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Maximal cyclic subgroups of a finite abelian

p-group of rank two

Pradeep Kumar

Abstract. Let G be a finite group. A cyclic subgroup of G that is not a proper subgroup of any
other proper cyclic subgroup of G is called a maximal cyclic subgroup and the set of all maximal
cyclic subgroups of G is denoted by MG. In this paper, we find the cardinality of the set MG,
where G is a finite abelian p-group of rank two. As an application, we obtain the independence
number of the power graph of the group G.

1. Introduction

Counting the number of subgroups of finite groups is one of the old problems
in finite group theory and it is still frequently studied. In [2], Bhowmik gave a
method to determine the total number of subgroups of a finite abelian p-group. A
simple formula, in the case of a finite abelian p-group of rank two was obtained
by Călugăreanu [3], Petrillo [10] and Tóth [14] by using Goursat’s lemma. In [13],
Tóth obtained the number of cyclic subgroups of a finite abelian group.

Let G be a finite group. A cyclic subgroup of G that is not a proper subgroup
of any other proper cyclic subgroup of G is called a maximal cyclic subgroup and
the set of all maximal cyclic subgroups of G is denoted by MG. Let Γ be a
graph. A set of pairwise non-adjacent vertices of Γ is called an independent set.
The maximum size of an independent set in a graph Γ is called the independence
number of Γ and denoted by β(Γ ).

Let G be a group. The undirected power graph P(G) has the vertex set G and
two distinct vertices x and y are adjacent if x = ym or y = xm for some positive
integer m. The concepts of a power graph and an undirected power graph were
first considered by Kelarev and Quinn [8] and Chakrabarty et al. [6], respectively.
Since this paper deals only with undirected graphs, for convenience throughout we
use the term “power graph” to refer to an undirected power graph. Recently, a lot of
interesting results on the power graphs have been obtained, see for example [4, 5].
A detailed list of open problems and results can be found in [1]. Chakrabarty et al.
[6], found that the power graph P(G) is complete if and only if G is a cyclic group
of order pn, where p is a prime number and n is a non-negative integer. Sehgal and
Singh [12] obtained the degree of a vertex in the power graph of a finite abelian
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group. Chelevam and Sattanathan [7] determined the finite abelian groups whose
power graphs are planar. They have also characterized the finite abelian groups
G with β(P(G)) = 2. In [9], X. Ma et al. obtained that the independence number
of the power graph of a finite p-group G is equal to the cardinality of the setMG.
For generalized extraspecial p-groups G with p > 2, β(P(G)) had been determined
in [?] by calculating the cardinality of the setMG.

In this paper, we find the cardinality of the set MG, where G is an abelian
p-group of rank two. Equivalently, we find the independence number of P(G).

Throughout the paper p denotes a prime number. Let |X| denote the cardinal-
ity of the set X and o(x) denote the order of the element x in the group G. Let
〈g〉 denote the cyclic subgroup of the group G generated by g ∈ G and the identity
element of the group G is denoted by e. For a positive integer n, φ(n) denotes the
Euler’s totient function. Let C(G) denote the set of all distinct cyclic subgroups
of the group G. Note that (C(G),⊆) is a poset.

2. Preliminaries

We will start with the basic facts that will be needed later.

Lemma 2.1. Let G ∼= Zpβ1 × Zpβ2 ∼= 〈x〉 × 〈y〉 where o(x) = pβ1 and o(y) = pβ2

and β1 > β2 > 1. Let g = xp
k1α1yp

k2α2 6= e ∈ G. If 0 < ki and p - αi ∀ i ∈ {1, 2},
then there are p cyclic subgroups of order o(g)p containing 〈g〉. Further, if for some
i = io, kio = 0 and αio 6= 0, then 〈g〉 doesn’t contained in any cyclic subgroup of
order o(g)p.

Proof. Let g ∈ G such that g = xp
k1α1yp

k2α2 , where p - αi for i ∈ {1, 2}. First, we
count the number of elements h ∈ G such that hp = g. Consider h = xr1yr2 . Now,
hp = g implies xpr1ypr2 = xp

k1α1yp
k2α2 . So pkiαi = pri mod pβi ∀ i ∈ {1, 2}. For

fixed i, latter equation has integer solution ri if and only if p | pkiαi. Thus, if for
some i = io, kio = 0 and αio 6= 0, then there doesn’t exist any h ∈ G such that
hp = g.

Now, assume ki > 0, ∀ i. So, if pkiαi ≡ pri mod pβi , then pki−1αi ≡ ri
mod pβi−1. Thus, the latter equation has p distinct solutions for each fixed i
and that are ri = pki−1αi + kpα1−1, where 0 6 k 6 p − 1. Thus, for given
g = xp

k1α1yp
k2α2 , where p - αi and ki > 0, there are p2 elements h ∈ G such that

hp = g and o(h) = o(g)p.
Now, let 〈h〉 be a cyclic subgroup of order o(g)p such that 〈g〉 ⊂ 〈h〉 and hp = g.

Suppose w ∈ 〈h〉 such that wp = g, then w = hr and hrp = hp = g. This implies
that rp ≡ p mod o(h). Thus, r = 1 + k o(h)p , where 1 6 k 6 p. Thus, each
cyclic subgroup 〈h〉 of order o(g)p contains p distinct elements w ∈ 〈h〉 such that
wp = g. Hence that, there are p2

p = p cyclic subgroups of order o(g)p containing
g for ki > 0 ∀ i. This completes the proof.
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Corollary 2.2. Suppose G ∼= Zpβ1 × Zpβ2 , β1 > β2. Then a cyclic subgroup
H = 〈xpβ1−t

yb〉 (where β2 6 t < β1, 1 6 b 6 pβ2 ) of order pt is contained in a
cyclic subgroup of order pt+1 if and only if p | b.
Proof. This follows from Lemma 2.1.

Recall that the set of all maximal cyclic subgroups of the finite group G is
denoted byMG and the independence number of the graph Γ is denoted by β(Γ ).

Theorem 2.3. [9, Corollary 2.14] Let G be a p-group. Then β(P(G)) = |MG|.

3. Maximal cyclic subgroups
In this section, we find the number of maximal cyclic subgroups of Zpr × Zps , r >
s > 1. For the rest of the paper, we fixed that G ∼= Zpr × Zps ∼= 〈x〉 × 〈y〉, where
o(x) = pr and o(y) = ps and r > s > 1.

The number of cyclic subgroups of order p in G is p+1 and these cyclic groups
are given as {〈yps−1〉} ∪ {〈xpr−1

yip
s−1〉 | 1 6 i 6 p}. From [11], we know that

a cyclic subgroup of order pt (t > 1) contains exactly one cyclic subgroup of
order p. Let Xi be the set of all cyclic subgroups of G containing cyclic subgroup
〈xpr−1

yip
s−1〉 for 1 6 i 6 p andX0 be the set of all cyclic subgroups of G containing

〈yps−1〉.
Lemma 3.1. The number of cyclic subgroups of order pt in Xi, 0 6 i 6 p is pt−1

where 1 6 t 6 s.

Proof. By Lemma 2.1, each cyclic subgroup of order pt is contained in p cyclic
subgroups of order pt+1, 1 6 t < s. Thus, it is immediate that each Xi contains
pt−1 cyclic subgroups of order pt, 1 6 t 6 s.

LetM(Xi,⊆) denote the set of all maximal elements of the poset (Xi,⊆).
Lemma 3.2. |MG| =

∑p
i=0 |M(Xi,⊆)|.

Proof. Recall that C(G) is the set of all distinct cyclic subgroups of the group
G. Let C∗(G) be the set C(G)\〈e〉. Define a relation R on C∗(G) such that
〈x〉, 〈y〉 ∈ C∗(G) are said to be related if 〈x〉 and 〈y〉 contain a unique cyclic
subgroup of order p. It is immediate the R is an equivalence relation. Since,
G has p + 1 cyclic subgroups of order p, C∗(G) has p + 1 equivalence classes.
Clearly, Xi, 0 6 i 6 p are these equivalence classes. It is easy to observe that if
〈x〉 ∈ Xi and 〈y〉 ∈ Xj for i 6= j, 0 6 i, j 6 p, then 〈x〉 * 〈y〉 and 〈y〉 * 〈x〉. Thus,
a maximal element of the poset (Xi,⊆) is a maximal cyclic subgroup of G. This
completes the proof.

Theorem 3.3. Let G ∼= Zpr × Zps , r > s. Then

β(P(G)) = |MG| =

{
2ps + φ(ps)(r − s− 1), r > s

ps + ps−1, r = s.
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Proof. Suppose r > s. Now assume that s < t 6 r. Take g = xayb ∈ G. If
the order of g is pt, then g = xp

r−tkyb, where gcd(k, p) = 1, 1 6 k 6 pt and
1 6 b 6 ps. Thus, the number of elements of order pt is φ(pt)ps. Since, each cyclic
subgroup of order pt contains φ(pt) elements of order pt, so the number of cyclic
subgroups of order pt is φ(pt)ps

φ(pt) = ps and they are 〈xpr−tyb〉, 1 6 b 6 s. Further,

(xp
r−t
yb)p

t−1

= xp
r−1

. Thus, all cyclic subgroups of order pt, t > s belong to Xp.
By Corollary 2.2, cyclic subgroup H = 〈xpr−tyb〉 of order pt is contained in cyclic
subgroup of order pt+1 if and only if p | b and if p | b, then H is contained in p
cyclic subgroups of order pt+1 (t < r). Hence, out of ps only ps−1 cyclic subgroups
of order pt are contained in cyclic subgroups of order pt+1.

Again, the number of cyclic subgroups of order ps in the set Xp is ps−1 (Lemma
3.1) and the number of cyclic subgroups of order ps+1 is ps and each cyclic subgroup
of order ps is contained in at most p cyclic subgroups of order ps+1 (Lemma 2.1).
Thus, each cyclic subgroup of order ps is contained in p cyclic subgroups of order
ps+1 in the set Xp. By Lemmas 2.1 and 3.1, it is clear that Xp has pt−1 cyclic
subgroups of order pt and each cyclic subgroup of order pt is contained in p cyclic
subgroups of order pt+1 in Xp for 1 6 t < s.

The number of cyclic subgroups of order pt in Xi for 0 6 i 6 p− 1 is pt−1, for
1 6 t 6 s (Lemma 3.1) and none of cyclic subgroups of order pt for t > s belong
to Xi(0 6 i 6 p − 1). Further, each cyclic subgroup of order pt is contained in p
cyclic subgroups of order pt+1 for 1 6 t < s in Xi.

Collecting all arguments, the Hasse diagram of the poset (Xp,⊆) is given in
Figure 1 and the Hasse diagram of the poset (Xi,⊆) (0 6 i 6 p − 1) is given in
Figure 2.

Figure 1: The Hasse diagram of the poset (Xp,⊆)
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Figure 2: The Hasse diagram of the poset (Xi,⊆), for 0 6 i 6 p− 1

In Figures 1 and 2, Vtj denotes the element of Xi, 0 6 i 6 p of cardinality pt.
(Xp,⊆) has ps + φ(ps)(r − s − 1) maximal elements (see Figure 1) and (Xi,⊆)
for 0 6 i 6 p − 1 has ps−1 maximal elements. Thus, by Lemma 3.2, |MG| =
2ps+φ(ps)(r−s−1) for r > s. Now, for r = s. Only the cyclic subgroups of order
ps are maximal elements in Xi, 0 6 i 6 p and each Xi has ps−1 cyclic subgroups
of order ps. Thus, by Lemma 3.2, |MG| = ps+ps+1, for r = s. Hence by Theorem
2.3, we complete the proof.
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