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On the component graphs of

finitely generated free semimodules

Sushobhan Maity and Anjan Kumar Bhuniya

Abstract. A semiring S is said to have invariant basis number property if any two bases of a
finitely generated free semimodule over S have the same cardinality. Here we characterize reduced
zero and reduced non-zero component graphs of every finitely generated free semimodule V over
such semirings. It is shown that if |S| > ℵ0, these two graphs of a semimodule V over S are
isomorphic.

1. Introduction

In the recent years, there has been a flow of various ideas in the study of algebraic
structures using graphs defined on themselves. Various algebraic structures like
semigroups [5], groups [2], rings [1] and vector spaces [6, 8] have been character-
ized in this way. In [6], Das introduced non-zero component graph on a finite
dimensional vector space.

Recently, semimodules over a semiring have created attention to the researchers
for their different interesting uncommon features. Many of the results of vector
spaces do not match with the results of semimodules. For example, in a vector
space every basis is a free basis and converesely, which does not hold in a semi-
module in general [10].

Here we consider both zero and non-zero component graphs of a finitely gen-
erated free semimodule. Also we introduce reduced non-zero component graph
and reduced zero component graph on a finitely generated free semimodule and
prove that they are isomorphic. This isomorphism ensures that studying either of
them is sufficient to know about both. Here we study reduced non-zero component
graph.

2. Definitions and preliminary results

Let G = (M,E) be a graph. All graphs considered here are simple. A subset
I of M is said to be independent if no two elements of I are pairwise adjacent.
The maximum number of elements of an independent set is called the indepen-
dence number of G. A subset D of M is called dominating if each element of
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M \ D is adjacent to at least one element of D. If no proper subset of D is a
dominating set for G, then D is called a minimal dominating set for G. The least
cardinality of a dominating set is called the domination number of G. Two graphs
(M,E) and G′ = (M ′, E′) are said to be isomorphic if there exists a bijective
mapping φ : M → M ′ such that a ∼ b in M if and only if φ(a) ∼ φ(b) in M ′.
A path of length k in a graph G is an alternating sequence of vertices and edges
a0, e0, a1, e1, a2, . . . , ak−1, ek−1, ak, where ai’s are distinct (except possibly a0, ak)
and ei is the edge joining ai and ai+1. If there exists a path between any pair of
distinct vertices, then it is called connected. The distance between two vertices
a, b ∈ M , d(a, b) is defined as the length of the shortest path between a and b.
The diameter of a graph G is defined as diam(G) = maxa,b∈Md(a, b), if it exists.
Otherwise, diam(G) is defined as ∞.

We refer to [3] for further notions on graph theory and [7] for basic notions
and results on semirings and semimodules.

A semiring S is an algebraic system (S,+, ·, 0, 1) such that (S,+, 0) is a com-
mutative monoid and (S, ·, 1) is a monoid, connected by the ring-like distributive
laws. Also we assume that (S, ·) is commutative, 0 6= 1 and the zero element 0 is
absorbing, that is s0 = 0s = 0 for all s ∈ S. We say that s ∈ S is invertible if
st = 1 for some t ∈ S and denote the set of all invertible elements of S by U(S).
If a semiring S is such that U(S) = S \ {0}, then S is said to be a semifield.

Definition 2.1. Let S be a semiring. A left S-semimodule is a commutative
monoid (V,+) with additive identity θ for which we have a function S ×V −→ V,
denoted by (λ, α) 7−→ λα and called as scalar multiplication, which satisfies the
following conditions for all a, b ∈ S and u, v ∈ V:

(i) a(u+ v) = au+ av;
(ii) (a+ b)v = av + bv;
(iii) (ab)v = a(bv);
(iv) 1v = v;
(v) aθ = θ = 0v.

Right S-semimodules are defined analogously. In this paper a semimodule V
over S means left S-semimodule. The elements of V are called vectors and the
elements of S are called scalars.

Let S be a semiring. Then a semimodule V over S is also known as a semilinear
space over S. If a semiring S is a ring, then any semilinear space V over S is an
S-module. In particular, if S is a field then any semilinear space over S is a linear
space (or, vector space) over S.

Let B be a non-empty subset of V. Then we denote

span(B) = {
∑n
i=1 cixi : n ∈ N, ci ∈ S, xi ∈ B}.

If span(B) = V, then B is called a generating subset of V. A semimodule V
having a finite generating set B is called finitely generated. A nonempty subset
D of vectors in V is called linearly dependent if there exists x ∈ D such that
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x ∈ span(D − {x}); otherwise it is called linearly independent; and free if each
element of V is expressed as a linear combination of the elements of D in at most
one way. It is easy to see that every free subset of V is linearly independent.
A linearly independent generating subset of V is called a basis of V and a free
generating subset of V is called a free basis of V [10]. If V has a free basis then it is
called a free semimodule. It is easy to see that every finitely generated semimodule
has a basis, and every free basis is a basis [10].

Definition 2.2. A semiring S is said to have invariant basis number [IBN] prop-
erty if any two bases of a finitely generated free semimodule over S have the same
cardinality.

A semiring S has the IBN property if and only if for every s, t ∈ S, s + t = 1
implies that either s ∈ U(S) or t ∈ U(S) [Theorem 4.3; [10]]. Hence every semifield
has the IBN property. In particular, the semiring R+∪{0} of all non-negative real
numbers, the max-plus semiring Rmax and many other tropical semirings are of this
type. Apart from the semifields, the semiring N ∪ {0} of all non-negative integers
also has this property. Thus we see that many useful as well as algebraically
important semirings have the IBN property.

Henceforth, unless stated otherwise, S is a semiring having invariant basis
number property and V is a finitely generated free semimodule over S. Let V
be a finitely generated free semimodule over S, then from Corollary 3.1 [10], it
follows that every vector of V can be expressed uniquely in terms of each basis.
The cardinality of a basis of V is denoted by dim(V).

Isomorphism of semimodules is defined similarly to modules. It follows from
Corollary 5.2 [9], that semimodules V andW are isomorphic if and only if dim(V) =
dim(W).

If X = {x1, x2, . . . , xn} is a basis of a semimodule V, then every vector v ∈ V
can be expressed uniquely as v = c1x1 + · · · + cnxn; ci ∈ S. We call ci the i-th
component of V and is denoted by vi.

Definition 2.3. The non-zero component graph of V relative to the basis X, is
defined as ΓX(V) = (V,E), where V = V \ {θ} and (α, β) ∈ E if there exists i such
that αi, βi are non-zero.

Note that the vectors of the form v = c1x1 + c2x2 + · · · + cnxn, whose all
components are non-zero, adjacent to every other vertex of ΓX(V). These vertices
do not have much role on the parameters of ΓX(V). So we propose to consider
the graph Γ∗X(V) obtained from ΓX(V) after deletion of such vertices. We call
Γ∗X(V) the reduced non-zero component graph of V with respect to the basis
X = {x1, x2, . . . , xn}.

Theorem 2.4. Let V be a semimodule over a semiring S. Let Γ∗X(V) and Γ∗Y (V)
be the reduced non-zero component graphs of V with respect to the bases X =
{x1, x2, . . . , xn} and Y = {y1, y2, . . . , yn} of V. Then Γ∗X(V) and Γ∗Y (V) are graph
isomorphic.
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Proof. Define a mapping σ : V −→ V such that

σ(c1x1 + c2x2 + · · ·+ cnxn) = c1y1 + c2y2 + · · ·+ cnyn.

Then clearly σ is an isomorphism on V such that σ(xi) = yi for all i ∈ {1, 2, . . . , n}.
We show that the restriction of σ on non-null vectors of V such that at least one
component is zero induces a graph isomorphism σ∗ : Γ∗X(V) −→ Γ∗Y (V). Clearly σ∗
is a bijection. Let α = c1x1+c2x2+· · ·+cnxn and β = d1x1+d2x2+· · ·+dnxn with
α ∼ β in Γ∗X(V). Then there exists i such that ci, di 6= 0. Hence σ∗(α) ∼ σ∗(β) in
Γ∗Y (V). Similarly it can be shown that if α and β are not adjacent in Γ∗X(V), then
σ∗(α) and σ∗(β) are not adjacent in Γ∗Y (V).

Now we define the zero component graph Γ0X(V) and reduced zero component
graph Γ∗0X(V) of a semimodule V as follows:

Definition 2.5. Let V be a semimodule with a basis X. The zero component
graph of V is defined as the graph Γ0X(V) = (V, E), where V = V \ {

∑
cixi :

c1 · c2 · · · cn 6= 0}, that is V consists of the elements whose at least one component
is zero and (α, β) ∈ E if there exists i such that both αi and βi are zero. Note that
θ ∼ v for every v in Γ0X(V). In fact θ is the only vertex having this property. The
subgraph Γ∗0X(V) obtained by deletion of θ, is called the reduced zero-component
graph of V.

For any two bases X and Y of V, proceeding similarly as in the proof of
Theorem 2.4, we can prove that Γ∗0X(V) and Γ∗0Y (V) are graph isomorphic.

Since the graphs are independent of the choice of a particular basis (up to
isomorphism), so we denote the reduced non-zero component graph of V by Γ∗(V)
and the reduced zero component graph of V by Γ∗0(V).

Notice that the vertex set of both Γ∗(V) and Γ∗0(V) is same and for the next
sections of this article we denote it by V and X = {x1, x2, . . . , xn} denotes a basis.

3. Properties of the graph Γ∗(V)

In this section, we investigate some basic properties like connectedness, complete-
ness, domination number, independence number of the graph Γ∗(V). Also we show
that two semimodules V and W are isomorphic if and only if the graphs Γ∗(V)
and Γ∗(W) are isomorphic.

Since any two elements of a basis are pairwise non-adjacent, Γ∗(V) is not
complete.

Theorem 3.1. If n > 3, Γ∗(V) is connected and diam(Γ∗(V)) = 2.

Proof. If α, β ∈ V are adjacent, then d(α, β) = 1; otherwise, there exist distinct
i, j such that αi, βj 6= 0. Since n > 3, there exists γ ∈ V such that γi, γj 6= 0.
So α ∼ γ and β ∼ γ and hence d(α, β) = 2. Thus Γ∗(V) is connected and
diam(Γ∗(V)) = 2.
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Theorem 3.2. The domination number of Γ∗(V) is 2.

Proof. It is easily seen that {x1 + x2 + · · ·+ xn−1, x2 + x3 + · · ·xn} is a minimal
dominating subset of Γ∗(V). If possible, let {α} be a dominating subset of Γ∗(V).
Then there exists i such that αi = 0. Consider β ∈ V such that βi 6= 0 but βj = 0
for all j 6= i. Then α � β. Hence the result.

Theorem 3.3. If D = {y1, y2, . . . , yl} is a minimal dominating set of Γ∗X(V), then
l 6 n.

Proof. Let Di = D \ {yi} for i ∈ {1, 2, . . . , n}. Since D is a minimal dominating
set, for all i ∈ {1, 2, . . . , l}, Di is not a dominating subset of Γ∗X(V). So, for each
i ∈ {1, 2, . . . , l}, there exists zi ∈ Γ∗(V) such that zi ∼ yi but zi � yj for j 6= i.
Since zi 6= θ, there exists ti such that (zi)ti 6= 0. So xti � yj for j 6= i but xti ∼ yi
as D is a minimal dominating set.

Now we show that xti 6= xtj for i 6= j. If possible, let xti = xtj for some i 6= j.
Since xti ∼ yi and xti = xtj , so xtj ∼ yi which contradicts that xti � yj for all
i 6= j. Hence xti 6= xtj for i 6= j. Since xt1 , xt2 , . . . , xtl are all distinct, it follows
that l 6 n.

Theorem 3.4. The independence number of Γ∗X(V) is n.

Proof. It is easy to observe that {x1, x2, . . . , xn} is an independent set of Γ∗X(V).
So the independence number of Γ∗X(V) is greater than or equal to n. If possible,
let {y1, y2, . . . , yl} be an independent set of Γ∗X(V) such that l > n. Since for all
i ∈ {1, 2, . . . , l}, yi 6= θ, there exists ti such that (yi)ti 6= 0. We show that ti 6= tj
when i 6= j. If ti = tj = t for some i 6= j, then ti th component of both yi and yj
is non-zero and hence yi ∼ yj , which is a contradiction to the independence of yi
and yj . Since there are exactly n distinct xi, the independence number of Γ∗X(V)
is n.

Lemma 3.5. Let I be an independent set in Γ∗X(V), then I is linearly independent
in V.

Proof. Let I = {y1, y2, . . . , yl} be an independent set of Γ∗X(V). Then by Theorem
3.4, l 6 n. If possible, let I be linearly dependent in V. Then there exists i ∈
{1, 2, . . . , l} such that yi is expressed as a linear combination of y1, . . . , yi−1, yi+1,

. . . , yl, i.e., yi = c1y1 + c2y2 + · · ·+ ci−1yi−1 + ci+1yi+1 + · · ·+ clyl =
∑l
j=1,j 6=i cjyj

Let yj =
∑n
t=1 dtjxt for j = 1, 2, . . . , i− 1, i+ 1, . . . , l. Thus,

yi = (c1d11+· · ·+ci−1d1,i−1+ci+1d1,i+1+· · ·+cld1l)x1+(c1d21+· · ·+ci−1d2,i−1+
ci+1d2,i+1+· · ·+cld2l)x2+· · ·+(c1dn1+· · ·+ci−1dn,i−1+ci+1dn,i+1+· · ·+cldnl)xn
Since yi 6= θ, there exists t0 such that (yi)t0 6= 0. So, there exists yk such that
k 6= i and (yk)t0 6= 0, otherwise t0-th component of yi will be 0. Which shows
that {y1, y2, . . . , yl} is not independent in Γ∗X(V). This contradiction shows that
{y1, y2, . . . , yl} is linearly independent in V.
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Remark 3.6. Converse of the Lemma 3.5 is not true, in general, if we consider
the subset {x1, x1 + x2} of a three dimensional semimodule with respect to the
basis {x1, x2, x3}.

Now, we show that two semimodules are isomorphic if and only if their corre-
sponding reduced non-zero component graphs are isomorphic.

Lemma 3.7. Two semimodules V andW are isomorphic if and only if the reduced
non-zero component graphs Γ∗(V) and Γ∗(W) are isomorphic.

Proof. Let V and W be isomorphic and σ : V −→ W be an isomorphism. Then
Y = {σ(x1), σ(x2), . . . ,
σ(xn)} is a basis of W . Consider the restriction σ∗ : Γ∗X(V) −→ Γ∗Y (W) given by

σ∗(c1x1 + c2x2 + · · ·+ cnxn) = c1σ(x1) + c2σ(x2) + · · ·+ cnσ(xn)

where c1 · c2 · · · cn = 0 but (c1, c2, . . . , cn) 6= (0, 0, . . . , 0). Clearly σ∗ is a bijection.
Let α = c1x1 + · · ·+ cnxn and β = d1x1 + · · ·+dnxn. Then α ∼ β in Γ∗X(V) if and
only if there exists i such that ci, di 6= 0 if and only if σ∗(α) ∼ σ∗(β) in Γ∗Y (W ).
Therefore Γ∗(V) and Γ∗(W ) are isomorphic.

Conversely, let φ : Γ∗(V) → Γ∗(W) be a graph isomorphism. let dim(V) = m
and dim(W ) = n. Since isomorphism preserves the independence number, the
independence number of Γ∗(V) equals to the independence number of Γ∗(W) and
hence m = n. So V and W are isomorphic.

Thus we see that a semimodule isomorphism σ : V → W is also a graph
isomorphism (ignoring the null vector and vectors of the form c1x1 + · · · + cnxn
such that c1 · c2 . . . cn 6= 0), however the converse may not be true which is shown
in the following example.

Example 3.8. Consider the semimodule N2
0 over N0, the set of all nonnegative

integers, with respect to usual addition and multiplication. Then the vertex set
V of Γ∗(N2

0), is {(a, b) ∈ N2
0 : a = 0 or b = 0 and (a, b) 6= (0, 0)}. Define a

map φ : V → V defined by φ(1, 0) = (3, 0), φ(3, 0) = (1, 0), φ(n, 0) = (n, 0) for
n 6= 1, 3 and φ(0,m) = (0,m), where m ∈ N0. Then φ is a graph isomorphism on
Γ∗(N2

0) but it can not be extended to a linear transformation on N2
0. Otherwise

(1, 0) = φ(3, 0) = 3φ(1, 0) = (9, 0), which is a contradiction.

Now, we study the form of automorphisms of Γ∗(V).

Theorem 3.9. Let φ be a graph automorphism on Γ∗X(V). Then φ permutes the
elements of X = {x1, x2, . . . , xn} of V with some non-zero scalar multiplication,
i.e. there exists a permutation σ ∈ Sn such that φ(xi) = cixσ(i), where ci’s are
non-zero.

Proof. Since φ is a graph automorphism on Γ∗X(V) and {x1, x2, . . . , xn} is an in-
dependent set of vertices in Γ∗X(V), therefore {φ(xi) : i = 1, 2, . . . , n} is also an
independent set of vertices in Γ∗X(V). Let



Component graphs of finitely generated free semimodules 249

φ(x1) = c11x1 + c12x2 + · · ·+ c1nxn
φ(x2) = c21x1 + c22x2 + · · ·+ c2nxn
· · · · · · · · · · · · · · · · · · · · · · · · · · ·

φ(xn) = cn1x1 + cn2x2 + · · ·+ cnnxn

Since φ(x1) 6= 0, there exists j1 ∈ {1, 2, . . . , n} such that c1j1 6= 0. Therefore
cij1 = 0 for all i 6= 1 because φ(xi) is not adjacent to φ(x1) for all i 6= 1. Similarly,
for φ(x2), there exists j2 ∈ {1, 2, . . . , n} such that c2j2 6= 0 and cij2 = 0 for all
i 6= 2. Moreover, j1 6= j2 as φ(x1) and φ(x2) are not adjacent. Proceeding in this
way, we see that for φ(xn), there exists jn ∈ {1, 2, . . . , n} such that cnjn 6= 0 and
cijn = 0 for all i 6= n and j1, j2, . . . , jn ∈ {1, 2, . . . , n} are all distinct numbers.

Thus we see that ckjl = 0 for all k 6= l and ckjk 6= 0, where k, l ∈ {1, 2, . . . , n}.

Let σ =

(
1 2 . . . n
j1 j2 . . . jn

)
. Then σ is a permutation on {1, 2, . . . , n} and

φ(xi) = cijixji = cijixσ(i), where ciji 6= 0 and hence the result follows.

Theorem 3.10. Let φ be a graph automorphism on Γ∗X(V) such that φ maps
xi into cijixσ(i) for some σ ∈ Sn, where ciji 6= 0. Then, for {i1, i2, . . . , ik} ⊂
{1, 2, . . . , n}, if ci’s are non-zero, then φ(c1xi1 + · · · + ckxik) = d1xσ(i1) + · · · +
dkxσ(ik), where di’s are non-zero.

Proof. Since cxi ∼ xi in Γ∗X(V) and φ is an automorphism on Γ∗X(V), φ(cxi) ∼
φ(xi) i.e., φ(cxi) ∼ cijxσ(i). So, σ(i)-th component of φ(cxi) is non-zero. If
possible, let σ(j)-th component of φ(cxi) is non-zero for j 6= i. Then φ(cxi) ∼ xσ(j)
i.e. φ(cxi) ∼ φ(xj). Which in turn implies that cxi ∼ xj for i 6= j, which is a
contradiction since {x1, x2, . . . , xn} is an independent set. Therefore, φ(cxi) =
dxσ(i) for some d 6= 0.

Now, for all {i1, i2, . . . , ik} ⊂ {1, 2, . . . , n},

c1xi1 + c2xi2 + · · ·+ ckxik ∼ xi1

⇒φ(c1xi1 + c2xi2 + · · ·+ ckxik) ∼ φ(xi1) = cxσ(i1) for some c 6= 0.

Which implies that φ(c1xi1 + c2xi2 + · · · + ckxik) ∼ xσ(i1). Similarly, φ(c1xi1 +
c2xi2 + · · ·+ ckxik) ∼ xσ(i2) and so on. Therefore, φ(c1xi1 + c2xi2 + · · ·+ ckxik) =
d1xσ(i1) + d2xσ(i2) + · · ·+ dkxσ(ik), where di’s are non-zero

Corollary 3.11. If n > 3, then Γ∗X(V) is not vertex transitive.

Proof. If n > 3, then by Theorem 3.10, there does not exist any automorphism
which maps x1 to x1 + x2.

4. Graph isomorphism of Γ∗(V) and Γ∗0(V)

In this section we show that for a semimodule V over S, if |S| > ℵ0, then the
reduced non-zero component graph and reduced zero component graph of V are



250 S. Maity and A. K. Bhuniya

isomorphic. Now we show that if |S| < ℵ0, then the two graphs Γ∗(V) and Γ∗0(V)
may not be isomorphic.

Example 4.12. Let S = {0, 1, a} be the chain 0 < a < 1. Consider the semi-
module S3 over S and a basis E = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}. Then the ver-
tex set of both reduced zero and reduced non-zero component graphs of S3 is
{(1, 0, 0), (1, 0, a), (1, 0, 1), (1, 1, 0), (1, a, 0), (a, 0, 0), (a, 0, a), (a, 0, 1), (a, a, 0), (a, 1, 0),
(0, a, a), (0, a, 0), (0, a, 1), (0, 0, a), (0, 0, 1), (0, 1, 0), (0, 1, 1), (0, 1, a)}. The degree of
(1, 0, 0) in Γ∗E(S3) is 9. But, there does not exist any element of degree 9 in
Γ∗0E(S3). Therefore Γ∗E(S3) is not isomorphic to Γ∗0E(S3).

Theorem 4.13. Let V be a semimodule over S and X be a basis of V. If |S| > ℵ0,
then Γ∗X(V) and Γ∗0X(V) are isomorphic.

Proof. Let X = {x1, x2, . . . , xn}. Then the two graphs Γ∗X(V) and Γ∗0X(V) have
the same set of vertices V = {

∑n
i=1 aixi : ∃i, j such that ai = 0 and aj 6= 0}. For

A = {i1, i2, . . . , ik} ⊂ {1, 2, . . . , n}, denote ZA = {
∑
aixi ∈ V : ai1 = . . . = aik = 0

and ai 6= 0 otherwise }. Then V is a disjoint union of the sets ZA, where A is a
non-empty proper subset of {1, 2, . . . , n}, i.e. V =

⋃
ZA. Now, since |S| > ℵ0,

|ZA| = |ZAc | = |V|, which implies that there exists a bijection φA : ZA → ZAc .
Thus we get a bijection φ = ∪φA : V −→ V such that a ∼ b in Γ∗0X(V) if

and only if φ(a) ∼ φ(b) in Γ∗X(V). Hence Γ∗X(V) and Γ∗0X(V) are isomorphic as
graphs.
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