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w-supplemented property in the lattices

Shahabaddin Ebrahimi Atani

Abstract

Let L be a lattice with the greatest element 1. In this paper, we introduce and investigate the
latticial counterpart of the filter-theoretical concepts of w-supplemented. The basic properties
and possible structures of such filters are studied.

1. Introduction
The notion of an order plays an important role not only throughout mathematics
but also in adjacent such as logic and computer science, hence, ought to be in the
literature. The beauty of lattice theory derives in part from the extreme simplicity
of its basic concepts: (partial) ordering, least upper and greatest lower bounds.
In structure, lattices lie between semigroups and rings. In this respect, it closely
resembles group theory. Thus lattices and groups provide two of the most basic
tools of universal algebra, and in particular the structure of algebraic systems is
usually most clearly revealed through the analysis of appropriate lattices. In this
paper, we extend several concepts from module theory to lattice theory. The main
difficulty is figuring out what additional hypotheses the lattice or filter must satisfy
to get similar results. Nevertheless, growing interest in developing the algebraic
theory of lattices can be found in several papers and books (see for example [2, 4,
5, 6, 7]).

The notion of a supplement submodule was introduced in [10] in order to char-
acterize semiperfect modules, that is projective modules whose factor modules
have projective cover. For submodules U and V of a module M , V is said to be a
supplement of U in M or U is said to have a supplement V in M if U+V = M and
U ∩V � V . The module M is called supplemented if every submodule of M has a
supplement in M . See [4] and [12] for results and the definitions related to supple-
ments and supplemented modules. In a series of papers, Zöschinger has obtained
detailed information about supplemented and related modules [14]. Supplemented
modules are also discussed in [11]. Recently, several authors have studied differ-
ent generalizations of supplemented modules. Rad-supplemented modules have
been studied in [13] and [3]. See [13]; these modules are called generalized sup-
plemented modules. For submodules U and V of a module M , V is said to be
a rad-supplement of U in M or U is said to have a rad-supplement V in M if
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U + V = M and U ∩ V ⊆ rad(V ). M is called a rad-supplemented module if
every submodule of M has a rad-supplement in M . We shall say that a module
M is w-supplemented if every semisimple submodule of M has a supplement in M
[1]. Recently, the study of the supplemented property in the rings, modules, and
lattices has become quite popular (see for example [1, 3, 4, 8, 9, 12, 13]. Supple-
mented property in the lattices have already been investigated in [8]. This paper
is based on another variation of supplemented filters. In fact, in the present paper,
we are interested in investigating (amply) w-supplemented filters in a distributive
lattice with 1 to use other notions of w-supplemented, and associate which exist
in the literature as laid forth in [1] (see Sections 2 and Section 3).

Let us briefly review some definitions and tools that will be used later [2]. By
a lattice we mean a poset (L,6) in which every couple elements x, y has a g.l.b.
(called the meet of x and y, and written x∧y) and a l.u.b. (called the join of x and
y, and written x∨y). A lattice L is complete when each of its subsets X has a l.u.b.
and a g.l.b. in L. SettingX = L, we see that any nonvoid complete lattice contains
a least element 0 and greatest element 1 (in this case, we say that L is a lattice with
0 and 1). A lattice L is called a distributive lattice if (a ∨ b) ∧ c = (a ∧ c) ∨ (b ∧ c)
for all a, b, c in L (equivalently, L is distributive if (a∧ b)∨ c = (a∨ c)∧ (b∨ c) for
all a, b, c in L). A non-empty subset F of a lattice L is called a filter, if for a ∈ F ,
b ∈ L, a 6 b implies b ∈ F , and x ∧ y ∈ F for all x, y ∈ F (so if L is a lattice with
1, then 1 ∈ F and {1} is a filter of L). A proper filter P of L is said to be maximal
if E is a filter in L with P $ E, then E = L. If F is a filter of a lattice L, then the
radical of F , denoted by rad(F ), is the intersection of all maximal subfilters of F .

Let L be a lattice. If A is a subset of L, then the filter generated by A, denoted
by T (A), is the intersection of all filters that is containing A. A filter F is called
finitely generated if there is a finite subset A of F such that F = T (A). A subfilter
G of a filter F of L is called small in F , written G � F , if, for every subfilter H
of F , the equality T (G ∪H) = F implies H = F [8]. A subfilter G of F is called
essential in F , written G E F , if G ∩ H 6= {1} for any subfilter H 6= {1} of F .
Let G be a subfilter of a filter F of L. A subfilter H of F is called a supplement
of G in F if F = T (G ∪ H) and H is minimal with respect to this property, or
equivalently, F = T (G∪H) and G∩H � H. H is said to be a supplement subfilter
of F if H is a supplement of some subfilter of F . F is called a supplemented filter
if every subfilter of F has a supplemented in F . A subfilter G of a filter F of L has
ample supplements in F if, for every subfilter H of F with F = T (H ∪ G), there
is a supplement H ′ of G with H ′ ⊆ H. If every subfilter of a filter F has ample
supplements in F , then we call F amply supplemented. Let G,H be subfilters of a
filter F of L. If F = T (G∪H) and G∩H � F , then H is called a weak supplement
of G in F . If every subfilter of F has a weak supplement in F , then F is called
a weak supplemented filter. If F = T (G ∪ H) and G ∩ H ⊆ rad(H), then H is
called a rad-supplement of G in F . If every subfilter of F has a rad-supplement in
F , then F is called a rad-supplemented filter.

A lattice L is called semisimple, if for each proper filter F of L, there exists a
filter G of L such that L = T (F ∪G) and F ∩G = {1}). In this case, we say that
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F is a direct summand of L, and we write L = F ⊕ G. A filter F of L is called
a semisimple filter, if every subfilter of F is a direct summand. A simple lattice
(resp. filter), is a lattice (resp. filter) that has no filters besides the {1} and itself.
For a filter F , Soc(F ) = T (∪i∈ΛFi), where {Fi}i∈Λ is the set of all simple filters
of L contained in F .

Proposition 1.1. [6, 7] A non-empty subset F of a lattice L is a filter if and only
if x∨ z ∈ F and x∧y ∈ F for all x, y ∈ F , z ∈ L. Moreover, since x = x∨ (x∧y),
y = y ∨ (x ∧ y) and F is a filter, x ∧ y ∈ F gives x, y ∈ F for all x, y ∈ L.

Proposition 1.2. [8, Lemma 2.4, Theorem 2.6 and Theorem 2.9] Let F be a filter
of a distributive lattice L with 1.

(1) If A� F and C ⊆ A, then C � F .
(2) If A,B are subfilters of F with A� B, then then A is a small subfilter in

subfilters of F that contains the subfilter of B. In particular, A� F .
(3) If F1, F2, . . . , Fn are small subfilters of F , then T (F1∪F2∪· · ·∪Fn) is also

small in F .
(4) If A,B,C and D are subfilters of F with A� B and C � D, then

T (A ∪ C)� T (B ∪D).
(5) Let G,H be subfilters of F such that H is a supplement of G in F . If

F = T (U∪H) for some subfilter U of G, then H is a supplement of U in F.

(6) rad(F ) = T (∪G�FG).
(7) Every finitely generated subfilter of rad(F ) is small in rad(F ).
(8) x ∈ rad(F ) if and only if T ({x})� rad(F ).

Lemma 1.3. [8, Proposition 2.1]
(1) Let A be an arbitrary non-empty subset of L. Then

T (A) = {x ∈ L : a1 ∧ a2 ∧ · · · ∧ an 6 x for some ai ∈ A (1 6 i 6 n)}.
Moreover, if F is a filter and A is a subset of L with A ⊆ F , then T (A) ⊆ F ,
T (F ) = F and T (T (A)) = T (A).

(2) Let A,B and C be subfilters of a filter F of L. Then T (T (A ∪B) ∪ C) ⊆
T (A ∪ T (B ∪ C)). In particular, if F = T (T (A ∪B) ∪ C), then F =

T (T (C ∪B) ∪A) = T (T (A ∪ C) ∪B).
(3) (Modular law) If F1, F2, F3 are filters of L with F2 ⊆ F1, then

F1 ∩ T (F2 ∪ F3) = T (F2 ∪ (F1 ∩ F3)).

2. Basic Properties of w-supplemented Filters

Throughout this paper, we shall assume unless otherwise stated, that L is a dis-
tributive lattice with 1. In this section we collect some basic properties concerning
w-supplemented filters of L. Our starting point is the following lemma.

Lemma 2.1. Every subfilter of a semisimple filter of L is semisimple.
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Proof. Assume that K is a subfilter of a semisimple filter F of L and let G be a
subfilter of K. By assumption, F = T (G∪H) and H ∩G = {1} for some subfilter
H of F . Then by modular law, K = K ∩ T (G ∪ H) = T (G ∪ (H ∩ K)) and
G ∩ (H ∩K) = {1}, as required.

Lemma 2.2. Let F be a filter of L such that F = T (G∪H), where H is a subfilter
of F and G is a semisimple subfilter of F . Then F = G′ ⊕H for some subfilter
G′ of G.

Proof. By assumption, G = (G ∩ H) ⊕ G′ for some subfilter G′ of G. Then by
Lemma 1.3, F = T (H ∪T ((G∩H)∪G′)) = T (G′ ∪T (H ∪ (G∩H))) = T (G′ ∪H)
and G′ ∩H = G ∩G′ ∩H = {1}. So F = G′ ⊕H.

Lemma 2.3. Let U, V be subfilters of a filter F of L such that V is a direct
summand of F with U ⊆ V . Then U � F if and only if U � V .

Proof. If U � V , then U � F by Proposition 1.2 (2). Conversely, assume that
U � F and F = T (V ∪ V ′) with V ∩ V ′ = {1}. Let V = T (U ∪ K) for some
subfilter K of V . It follows from Lemma 1.3 that

F = T (V ′ ∪ T (U ∪K)) = T (U ∪ T (V ′ ∪K));

hence F = T (V ′ ∪K) since U � F . Now it is enough to show that V ⊆ K. Let
x ∈ V . Then x ∈ T (V ′ ∪K) gives x = x ∨ (v′ ∧ k) = (x ∨ v′) ∧ (x ∨ k) for some
v′ ∈ V ′ and k ∈ K. Since x ∨ v′ ∈ V ∩ V ′ = {1}, we get x = x ∨ k ∈ K, as
required.

Lemma 2.4. Let F be a filter of L. Then the following hold:

(1) Soc(rad(F ))� F .

(2) If G is a semisimple subfilter of F such that G ⊆ rad(F ), then G� F .

Proof. (1). Put G = Soc(rad(F )) and suppose that F = T (G ∪ K) for some
subfilter K of F . Set H = G ∩K. Then we have G = H ⊕H ′ for some subfilter
H ′ of G ⊆ rad(F ), F = T (K ∪ T (H ∪ H ′)) = T (H ′ ∪ T (H ∪ K)) = T (H ′ ∪ K)
and {1} = H ∩ H ′ = (G ∩ K) ∩ H ′ = H ′ ∩ K; hence F = H ′ ⊕ K. We claim
that H ′ = {1}. To see this, it suffices to show that every simple subfilter of H ′ is
{1}. If S is any simple subfilter of H ′ ⊆ rad(F ), then S is a direct summand of
H ′; hence it is a direct summand of F . By Proposition 1.2 (7), S � rad(F ) which
implies that S � F by Proposition 1.2 (2). Thus S is a direct summand of F and
is small in F and hence S = {1}. Thus F = T (K) = K. This completes the proof.

(2). By assumption, G ⊆ rad(F ) gives G = Soc(G) ⊆ Soc(rad(F )). Now the
assertion follows from (1) and Proposition 1.2 (1).
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Definition 2.5. A filter F of L is called w-supplemented, if every semisimple
subfilter of F has a supplement in F .

We next give three other characterizations of w-supplemented filters.

Theorem 2.6. Let F be a filter of L. Then the following statements are equivalent.
(1) F is w-supplemented.
(2) Every semisimple subfilter of F has a supplement that is a direct summand.
(3) Every semisimple subfilter of F has a weak supplement.
(4) Every semisimple submodule of F has a rad-supplement.

Proof. (1) ⇒ (2) Let G be a semisimple subfilter of F . Then F = T (G ∪H) and
G ∩H � H for some subfilter H of F . By Lemma 2.2, there exists a subfilter G′
of G such that F = G′ ⊕H.

(2)⇒ (3). Let G be a semisimple subfilter of F . Then By (2), F = T (G ∪H)
and G ∩H � H for some subfilter H of F . By Proposition 1.2 (2), G ∩H � H
gives G ∩H � F ; hence G has a weak supplement.

(3)⇒ (4). Let G be a semisimple subfilter of F . By assumption, F = T (G∪H)
and G∩H � F for some subfilter H of F . By Lemma 2.2, there exists a subfilter
G′ of G such that F = G′ ⊕ H. Since G ∩ H ⊆ H and G ∩ H � F , we get
G ∩H � H by lemma 2.3. This implies G ∩H ⊆ rad(H) by Proposition 2.1 (6).
Thus H is rad-supplement of G in F .

(4) ⇒ (1). Let G be a semisimple subfilter of F . By (4), F = T (G ∪H) and
G ∩ H ⊆ rad(H) for some subfilter H of F . Since G ∩ H ⊆ rad(H) ⊆ rad(F ),
Lemma 2.4 and Lemma 2.1 gives G ∩H � F . Since G is semisimple, by Lemma
2.2, F = G′⊕H for some subfilter G′ of G. So we get G∩H � H by Lemma 2.3.
This completes the proof.

Corollary 2.7. Let F be a filter of L. Then F is w-supplemented if and only if
for each semisimple submodule G of F , there exists a decomposition F = F1 ⊕ F2

such that F1 is a subfilter of G and G ∩ F2 � F2.

Proof. Apply Theorem 2.6

Proposition 2.8. If F is a w-supplemented filter of L, then F = X ⊕S for some
semisimple subfilter X and a subfilter S of F .

Proof. Let G be a semisimple subfilter of F . If there is no G 6= {1}, then F =
F⊕{1} and result follows. Otherwise, by assumption, F = T (G∪S) and G∩S � S
for some subfilter S of F . By Lemma 2.1, there exists a semisimple subfilter
X of G such that G = (G ∩ S) ⊕ X; hence by Lemma 1.3, F = T (G ∪ S) =
T (S ∪ T ((G∩ S)∪X)) = T (X ∪ T (S ∪ (G∩ S))) = T (X ∪ T (S)) = T (X ∪ S) and
X ∩ S = (G ∩ S) ∩X = {1}. So F = X ⊕ S.

Theorem 2.9. Every direct summand of a w-supplemented filter F of L is w-
supplemented.
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Proof. Let G be a direct summand of F . Then F = T (G ∪H) and G ∩H = {1}
for some subfilter H of F . Let S be a semisimple subfilter of G. If S = {1},
then G trivially w-supplemented. So we may assume that S 6= {1}. Since S is a
semisimple subfilter of F , we have F = T (S∪K) and S∩K � K for some subfilter
K of F . Then by modular law, G = G∩T (S ∪K) = T (S ∪ (K ∩G)). It is enough
to show that S ∩ (K ∩G) = K ∩S � K ∩G. By Lemma 2.2, G = T (S′∪ (K ∩G))
and S′ ∩ (K ∩ G) = S′ ∩K = {1} for some subfilter S′ of S. That is, K ∩ G is
a direct summand of G. By Proposition 1.2 (2), S ∩K � K gives S ∩K � F .
Since S ∩K ⊆ G and G is a direct summand of F , we get K ∩ S � G by Lemma
2.3. As K ∩ G is a direct summand of G, K ∩ S ⊆ K ∩ G and K ∩ S � G, we
obtain K ∩ S � K ∩G by Lemma 2.3. This completes the proof.

Lemma 2.10. Let H,G be subfilters of F such that T (H ∪G) has a supplement
of U in F and H ∩ T (U ∪ G) has a supplement V in H. Then T (U ∪ V ) is a
supplement of G in F .

Proof. To simplify our notation let B = T (U ∪G)∩H ⊆ T (U ∪G). By hypothesis,
T (U ∪ T (H ∪ G)) = F , U ∩ T (H ∪ G) � U , T (V ∪ B) = H and V ∩ B =
V ∩ T (U ∪ G) = A � V . By Lemma 1.3, we have F = T (U ∪ T (H ∪ G)) =
T (H ∪ T (U ∪G)) = T (T (B ∪ V ) ∪ T (U ∪G)) =

T (V ∪ T (B ∪ T (U ∪G))) = T (V ∪ T (U ∪G)) ⊆ T (G ∪ T (U ∪ V )) ⊆ F ;

hence F = T (G∪T (U ∪V )). It is enough to show that T (U ∪V )∩G� T (U ∪V ).
Since T (G ∪ V ) ⊆ T (H ∪ G) and F = T (G ∪ T (U ∪ V )) = T (U ∪ T (G ∪ V )),
Proposition 1.2 (5) gives U also is a supplement of T (G ∪ V ) in F which implies
that C = T (G ∪ V ) ∩ U � U . Now by Proposition 1.2 (4), T (U ∪ V ) ∩ G ⊆
T (A ∪ C)) � T (U ∪ V ); hence T (U ∪ V ) ∩ G � T (U ∪ V ) by Proposition 1.2
(1).

Theorem 2.11. Let F1, F2 and F be filters of L such that F = F1 ⊕ F2. If F1

and F2 are w-supplemented, then F is w-supplemented.

Proof. Let K be a semisimple subfilter of F . At the first we show that F1∩T (K ∪
F2) is a semisimple subfilter of F1. Assume that G is a subfilter of F1 ∩T (K ∪F2)
and let x ∈ G. Then there are elements h ∈ K and f2 ∈ F2 such that x =
x ∨ (h ∧ f2) = (x ∨ h) ∧ (x ∨ f2). Then x ∨ f2 ∈ G ∩ F2 ⊆ F1 ∩ F2 = {1} which
implies that x = x ∨ h ∈ K; hence G ⊆ K. By Lemma 2.1, G is semisimple. If
G = F1 ∩ T (K ∪ F2), we are done. So we may assume that G 6= F1 ∩ T (K ∪ F2).
There exists a subfilter G′ of K such that K = G⊕G′. Then by Lemma 1.3,

F1 ∩ T (K ∪ F2) = F1 ∩ T (T (G ∪G′) ∪ F2) ⊆ T (G ∪ T (G′ ∪ F2)) ∩ F1

= T (G ∪ (F1 ∩ T (G′ ∪ F2))) with F1 ∩ T (G′ ∪ F2) 6= {1}.
As

G ∪ (F1 ∩ T (G′ ∪ F2)) ⊆ F1 ∩ T (K ∪ F2),
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we get T (G ∪ (F1 ∩ T (G′ ∪ F2))) ⊆ F1 ∩ T (K ∪ F2); hence

F1 ∩ T (K ∪ F2) = T (G ∪ (F1 ∩ T (G′ ∪ F2)).

It is enough to show that G∩ (F1∩T (G′∪F2)) = G∩T (G′∪F2) = {1}. Let z ∈ G
and z ∈ T (G′ ∪F2). Thus z = z ∨ (g′ ∧ f) = (z ∨ g′)∧ (z ∨ f) for some g′ ∈ G′ and
f ∈ F2. Since z ∨ g′ ∈ G∩G′ = {1} and z ∨ f ∈ G∩F2 = {1}, we get z = 1. Thus
A = F1∩T (K∪F2) is a semisimple subfilter of F1. Similarly, B = F2∩T (K∪F1) is
a semisimple subfilter of F2. Then A and B have supplements V1 and V2 in F1 and
F2, respectively. Clearly, F = T (F∪{1}) = T (T (F1∪F2)∪K) = T (F2∪T (F1∪K))
has a supplement {1} in F . If G = T (F1∪K) and H = F2, then V2 is a supplement
T (F1 ∪ K) in F by Lemma 2.10. Also F1 ∩ T (K ∪ V2) ⊆ F1 ∩ T (F2 ∪ K) gives
F1∩T (V2∪K) is semisimple by Lemma 2.1 which implies that it has a supplement
S in F1. Again applying Lemma 2.10, T (V2 ∪S) is a supplement of K in F . Thus
F is w-supplemented.

Corollary 2.12. Every finite direct sum of w-supplemented filters of L is w-
supplemented.

Proof. Apply Theorem 2.11.

Proposition 2.13. Let G be a subfilter of a filter F of L. Then the following
hold:

(1) If A is the intersection of filters of L which are essential in F , then
A = Soc(F ).

(2) Soc(G) = G ∩ Soc(F ) and Soc(Soc(F )) = Soc(F ).

Proof. (1). Let Soc(F ) = T (∪i∈IFi), where {Fi}i∈I is the set of all simple filters
of L contained in F . Let G E F . For each i ∈ I, Fi ∩ G 6= 1 which implies
that Fi ⊆ G; hence Soc(F ) ⊆ A. For the reverse inclusion, it is enough to show
that A is semisimple. Let G be a filter of L such that G ⊆ A. If G E F , then
A ⊆ G; so G = A. So we may assume that G is not essential in F . Let G′ be a
complement of G in F ; so T (G ∪G′) E F by [8, Lemma 2.15 (3)]. It follows that
G ⊆ A ⊆ T (G ∪ G′); thus A = A ∩ T (G ∪ G′) = T (G ∪ (A ∩ G′)) by Lemma 1.3
which implies that A = G ⊕ (A ∩ G′); hence A is semisimple. Thus A ⊆ Soc(F ),
and so we have equality.

(2). Let Soc(F ) = T (∪i∈IFi), where {Fi}i∈I is the set of all simple filters of L
contained in F . Since the inclusion Soc(G) ⊆ G ∩ Soc(F ) is clear, we will prove
the reverse inclusion. Let x ∈ G ∩ Soc(F ). So x = x ∨ (f1 ∧ f2 ∧ · · · ∧ ft) =
(x ∨ f1) ∧ · · · ∧ (x ∨ ft) for some fj ∈ Fij (1 6 j 6 t). If for each 1 6 j 6
t, Fij ⊆ G, then we are done. Therefore, without loss of generality, we can
assume that Fi1 , Fi2 , · · · , Fim 6⊆ G (so G ∩ Fi1 = {1}, · · ·G ∩ Fim = {1}) and
Fim+1

, · · · , Fit ⊆ G. As for each 1 6 j 6 m, Fij , G are filters, we get x ∨ fij = 1;
hence x = (x ∨ fm+1) ∧ · · · ∧ (x ∨ ft) ∈ T (Fm+1 ∪ · · · ∪ Ft) ⊆ Soc(G), and so we
have equality. Finally, if G = Soc(F ), then Soc(Soc(F )) = Soc(F ).
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Lemma 2.14. If F is a filter of L with Soc(F )� F , then F is w-supplemented.

Proof. It is clear that if Soc(F ) = {1}, then F is w-supplemented. Let G be a
semisimple subfilter of F . Since Soc(F ) is the largest semisimple subfilter of F ,
then G ⊆ Soc(F ) � F which implies that G � F by Proposition 1.2 (1). Now
F = T (F ∪ G) and G ∩ F = G � F gives G has a supplement in F . Thus F is
w-supplemented.

Theorem 2.15. Let F be a filter of L. Then F is w-supplemented if and only if
Soc(F ) has a supplement in F .

Proof. If F is w-supplemented, then Soc(F ) has a supplement in F since it is
semisimple. Conversely, let H be a supplement of Soc(F ) in F . Then by Propo-
sition 2.13, F = T (H ∪ Soc(F )) and Soc(H) = H ∩ Soc(F ) � H; hence H is
w-supplemented by Lemma 2.14. By Lemma 2.2, F = H ⊕ S, where S is a
semisimple subfilter of F (so it is w-supplemented). Thus F is w-supplemented
by Theorem 2.11.

A subfilter G of a filter F of L is said to be radical if rad(G) = G.
Proposition 2.16. Every radical filter F of L is w-supplemented.

Proof. Since Soc(F ) = Soc(rad(F ))� F by Lemma 2.4, we get F is w-supplemented
by Lemma 2.14.

Definition 2.17. A filter F of L is called amply w-supplemented, if F = T (A∪B),
where A is a semisimple subfilter of F , then B contains a supplement of A.

Theorem 2.18. Let F be a filter of L. Then F is w-supplemented if and only if
F is amply w-supplemented.

Proof. Clearly, if F is amply w-supplemented, then it is w-supplemented. Con-
versely, let A be a semisimple subfilter of F such that F = T (A ∪ B). It suffices
to show that B contains a supplement of A in F . Since A ∩ B is semisimple, we
have F = T (H ∪ (A ∩ B)) and A ∩ B ∩ H � H for some subfilter H of F . By
Lemma 2.2, F = H ⊕ F1 for some subfilter F1 of A ∩ B. Then by Lemma 1.3,
B = B ∩ T (H ∪ F1) = T (F1 ∪ (H ∩B)) and

F = T (A ∪ T (F1 ∪ (B ∩H))) = T ((B ∩H) ∪ T (A ∪ F1)) = T ((B ∩H) ∪A)

with B∩H ⊆ B. It follows that H = H ∩T ((B∩H)∪A) = T ((B∩H)∪ (H ∩A)).
Since H ∩ A is semisimple, by Lemma 2.2, H = (B ∩H) ⊕K for some subfilter
K of H ∩ A. Now B ∩ H is a direct summand of H and A ∩ B ∩ H � H gives
A ∩B ∩H � H ∩B by Lemma 2.3, as required.

Lemma 2.19. Let F be a filter of L such that rad(F ) E F . Let K ⊆ G ⊆ F be
subfilters of F and assume K to be a direct summand of F . Then rad(K) = rad(G)
if and only if G = K.
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Proof. Let rad(K) = rad(G). By assumption, F = K ⊕ K ′ for some subfilter
K ′ of F . Then by modular law, G = G ∩ T (K ∪ K ′) = T (K ∪ (K ′ ∩ G)) with
K ∩ (K ′ ∩ G) = {1}. Then rad(G) = T (rad(K) ∪ rad(G ∩ K ′)) with rad(G) ∩
rad(G∩K ′) = {1} by [8, Proposition 2.16] (so rad(G∩K ′) = {1}). Clearly, G∩K ′
is a supplement of K in G. If rad(G) = rad(K), then by [8, Theorem 2.9 (3)],
{1} = rad(G ∩K ′) = (G ∩K ′) ∩ rad(F ) which implies that G ∩K ′ = {1} since
rad(F ) E F , and so G = K. The other implication is clear.

Theorem 2.20. Let F be a filter of L such that rad(F ) E F . Then the following
statements are equivalent:

(1) F is w-supplemented;

(2) Every semisimple submodule of F is a direct summand;

(3) Soc(F ) is a direct summand of F .

Proof. (1)⇒ (2). Let G be a semisimple subfilter of F . By (1), there is a subfilter
K of F such that F = T (G∪K) and G∩K � K. By Lemma 2.2, F = K⊕G′ for
some subfilter G′ of G. By [8, Proposition 2.16], we have rad(G) = rad(G′) = {1}
which implies that G = G′ by Lemma 2.19. Thus F = K ⊕G.

(2) ⇒ (3). Since Soc(F ) is semisimple subfilter of F , we get it is a direct
summand of F by (2).

(3)⇒ (1). Let G be a semisimple subfilter of F . So G is a subfilter and a direct
summand of Soc(F ); hence G is a direct summand of F by (3). So F = G ⊕ H
and G∩H = {1} � H for some subfilter H of F . Thus F is w-supplemented.

Corollary 2.21. Let F be a filter of L such that rad(F ) E F . If F is w supple-
mented, then every subfilter of F is w-supplemented.

Proof. Assume that G is a subfilter of F and let K be a semisimple subfilter of
G. By Theorem 2.20, there exists a subfilter H of F such that F = K ⊕H. By
modularity, G = G ∩ T (K ∪H) = T (K ∪ (G ∩H)) with K ∩ (G ∩H) = {1}, that
is, G = K ⊕ (G ∩H). Therefore G is w-supplemented.

Definition 2.22. We say that a filter F of L is totally w-supplemented, if every
subfilter of F is w-supplemented. A lattice L is called a V -lattice if rad(F ) = {1}
for every filter F of L.

Proposition 2.23. For a V -lattice L and a filter F of L, the following statements
are equivalent:

(1) F is w-supplemented;

(2) F is amply w-supplemented;

(3) F is totally w-supplemented.
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Proof. (1)⇔ (2). The proof is followed from Theorem 2.18.
(1) ⇔ (3). Let F be totally w-supplemented. Since F ⊆ F , F is also w-

supplemented. Conversely, assume that F is w-supplemented and G be a subfilter
of F . We will show that G is w-supplemented. Let K be a semisimple subfilter
of G. By assumption, there is a subfilter H of F such that F = T (H ∪ K) and
H ∩ K � H. So H ∩ K ⊆ rad(H) ⊆ rad(F ) = {1}; hence F = H ⊕ K. By
modularity, G = G ∩ T (K ∪H) = T (K ∪ (G ∩H)) with K ∩ (G ∩H) = {1}; so
G = K ⊕ (G ∩H). Thus G is w-supplemented.

Proposition 2.24. Let F = F1⊕F2 be a filter of L such that rad(F ) E F , where
F1 and F2 are totally w-supplemented filters. Then F is totally w-supplemented.

Proof. Let G be a subfilter of F and K be a semisimple subfilter of G. Clearly,
F1 and F2 are w-supplemented; so F is w-supplemented by Theorem 2.11. Then
F = T (K ∪ H) and K ∩ H � H for some subfilter H of F . By Lemma 2.2,
F = K ′ ⊕H for some subfilter K ′ of K. By Lemma 2.19, K = K ′ which implies
that F = K ⊕H. So by modular law, G = G ∩ T (H ∪K) = T (K ∪ (G ∩H)) and
K ∩ (G ∩H) = K ∩H � H. Hence G is w-supplemented.

Theorem 2.25. Let F = F1 ⊕ F2 be a filter of L such that F2 is semisimple.
Then F is totally w-supplemented if and only if F1 is totally w-supplemented.

Proof. It suffices to show that if F1 is totally w-supplemented, then F is totally
w-supplemented. Let G be a subfilter of F . Since F2 is semisimple, there is a
subfilter H of F2 such that F2 = (G∩F2)⊕H (so G∩H = {1} and H∩F1 = {1}).
By Lemma 1.3, since

F = T (F1 ∪ T ((G ∩ F2) ∪H)) = T ((G ∩ F2) ∪ (F1 ∪H)),

we get G = T ((G∩F2)∪(G∩T (F!∪H))) with (G∩F2)∩(G∩T (F1∪H)) = {1}, that
is, G = (G∩F2)⊕ (G∩ (F1⊕H)). If x ∈ G∩T (F1∪H), then x = (x∨f1)∧ (x∨h)
for some f1 ∈ F1 and h ∈ H. As x ∨ h ∈ G ∩ H = {1}, we get x ∈ F1, and so
G ∩ (F1 ⊕ H) is a subfilter of F1; hence it is w-supplemented. Also, G ∩ F2 is
w-supplemented since it is semisimple. Now the assertion follows from Theorem
2.11.

3. W -supplemented Quotient Filters
Quotient lattices are determined by equivalence relations rather than by ideals as
in the ring case. If F is a filter of a lattice (L,6), we define a relation on L, given
by x ∼ y if and only if there exist a, b ∈ F satisfying x ∧ a = y ∧ b. Then ∼ is an
equivalence relation on L, and we denote the equivalence class of a by a ∧ F and
these collection of all equivalence classes by L

F . We set up a partial order 6Q on L
F

as follows: for each a∧F, b∧F ∈ L
F , we write a∧F 6Q b∧F if and only if a 6 b. It

is straightforward to check that (LF ,6Q) is a poset. The following notation below



w-supplemented property in the lattices 41

will be kept in this section: Let a ∧ F, b ∧ F ∈ L
F and set X = {a ∧ F, b ∧ F}.

By definition of 6Q, (a ∨ b) ∧ F is an upper bound for the set X. If c ∧ F is any
upper bound of X, then we can easily show that (a ∨ b) ∧ F 6Q c ∧ F . Thus
(a∧F )∨Q (b∧F ) = (a∨ b)∧F . Similarly, (a∧F )∧Q (b∧F ) = (a∧ b)∧F . Thus
(LF ,6Q) is a lattice.

Remark 3.1. Let G be a subfilter of a filter F of L.
(1) If a ∈ F , then a ∧ F = F . By the definition of 6Q, it is easy to see that

1 ∧ F = F is the greatest element of L
F .

(2) If a ∈ F , then a ∧ F = b ∧ F (for every b ∈ L) if and only if b ∈ F . In
particular, c ∧ F = F if and only if c ∈ F . Moreover, if a ∈ F , then
a ∧ F = F = 1 ∧ F .

(3) By the definition 6Q, we can easily show that if L is distributive, then L
F

is distributive.
(4) F

G = {a ∧G : a ∈ F} is a filter of L
G .

(5) If K is a filter of L
G , then K = F

G for some filter F of L.
(6) If H is a filter of L such that G ⊆ H and F

G = H
G , then F = H.

(7) If H and V are filters of L containing G, then F
G ∩

H
G = V

G if and only if
V = H ∩ F .

(8) If H is a filter of L containing G, then T (F∪H)
G = T (HG ∪

F
G ).

Proposition 3.2. Every quotient of a semisimple filter of L is semisimple.

Proof. LetK be a subfilter of a semisimple filter F . We show that F
K is semisimple.

Let G
K be a subfilter of F

K . Since F is semisimple, F = T (G∪H) with G∩H = {1}
for some subfilter H of F . Then we have F

K = T (G∪H)
K =

T (G ∪ T (H ∪K))

K
= T (

G

K
∪ T (H ∪K)

K
)

and G
K ∩

T (H∪K)
K = G∩T (H∪K)

K . It is enough to show that G ∩ T (H ∪ K) = K.
Clearly, K ⊆ G ∩ T (H ∪ K). For the reverse inclusion, suppose that x ∈ G ∩
T (H ∪K). Then x = x ∨ (h ∧ k) = (x ∨ h) ∧ (x ∨ k) for some h ∈ H and k ∈ K.
As x ∨ h ∈ G ∩H = {1}, we get x = x ∨ k ∈ K, and so we have equality. Thus
F
K = G

K ⊕
T (H∪K)

K .

Proposition 3.3. Let H and G be subfilters of a filter F of L. IF H is semisimple,
then T (H∪G)

G is a semisimple subfilter in F
G .

Proof. Let U
G be a subfilter of T (H∪G)

G (so U ⊆ T (H ∪ G)). By assumption,
H = (H ∩ U) ⊕ K for some subfilter K of H (so U ∩ K = {1}). At first we
show that T (U ∪ K) = T (H ∪ G). Since U ⊆ T (H ∪ G) and K ⊆ H, we get
T (U ∪K) ⊆ T (H ∪G). For the reverse inclusion, by Lemma 1.3, we have

T (H∪G) = T (G∪T (K∪(H∩U))) ⊆ T (G∪T (U∪K)) ⊆ T (K∪T (U∪G)) = T (U∪K),
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and so we have equality. Next we show that T (U ∪K) = T (U ∪ T (G∪K)). Since
the inclusion T (U ∪ K) ⊆ T (U ∪ T (G ∪ K)) is clear, we will prove the reverse
containment. Let x ∈ T (U ∪T (G∪K)). Then x = (x∨u)∧ (x∨ t) for some u ∈ U
and t ∈ T (G∪K) which implies that x = (x∨u)∧(x∨t∨g)∧(x∨t∨k) ∈ T (K∪U)
for some g ∈ G and k ∈ K. Thus T (U ∪ T (G ∪K)) = T (U ∪K) = T (G ∪ H)).
Clearly, G ⊆ U ∩ T (G ∪K). If z ∈ U ∩ T (G ∪K), then z = (z ∨ g) ∧ (z ∨ k) for
some g ∈ G and k ∈ K. As z ∨ k ∈ U ∩K = {1}, we get z = z ∨ g ∈ G; hence
G = U ∩ T (G ∪ U). Now we have

T (
U

G
∪ T (G ∪K

G
) =

T (U ∪ T (G ∪K))

G
=

T (H ∪G)

G

and U
G ∩

T (G∪K)
G = U∩T (G∪K)

G = G
G = {G}. Thus T (H∪G)

G = U
G ⊕

T (G∪K)
G .

Theorem 3.4. Let G be a subfilter a filter F of L such that G� F . If G and F
G

are w-supplemented, then F is w-supplemented.

Proof. If H is any semisimple subfilter of F , then T (H∪G)
G is a semisimple subfilter

in F
G by Proposition 3.3. If F

G = T (H∪G)
G , then F = T (H ∪ G). By Lemma 2.2,

F = H ′⊕G for some subfilter H ′ of H which implies that F is w-supplemented as
a finite direct sum of w-supplemented filters. So we may assume that F

G 6=
T (H∪G)

G .
By assumption, there exists a subfilter K

G of F
G such that F

G = T (T (H∪G)
G ∪ K

G ) =
T (K∪T (H∪G))

G = T (K∪H)
G and T (H∪G)

G ∩ K
G = T (H∪G)∩K

G = T (G∪(H∩K)
G � K

G . Since
F = T (K∪H), it is enough to show that H∩K � K. Let K = T (X∪(H∩K)) for
some subfilter X of K. Then K

G = T (T (G∪(H∩K)
G ∪ T (X∪G)

G ). Since T (G∪(H∩K)
G �

K
G , then K

G = T (X∪G)
G ; hence K = T (X∪G). As F = T (K∪H), there is a subfilter

U of H such that F = K ⊕U by Lemma 2.2. As K is a direct summand of F and
G ⊆ K, G � F gives G � K by Lemma 2.3; hence K = X. Thus H ∩K � K.
This completes the proof.

Theorem 3.5. Let F be a filter of L. If every semisimple subfilter of F
rad(F ) is

a direct summand, then F is (amply) w-supplemented. In particular, if F
rad(F ) is

semisimple, then F is (amply) w-supplemented.

Proof. Let G be a semisimple subfilter of F . Then by Proposition 3.3, T (G∪rad(F ))
rad(F )

is a semisimple subfilter of F
rad(F ) . If

T (G∪rad(F ))
rad(F ) = F

rad(F ) , then T (G ∪ rad(F )) =

F . Thus F = rad(F ) ⊕ G′ for some subfilter G′ of G by Lemma 2.2. Since
G ∩ rad(F ) is semisimple and G ∩ rad(F ) ⊆ rad(F ), G ∩ rad(F ) � F by Lemma
2.4 and also by Lemma 2.3, G∩rad(F )� rad(F ) since rad(F ) is a direct summand
of F . Thus F is w-supplemented. So we may assume that T (G∪rad(F ))

rad(F ) 6= F
rad(F ) .

By assumption and Lemma 1.3, there is a subfilter H
rad(F ) of F

rad(F ) such that

F

rad(F )
= T (

T (G ∪ rad(F ))

rad(F )
∪ H

rad(F )
) =

T (G ∪H)

rad(F )



w-supplemented property in the lattices 43

and T (G∪rad(F ))
rad(F ) ∩ H

rad(F ) = T (rad(F )∪(G∩H))
rad(F ) = {rad(F )}; so F = T (G ∪ H) and

T (rad(F )∪(G∩H)) = rad(F ) (so G∩H ⊆ rad(F )). By Lemma 2.2, F = H⊕K for
some subfilter K of G. Since G∩H is semisimple, by Lemma 2.4, G∩H � F . By
Lemma 2.3, since H is a direct summand of F and G∩H � F , we get G∩H � H.
Therefore, F is w-supplemented. The in particular statement is clear.

Definition 3.6. A lattice L is called a semilocal lattice if F
rad(F ) is semisimple for

every filter F of L.

Corollary 3.7. If L is a semilocal lattice. Then the following hold:
(1) Every filter of L is (amply) w-supplemented.
(2) Every filter of L is totally w-supplemented.

Proof. Apply Theorem 3.5.
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