rad}(F)$. By Proposition 1.2 (5), $T(\{x\}) \ll \operatorname{rad}(F)$, and so it is small in F by Proposition 1.2 (2). As F is ss-supplemented, it follows from Lemma 3.5 that $x \in T(\{x\}) \subseteq \operatorname{Soc}_g(F) = \operatorname{rad}(F) \cap \operatorname{Soc}(F)$; hence $x \in \operatorname{Soc}(F)$, and so $\operatorname{rad}(F) \subseteq \operatorname{Soc}(F)$. Suppose that $F = \operatorname{rad}(F)$. Then $F = \operatorname{rad}(F) = \operatorname{Soc}(F)$, and so F is semisimple. Thus $F = \{1\}$ by [6, Proposition 2.16 (2)]. This is a contradiction because F is hollow. So we may assume that $F \neq \operatorname{rad}(F)$, that is, F is local by [6, Theorem 2.21]. Hence F is strongly local. The other implication follows from Proposition 3.6.

The following example shows in general a (amply) supplemented filter need not be (amply) *ss*-supplemented.

Example 3.8. Assume that R is a local Dedekind domain with unique maximal ideal P = Rp and let E = E(R/P), the R-injective hull of R/P. For each positive integer n, set $A_n = (0 :_E P^n)$. Then by [9, Lemma 2.6], every non-zero proper submodule of E is equal to A_m for some m with a strictly increasing sequence of submodules $A_1 \subset A_2 \subset \cdots \subset A_n \subset A_{n+1} \subset \cdots$. The collection of submodules of E form a complete lattice which is a chain under set inclusion which we shall denote by L(E) with respect to the following definitions: $A_n \lor A_m = A_n + A_m$ and $A_n \land A_m = A_n \cap A_m$ for all submodules A_n and A_m of E. Then by [7, Example 2.3]

(b)], every proper filter of L(E) is of the form $[A_n, E]$ for some n. Clearly, L(E) is a hollow filter which is not local. As hollow filters are (amply) supplemented, L(E) is (amply) supplemented. However, L(E) is not (amply) ss-supplemented filter by Proposition 3.7.

Theorem 3.9. If F is a filter of L with $rad(F) \ll F$, then the following statements are equivalent:

(1) F is ss-supplemented;

(2) F is supplemented and rad(F) has an ss-supplement in F;

(3) F is supplemented and $rad(F) \subseteq Soc(F)$.

Proof. $(1) \Rightarrow (2)$. It is clear.

 $(2) \Rightarrow (3)$. Since $\operatorname{rad}(F) \ll F$ and $\operatorname{rad}(F)$ has *ss*-supplement in F, we get F is a supplement of $\operatorname{rad}(F)$; hence $\operatorname{rad}(F) = \operatorname{rad}(F) \cap F$ is semisimple. Thus $\operatorname{rad}(F) \subseteq \operatorname{Soc}(F)$.

 $(3) \Rightarrow (1)$. Let G be a subfilter of F. By assumption, there exists a subfilter H of F such that $F = T(G \cup H)$ and $G \cap H \ll H$. Then $G \cap H \subseteq \operatorname{rad}(H) \subseteq \operatorname{rad}(F) \subseteq \operatorname{Soc}(F)$; so $G \cap H$ is semisimple. It means that F is ss-supplemented. \Box

Corollary 3.10. If F is a finitely generated filter of L, then F is ss-supplemented if and only if it is supplemented and $rad(F) \subseteq Soc(F)$.

Proof. By Theorem 3.9, it suffices to show that $\operatorname{rad}(F) \ll F$. Assume that F = T(A), where $A = \{a_1, \ldots, a_n\}$ and let $F = T(H \cup \operatorname{rad}(F))$ for some subfilter H of F. Since $\operatorname{rad}(F) = T(\cup_{G \ll F} G)$, there exists a finite subfilters $F_{i_1} \ll F$, $F_{i_2} \ll F$, $\ldots, F_{i_r} \ll F$ such that $a_i \in T(T(F_{i_1} \cup \cdots \cup F_{i_r}) \cup H)$ for $1 \leq i \leq r$ which implies that $F = T(T(F_{i_1} \cup \cdots \cup F_{i_r}) \cup H)$; hence H = F by Proposition 1.2 (6).. \Box

Lemma 3.11. If K and H are semisimple filters of L, then $T(K \cup H)$ is semisimple.

Proof. Let G be a subfilter of $T(K \cup H)$. There exist a subfilter K' of K and a subfilter H' of H such that $K = (G \cap K) \oplus K'$ (so $K' \cap G = \{1\}$) and $H = (H \cap G) \oplus H'$ (so $H' \cap G = \{1\}$). If $x \in G \cap T(K' \cup H')$, then $a \land b \leq x$ for some $a \in K'$ and $b \in H'$; so $x = (x \lor a) \land (x \lor b) = 1$. Thus $G \cap T(K' \cup H') = \{1\}$. It enough to show that $T(H \cup K) = T(G \cup T(K' \cup H'))$. Since the inclusion $T(G \cup T(K' \cup H')) \subseteq$ $T(K \cup H)$ is clear, we will prove the reverse inclusion. Let $z \in T(K \cup H)$. Then $c \land d \leq z$ for some $c \in K = T((G \cap K) \cup K')$ and $d \in H = T((H \cap G) \cup H')$. It follows that there are elements $c_1 \in G \cap K$, $c_2 \in K'$, $d_1 \in G \cap H$ and $d_2 \in H'$ such that $c_1 \land c_2 \leq c$ and $d_1 \land d_2 \leq d$; hence $(c_1 \land d_1) \land (c_2 \land d_2) \leq z$, where $c_1 \land d_1 \in G$ and $c_2 \land d_2 \in T(H' \cup K')$ which implies that $z \in T(G \cup T(K' \cup H'))$, and so we have equality. Thus $T(K \cup H) = G \oplus T(K' \cup H')$. □

Proposition 3.12. Let F_1 and G be subfilters of a filter F of L with F_1 sssupplemented. If there is a ss-supplement for $T(F_1 \cup G)$ in F, then the same is true for G. Proof. Let X be an ss-supplement of $T(F_1 \cup G)$ in F and Y is an ss-supplement $T(X \cup G) \cap F_1$ in F_1 . Then by an argument like that in [6, Proposition 2.10], we get $F = T(G \cup T(X \cup Y))$ and $T(X \cup Y) \cap G \ll T(X \cup Y)$. Moreover, $A = X \cap T(Y \cup G)$ is semisimple as a subfilter of the semisimple filter $X \cap T(F_1 \cup G)$. Also, $Y \cap (F_1 \cap T(X \cup G)) = Y \cap T(X \cup G) = B$ is semisimple; so $T(A \cup B)$ is semisimple by Lemma 3.11. Since $T(A \cup B) = G \cap T(X \cup Y)$, we get $T(X \cup Y)$ is an ss-supplement of G in F.

Theorem 3.13. Let F_1 and F_2 be subfilters of F such that $F = T(F_1 \cup F_2)$. If F_1 and F_2 are ss-supplemented, then F is ss-supplemented.

Proof. Let G be a subfilter of F. The subfilter $\{1\}$ is ss-supplement of $F = T(F_1 \cup T(F_2 \cup G))$ in F. Since F_1 is ss-supplemented, $T(F_2 \cup G)$ has an ss-supplement in F by Proposition 3.12. Again applying Proposition 3.12, G has an ss-supplement in F. This completes the proof.

Corollary 3.14. If F_1, \ldots, F_n are ss-supplemented filters of L, then $T(U_{i=1}^n F_i)$ is an ss-supplemented filter.

Proof. Apply Theorem 3.13.

Lemma 3.15. Let F be a filter of L. If every subfilter of F is ss-supplemented, then F is amply ss-supplemented.

Proof. Let G and H be subfilters of F such that $F = T(G \cup H)$. By the assumption, $H = T((G \cap H) \cup H'), (G \cap H) \cap H' = G \cap H' \ll H' \text{ and } G \cap H' \text{ is semisimple for}$ some subfilter H' of H. Since $F = T(G \cup T((G \cap H) \cup H')) = T(G \cup H')$, we get G has ample ss-supplements in F. Thus F is amply ss-supplemented. \Box

Lemma 3.16. Assume that F is a amply ss-supplemented filter of L and let H be an ss-supplement subfilter in F. Then H is amply ss-supplemented.

Proof. Let H be an ss-supplement of a subfilter G of F. Let X and Y be subfilters of H such that $H = T(X \cup Y)$. Then

$$F = T(H \cup G) = T(G \cup T(X \cup Y)) = T(Y \cup T(G \cup X)).$$

As F is amply ss-supplemented, $T(X \cup G)$ has an ss-supplement $Y' \subseteq Y$ in F; so $F = T(Y' \cup T(X \cup G)) = T(G \cup T(X \cup Y'))$. Since $X \cup Y' \subseteq X \cup Y$, we obtain $T(X \cup Y') \subseteq T(X \cup Y) = H$. Then H is an ss-supplement of G in F gives $H = T(X \cup Y')$ by minimality of H. Moreover, $X \cap Y' \subseteq T(G \cup X) \cap Y' \ll Y'$, and so $X \cap Y' \ll Y'$ by Proposition 1.2 (1). As $T(G \cup X) \cap Y'$ is semisimple, $X \cap Y' \subseteq T(G \cup X) \cap Y'$ is semisimple. Thus H is amply ss-supplemented. \Box

The next theorem gives a more explicit description of amply ss-supplemented filters.

Theorem 3.17. For a filter F of L, the following statements are equivalent:

- (1) F is amply ss-supplemented;
- (2) Every subfilter G of F is of the form $G = T(X \cup Y)$, where X is ss-supp lemented and $Y \subseteq \text{Soc}_g(F)$.

Proof. (1) ⇒ (2). Assume that *F* is amply *ss*-supplemented and let *G* be a subfilter of *F*. Since *F* is *ss*-supplemented, *G* has an *ss*-supplements *H* in *F*; so *F* = $T(H \cup G)$. By the assumption, there exists a subfilter *X* of *G* such that *X* is an *ss*-supplement of *H* in *F*; so $F = T(X \cup H)$. Set $Y = G \cap H$. Since *H* is an *ss*-supplement of *G* in *F*, we have $Y = G \cap H \subseteq \text{Soc}_g(H) \subseteq \text{Soc}(F)$ by Proposition 3.3. By the modular law, $G = G \cap T(X \cup H) = T(X \cup (G \cap H)) = T(X \cup Y)$, where $Y \subseteq \text{Soc}_g(F)$ and *X* is *ss*-supplemented by Lemma 3.16.

 $(2) \Rightarrow (1)$. By the assumption, if G is a subfilter of F, then $G = T(X \cup Y)$ with X is ss-supplemented and $Y \subseteq \text{Soc}_g(F) \subseteq \text{Soc}(F)$ (so Y is ss-supplemented). By Theorem 3.13, G is ss-supplemented. Therefore F is amply ss-supplemented by Lemma 3.15.

Corollary 3.18. For a filter F of L, the following statements are equivalent:

- (1) F is amply ss-supplemented;
- (2) Every subfilter of F is ss-supplemented;
- (3) Every subfilter of F is amply ss-supplemented.

Proof. Apply Theorem 3.17.

4. SS-supplemented Quotient Filters

Quotient lattices are determined by equivalence relations rather than by ideals as in the ring case. If F is a filter of a lattice (L, \leq) , we define a relation on L, given by $x \sim y$ if and only if there exist $a, b \in F$ satisfying $x \wedge a = y \wedge b$. Then \sim is an equivalence relation on L, and we denote the equivalence class of a by $a \wedge F$ and these collection of all equivalence classes by $\frac{L}{F}$. We set up a partial order \leq_Q on $\frac{L}{F}$ as follows: for each $a \wedge F, b \wedge F \in \frac{L}{F}$, we write $a \wedge F \leq_Q b \wedge F$ if and only if $a \leq b$. It is straightforward to check that $(\frac{L}{F}, \leq_Q)$ is a poset. The following notation below will be kept in this section: Let $a \wedge F, b \wedge F \in \frac{L}{F}$ and set $X = \{a \wedge F, b \wedge F\}$. By definition of \leq_Q , $(a \vee b) \wedge F$ is an upper bound for the set X. If $c \wedge F$ is any upper bound of X, then we can easily show that $(a \vee b) \wedge F \leq_Q c \wedge F$. Thus $(a \wedge F) \vee_Q (b \wedge F) = (a \vee b) \wedge F$. Similarly, $(a \wedge F) \wedge_Q (b \wedge F) = (a \wedge b) \wedge F$. Thus $(\frac{L}{F}, \leq_Q)$ is a lattice.

Remark 4.1. Let G be a subfilter of a filter F of L.

- (1). If $a \in F$, then $a \wedge F = F$. By the definition of \leq_Q , it is easy to see that $1 \wedge F = F$ is the greatest element of $\frac{L}{F}$.
- (2). If $a \in F$, then $a \wedge F = b \wedge F$ (for every $b \in L$) if and only if $b \in F$. In particular, $c \wedge F = F$ if and only if $c \in F$. Also, if $a \in F$, then $a \wedge F = F = 1 \wedge F$.
- (3). By the definition \leq_Q , we can easily show that if L is distributive, then $\frac{L}{F}$ is

distributive.

- (4). $\frac{F}{G} = \{a \land G : a \in F\}$ is a filter of $\frac{L}{G}$. (5). If K is a filter of $\frac{L}{G}$, then $K = \frac{F}{G}$ for some filter F of L. (6). If H is a filter of L such that $G \subseteq H$ and $\frac{F}{G} = \frac{H}{G}$, then F = H. (7). If H and V are filters of L containing G, then $\frac{F}{G} \cap \frac{H}{G} = \frac{V}{G}$ if and only if $V = H \cap F.$
- (8). If H is a filter of L containing G, then $\frac{T(F \cup H)}{G} = T(\frac{H}{G} \cup \frac{F}{G})$.

Proposition 4.2. Every quotient filter of a strongly local filter of L is strongly local.

Proof. Let G be a subfilter of a strongly local filter F of L. Clearly, if H is a subfilter of F with $G \subseteq H$, then H is a maximal subfilter of F if and only if $\frac{H}{G}$ is a maximal subfilter of $\frac{F}{G}$; so the quotient filter $\frac{F}{G}$ is local. By assumption, $\operatorname{rad}(\frac{F}{G}) = \frac{\operatorname{rad}(F)}{G} \subseteq \frac{\operatorname{Soc}(F)}{G} = \frac{\bigcap_{K \leq F} K}{G} \subseteq \bigcap_{K \leq G} \frac{F}{G} \subseteq \operatorname{Soc}(\frac{F}{G})$; so $\operatorname{rad}(\frac{F}{G})$ is semisimple. Thus $\frac{F}{G}$ is strongly local.

Lemma 4.3. Let G, H, K be filters of L such that $H \ll K$. Then $\frac{T(H \cup G)}{G} \ll$ $\frac{T(K\cup G)}{G}$.

Proof. Let $\frac{T(K \cup G)}{G} = T(\frac{U}{G} \cup \frac{T(H \cup G)}{G}) = \frac{T(U \cup T(H \cup G))}{G}$ for some subfilter $\frac{U}{G}$ of $\begin{array}{l} T(K\cup G) & \text{for } G & = T(G \cup G) \\ \hline T(K\cup G) & \text{(so } U \subseteq T(K\cup G)); \text{ hence } T(K\cup G) = T(U\cup H). \text{ As } K = K \cap T(U\cup H) = \\ T(H\cup (U\cap K)), \text{ we get } U\cap K = K \text{ since } H \ll K. \text{ It follows that } T(K\cup G) \subseteq U, \\ \text{and so } \frac{T(K\cup G)}{G} = \frac{U}{G}. \end{array}$

Theorem 4.4. If F is an ss-supplemented filter, then every quotient filter of Fis ss-supplemented.

Proof. Assume that F is an ss-supplemented filter and let $\frac{F}{G}$ be a quotient filter of F. Let $\frac{H}{G}$ be a subfilter of $\frac{F}{G}$. By the assumption, there exists a subfilter K of F such that $F = T(K \cup H), K \cap H \ll H$ and $H \cap K$ is semisimple. Then $\frac{F}{G} = T(\frac{H}{G} \cup \frac{T(K \cup G)}{G})$ and

$$\frac{H}{G} \cap \frac{T(K \cup G)}{G} = \frac{H \cap T(K \cup G)}{G} = \frac{T((H \cap K) \cup G)}{G} \ll \frac{T(K \cup G)}{G}$$

by Lemma 4.3 and Lemma 1.3. Since $H \cap K$ is semisimple, it follows from Proposition 1.4 that $\frac{H}{G} \cap \frac{T(K \cup G)}{G} = \frac{T((H \cap K) \cup G)}{G}$ is semisimple; so $\frac{T(K \cup G)}{G}$ is an *ss*-supplement of $\frac{H}{G}$ in $\frac{F}{G}$. This completes the proof.

Corollary 4.5. If F is an amply ss-supplemented filter of L, then every quotient filter of F is amply ss-supplemented.

Proof. Let $\frac{V}{X}$ be a subfilter of $\frac{F}{X}$ such that $\frac{F}{X} = T(\frac{V}{X} \cup \frac{U}{X})$ for some subfilter $\frac{U}{X}$ of $\frac{F}{X}$; so $F = T(V \cup U)$. Since F is amply *ss*-supplemented, there is a subfilter $H \subseteq U$ such that H is a *ss*-supplement of V in F. By a similar argument like that in Theorem 4.4, $\frac{T(H \cup X)}{X} \subseteq \frac{U}{X}$ is a *ss*-supplement $\frac{V}{X}$ in $\frac{F}{X}$. Thus $\frac{F}{X}$ is amply *ss*-supplemented. \Box

Lemma 4.6. Let G and H be subfilters of a filter F of L such that $F = T(G \cup H)$. If K is a proper subfilter of F such that $G \subsetneq K$, then $K \cap H$ is a proper subfilter of H.

Proof. If $H \subseteq K$, then $F = T(G \cup H)$ gives F = K, a contradiction. Thus $H \nsubseteq K$ and $K \cap H \neq H$. By the relations, $K = K \cap T(G \cup H) = T(G \cup (H \cap K))$ and $K \neq G$, we obtain $K \cap H \neq \{1\}$. Therefore, $K \cap H$ is a proper subfilter of H. \Box

Lemma 4.7. Let G and H be proper subfilters of a filter F of L. If $F = T(G \cup H)$ and H is simple, then G is a maximal subfilter of F.

Proof. If K is a subfilter of F such that $G \subsetneqq K \subsetneqq F$, then $K \cap H$ is a proper subfilter of H by Lemma 4.6 which is impossible since H is simple. This completes the proof.

Proposition 4.8. Let G and H be subfilters of a filter F of L. Assume H to be a supplement of G in F. Then the following hold:

- (1). If K is a maximal subfilter of H, then $T(G \cup K)$ is a maximal subfilter of F. In this case, $K = T(G \cup K) \cap H$.
- (2). If $rad(F) \ll F$, then G is contained in a maximal subfilter of F.

Proof. (1). Since K is a maximal subfilter of H, we find $K \neq H$. Since H is a supplement of G in F, we get $F \neq T(G \cup K)$. As $G \cap H \ll H$ and K is a maximal subfilter of H, we conclude that $H \cap G \subseteq K$; hence $K = T(K \cup (G \cap H)) = H \cap T(G \cup K)$. Since $\frac{H}{K}$ is simple and $\frac{F}{K} = T(\frac{H}{K} \cup \frac{T(G \cup K)}{K})$, we conclude that $\frac{T(G \cup K)}{K}$ is a maximal filter of $\frac{F}{K}$ by Lemma 4.7 which implies that $T(G \cup K)$ is a maximal subfilter of F which contains G.

(2). If $G \subseteq \operatorname{rad}(F)$, then the assertion is clear. If $G \not\subseteq \operatorname{rad}(F)$, then by [6, Theorem 2.9 (3)], $\operatorname{rad}(H) = H \cap \operatorname{rad}(F) \neq H$, i.e. there is a maximal subfilter K of H. Now the assertion follows from (1).

Definition 4.9. Let F be a filter of L. F is called the *internal direct sum* of the set $\{F_i : i \in I\}$ of subfilters of F: $F = \bigoplus_{i \in I} F_i$ if and only if $F = T(\bigcup_{i \in I} F_i)$ and for each $j \in I$, $F_j \cap T(\bigcup_{i \in I_{i \neq j}} F_i) = \{1\}$.

Lemma 4.10. If $\{F_i\}_{i \in I}$ is an indexed set of subfilters of a filter F of L with $F = \bigoplus_{i \in I} F_i$, then $\operatorname{rad}(F) = \bigoplus_{i \in I} \operatorname{rad}(F_i)$ and $\operatorname{Soc}(F) = \bigoplus_{i \in I} \operatorname{Soc}(F_i)$.

Proof. By the assumption, for each $i \in I$, $\operatorname{rad}(F_i) = F_i \cap \operatorname{rad}(F)$ by [6, Theorem 2.9 (3)]. It suffices to show that $\operatorname{rad}(F) \subseteq \bigoplus_{i \in I} \operatorname{rad}(F_i)$. Let $x \in \operatorname{rad}(F)$. Then $(x_{i_1} \wedge x_{i_2} \wedge \cdots \wedge x_{i_k}) \leq x$, where $x_{i_1} \in F_{i_1} \subseteq \operatorname{rad}(F), \ldots, x_{i_k} \in F_{i_k} \subseteq \operatorname{rad}(F)$. Therefore, $F = \bigoplus_{i \in I} F_i$ gives there exist subfilters F_{t_1}, \cdots, F_{t_s} of F such that $x_{i_1} \in F_{t_1} \cap \operatorname{rad}(F) = \operatorname{rad}(F_{t_1}), \ldots, x_{i_k} \in F_{t_s} \cap \operatorname{rad}(F) = \operatorname{rad}(F_{t_s})$; so $x \in T(\operatorname{rad}(F_{t_1}) \cup \cdots \cup \operatorname{rad}(F_{t_s})) \subseteq \bigoplus_{i \in I} \operatorname{rad}(F_i)$, and so we have equality. Since the inclusion $\bigoplus_{i \in I} \operatorname{Soc}(F_i) \subseteq \operatorname{Soc}(F)$ is clear, we will prove the reverse inclusion. Let $z \in \operatorname{Soc}(F)$. Then

$$z = (z \lor a_1) \land \dots \land (z \lor a_n)$$

for some $a_1 \in F_{j_1} \subseteq F, \ldots, a_n \in F_{j_n} \subseteq F$; hence $z \lor a_1 \in F_{j_1} \cap \operatorname{Soc}(F) = \operatorname{Soc}(F_{j_1}), \ldots, z \lor a_n \in F_{j_n} \cap \operatorname{Soc}(F) = \operatorname{Soc}(F_{j_1})$. It follows that $z \in T(\operatorname{Soc}(F_{j_1}) \cup \cdots \cup \operatorname{Soc}(F_{j_n})) \subseteq \bigoplus_{i \in I} \operatorname{Soc}(F_i)$. This completes the proof. \Box

Let L, L' be two lattice. Then a lattice homomorphism $f: L \to L'$ is a map from L to L' satisfying $f(x \lor y) = f(x) \lor f(y)$ and $f(x \land y) = f(x) \land f(y)$ for all $x, y \in L$. A bijective lattice homomorphism f is called a lattice isomorphism (in this case we write $L \cong L'$).

Lemma 4.11. If A and B are filters of L, then $\frac{T(A \cup B)}{A} \cong \frac{B}{A \cap B}$.

Proof. Define $f: \frac{B}{A\cap B} \to \frac{T(A\cup B)}{A}$ by $f(b \land (A \cap B)) = b \land A$. It is clear that f is well-defined. We will show f is one-to-one: Let $f(b_1 \land (A \cap B)) = f(b_2 \land (A \cap B))$, where $b_1, b_2 \in B$. Then $b_1 \land A = b_2 \land A$; and so $b_1 \land c_1 = b_2 \land c_2$ for some $c_1, c_2 \in A$. Hence

$$(b_1 \wedge c_1) \vee (b_1 \wedge b_2) = (b_2 \wedge c_2) \vee (b_2 \wedge b_1)$$

The left side is equal to $[b_1 \vee (b_1 \wedge b_2)] \wedge [c_1 \vee (b_1 \wedge b_2)] = b_1 \wedge [c_1 \vee (b_1 \wedge b_2)]$. Similarly, the right side is equal to $b_1 \wedge [c_1 \vee (b_1 \wedge b_2)]$. Thus $b_1 \wedge (A \cap B) = b_2 \wedge (A \cap B)$. We claim f is surjective: Let $z \wedge A \in \frac{T(A \cup B)}{A}$, where $z \in T(A \cup B)$. Hence there exist $a \in A, b \in B$ such that $a \wedge b \leq z$. Thus $(z \vee b) \wedge a = (z \wedge a) \vee (b \wedge a) = z \wedge a$. Therefore $(z \vee b) \wedge A = z \wedge A$. Thus $f((z \vee b) \wedge (A \cap B)) = (z \vee b) \wedge A = z \wedge A$ and $(z \vee b) \wedge (A \cap B) \in \frac{B}{A \cap B}$. Now, we show that f is a lattice homomorphism. Let $b_1 \wedge (A \cap B), b_2 \wedge (A \cap B) \in \frac{B}{A \cap B}$. Then $f((b_1 \wedge (A \cap B)) \wedge_Q (b_2 \wedge (A \cap B))) = f((b_1 \wedge b_2) \wedge (A \cap B)) \vee_Q (b_2 \wedge (A \cap B)) = f(b_1 \wedge (A \cap B)) \vee_Q f(b_2 \wedge (A \cap B))$. Similarly, $f((b_1 \wedge (A \cap B)) \vee_Q (b_2 \wedge (A \cap B))) = f(b_1 \wedge (A \cap B)) \vee_Q f(b_2 \wedge (A \cap B))$.

This completes the proof.

Lemma 4.12. Assume that $\{F_i\}_{i \in I}$ is an indexed set of subfilters of a filter F of L such that $F = \bigoplus_{i \in I} F_i$ and let G be a subfilter of F. Then $\frac{F}{G} = \bigoplus_{i \in I} \frac{T(F_i \cup G)}{G}$.

Proof. For each $j \in I$, let $x \wedge G \in \frac{T(F_j \cup G)}{G} \cap T(\bigcup_{i \in I_{i \neq j}} \frac{T(F_i \cup G)}{G})$. Then $x \in T(F_j \cup G)$ gives there exist $f_j \in F_j$ and $g_j \in G$ such that $x \wedge G = ((x \vee f_j) \wedge (x \vee g_j)) \wedge G = (x \vee f_j) \wedge G$; so $x = f_j \vee x \in F_j$. Similarly, there are subfilters F_{i_1}, \ldots, F_{i_s} such that $x \in T(\bigcup_{k=1_{k\neq j}}^s F_{i_k})$; hence x = 1. Thus $\frac{T(F_j \cup G)}{G} \cap T(\bigcup_{i \in I_{i\neq j}} \frac{T(F_i \cup G)}{G}) = \{1 \wedge G\}$.

It is enough to show that $\frac{F}{G} \subseteq \bigoplus_{i \in I} \frac{T(F_i \cup G)}{G}$. Let $y \wedge G \in \frac{F}{G}$. Then there exist $f_{i_1} \in F_{i_1}, \ldots, f_{i_t} \in F_{i_t}$ such that $f_{i_1} \wedge \cdots \wedge f_{i_t} \leqslant y$; so $(f_{i_1} \wedge G) \wedge_Q \cdots \wedge_Q (f_{i_t} \wedge G) \leqslant y \wedge G$. It follows that $y \wedge G \in T(\frac{T(F_{i_1} \cup G)}{G} \cup \cdots \cup \frac{T(F_{i_t} \cup G)}{G}) \subseteq T(\cup_{i \in I} \frac{T(F_i \cup G)}{G}))$, as required. \Box

Remark 4.13. Let F be a filter of F.

- (1). If G is a hollow subfilter of a filter F of L that is not small in F. Then there exists a proper subfilter K of F such that $F = T(G \cup K)$. Since G is hollow, we get $G \cap K \ll G$. Thus G is a supplement in F. Thus $rad(G) = G \cap rad(F)$ by [6, Theorem 2.9 (3)].
- (2). If G is a direct summand of F such that $G \ll F$, then $G = \{1\}$.
- (3). A filter F of L is said to be coatomic if every proper subfilter of F is contained in a maximal subfilter of F. It is easy to see that $rad(F) \ll F$.

Lemma 4.14. Let $\{H_{\alpha}\}_{\alpha \in A}$ be an indexed set of simple subfilters of the filter F of a lattice L. If $F = T(\bigcup_{\alpha \in A} H_{\alpha})$, then for each subfilter K of F there is a subset B of A such that $\{H_{\alpha}\}_{\alpha \in B}$ is independent and $F = K \oplus (T(\bigcup_{\alpha \in B} H_{\alpha}))$.

Proof. Let K be a subfilter of F. Then there is a subset B of A maximal with respect to conditions that $\{H_{\alpha}\}_{\alpha \in B}$ is independent and $K \cap (T(\cup_{\alpha \in B} H_{\alpha})) = \{1\}$. Let $M = T(K \cup (T(\cup_{\alpha \in B} H_{\alpha})))$. For each $\alpha \in A$, we have either $H_{\alpha} \cap M = \{1\}$ or $H_{\alpha} \cap M = H_{\alpha}$. If $H_{\alpha} \cap M = \{1\}$, then we have a contradiction with the maximality of B. Thus $H_{\alpha} \subset M$ for each $\alpha \in A$, hence $F = K \oplus (T(\cup_{\alpha \in B} H_{\alpha}))$.

Proposition 4.15. Let $F = \bigoplus_{i \in I} F_i$ be a filter of L, where each F_i is a local filter. If $rad(F) \ll F$, then F is supplemented.

Proof. By [6, Theorem 2.21] and Remark 4.13, for each $i \in I$, F_i is not small in F (so rad $(F_i) = F_i \cap \operatorname{rad}(F) \neq F_i$) and $\frac{F_i}{\operatorname{rad}(F_i)}$ is simple. Let U be a subfilter of F. By Lemma 4.11 and Lemma 4.12, we have $\bar{F} = \frac{F}{\operatorname{rad}(F)} = \bigoplus_{i \in I} \frac{T(F_i \cup \operatorname{rad}(F))}{\operatorname{rad}(F)} \cong \bigoplus_{i \in I} \frac{F_i}{\operatorname{rad}(F_i)}$ is a direct sum of simple filters, and so $\bar{F} = \bar{U} \oplus (\bigoplus_{i \in J} \frac{F_i}{\operatorname{rad}(F_i)})$ for some $J \subseteq I$, where $\bar{U} = \frac{T(U \cup \operatorname{rad}(F))}{\operatorname{rad}(F)}$, by Lemma 4.15. Now we set $\bar{V} = \bigoplus_{i \in J} \frac{F_i}{\operatorname{rad}(F_i)}$ (so $V = \bigoplus_{i \in J} F_i$). Since $\bar{F} = \bar{U} \oplus \bar{V}$, we get that $F = T(\operatorname{rad}(F) \cup T(U \cup V))$ which implies $F = T(U \cup V)$ since $\operatorname{rad}(F) \ll F$. Moreover, $\bar{U} \cap \bar{V} = \{\operatorname{rad}(F)\}$ gives $U \cap V \subseteq \operatorname{rad}(F)$; so $U \cap V \ll F$ by Proposition 1.2 (1). Since V is a direct summand of $F, U \cap V \ll V$ by Proposition 1.4 (c). Thus F is supplemented. □

Theorem 4.16. Let $F = \bigoplus_{i \in I} F_i$ be a filter of L, where each F_i is a strongly local filter. Then F is ss-supplemented and coatomic.

Proof. Since F_i is strongly local for every $i \in I$, it is local and $\operatorname{rad}(F_i) \subseteq \operatorname{Soc}(F_i)$ $(i \in I)$. It then follows from Lemma 4.10 that $\operatorname{rad}(F) = \bigoplus_{i \in I} \operatorname{rad}(F_i) \subseteq \bigoplus_{i \in I} \operatorname{Soc}(F_i)$ $= \operatorname{Soc}(F)$; hence $\operatorname{rad}(F) \ll F$ by Proposition 1.4 (a). As strongly local filters are local, Proposition 4.16 gives F is supplemented. Therefore, F is *ss*-supplemented by Theorem 3.9. Let H be a proper subfilter of F. By Proposition 4.8 (2), H is contained in a maximal subfilter of F, that is, F is coatomic. Acknowledgement. We would like to thank the referees for valuable comments.

References

- G. Bilhan and A.T. Güroglu, A variation of supplemented modules, Turkish J. Math., 37 (2013), 418 – 426.
- [2] G. Birkhoff, Lattice theory, Amer. Math. Soc., 1973.
- [3] E. Büyükasik, E. Mermut and S. Özdemir, Rad-supplemented modules, Rend. Semin. Mat. Univ. Padova, 124 (2010), 157 – 177.
- [4] G. Calugareanu, Lattice Concepts of Module Theory. Kluwer Academic Publishers, 2000.
- [5] S. Ebrahimi-Atani, On secondary modules over Dedekind domains, Southeast Asian Bull. Math. 25 (2001), 1-6.
- [6] S. Ebrahimi Atani, w-Supplemented property in the lattices, Quasigroups and Related Systems, 29 (2021), 31 – 44.
- [7] S. Ebrahimi Atani and M. Chenari, Supplemented property in the lattices, Serdica Math. J., 46 (2020), 73 – 88.
- [8] S. Ebrahimi Atani, S. Dolati Pish Hesari, M. Khoramdel and M. Sedghi Shanbeh Bazari, A simiprime filter-based identity-summand graph of a lattice, Le Matematiche, 73 (2018), no.2, 297 - 318.
- [9] S. Ebrahimi Atani and M. Sedghi Shanbeh Bazari, On 2-absorbing filters of lattices, Discuss. Math. Gen. Algebra Appl. 36 (2016), 157 - 168.
- [10] S. Ebrahimi Atani and M. Sedghi Shanbeh Bazari, Decomposable filters of lattices, Kragujevac J. Math., 43 (1) (2019), 59-73.
- [11] A. Harmanci, D. Keskin and P.F. Smith, On ⊕-supplemented modules, Acta Math. Hungar., 83 (1999), 161 – 169.
- [12] E. Kaynar, H. Calisici and E. Türkmen, SS-supplemented modules, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 69 (2020), 473 – 485.
- [13] F. Kasch and E.A. Mares, Eine Kennzeichnung semi-perfekter Moduln. Nagoya Math. J., 27 (1966), 525 – 529.
- [14] S.H. Mohamed and B.J. Müller, Continuous and discrete modules. Cambridge University Press, London, 1990.
- [15] Y. Wang and D. Ding, Generalized supplemented modules. Taiwanese J. Math., 10 (2006), 1589 - 1601.
- [16] H. Zömpschinger, Komplementierte Moduln über Dedekindringen. J. Algebra, 29 (1974), 42 - 56.
- [17] D.X. Zhou and X.R. Zhang, Small-essential submodules and Morita duality, Southeast Asian Bull. Math., 35 (2011), 1051 – 1062.

Received November 2, 2020

Department of Mathematics, University of Guilan, P.O.Box 1914, Rasht, Iran E-mails: ebrahimi@guilan.ac.ir, mehdikhoramdel@gmail.com, saboura_dolati@yahoo.com, mhs.nikmard@gmail.com