On the connectivity of the proper intersection power graph of a finite group

Azam Babai

Abstract

Let G be a group with an identity element e. The intersection power graph of G, denoted by $P_{I}(G)$, is the graph with vertex set G and two distinct vertices x and y are adjacent if there exists an element $z \in G \backslash\{e\}$ such that $x^{m}=z=y^{n}$, for some $m, n \in \mathbb{N}$ and e is adjacent to all other vertices. The proper intersection power graph of G, denoted by $P_{I}^{*}(G)$, is obtained by removing the identity element from the vertex set of $P_{I}(G)$. In this paper, we study the connectivity of $P_{I}^{*}(G)$.

1. Introduction

The investigation of graphs related to groups is an important topic in algebraic combinatorics. Moreover, there are many ways of building a graph from a group. This paper is devoted to the study of the intersection power graph, which was introduced by Bera in [3]. Of course, it must be mentioned that he was motivated by definitions of the power graph and the enhanced power graph. Hence, at first, we will review the definition of them which are the main reason for defining the intersection power graph.

In [6], Kelarev and Quinn introduced the directed power graph of a group, then Chakrabarty et al. introduced the undirected power graph of a group in [5]. Assume that G is a group. The power graph of G, showed by $P(G)$, is a graph with vertex set equal to G where two distinct vertices x and y are adjacent if either $x \in\langle y\rangle$ or $y \in\langle x\rangle$. Let us refer to [1], for a survey of all recent results on the power graphs associated with groups and semigroups.

Another graph associated with the group G, which its vertex set is equal to G, is the commuting graph, that is denoted by $C(G)$. In this graph two vertices x and y are adjacent if they commute. It is clear that $P(G)$ is a subgraph of $C(G)$.

Then the enhanced power graph was introduced in [2], in order to find that for an arbitrary group how much its power graph is closed to its commuting graph. It is denoted by $P_{E}(G)$ and its vertex set is G where x is adjacent to y in $P_{E}(G)$ if there exists an element z in G such that $x, y \in\langle z\rangle$. For more information see [4].

The intersection power graph is a new representation of groups by graphs. It was introduced by Bera in [3]. The intersection power graph is denoted by $P_{I}(G)$.

[^0]Its vertex set is G where x is adjacent to y in $P_{I}(G)$ if there exists an element z in $G \backslash\{e\}$ such that $x^{n}=z=y^{m}$, for some $m, n \in \mathbb{N}$ and e is adjacent to all other vertices in $P_{I}(G)$. In other words, x is adjacent to y in $P_{I}(G)$ if $\langle x\rangle \cap\langle y\rangle \neq\{e\}$. It is easy to see that for a group G, the power graph $P(G)$ is a subgraph of the intersection power graph $P_{I}(G)$. We encourage the interested readers to study [3] where Bera has beautifully explained his reason for defining this new graph there.

We denote by $P_{I}^{*}(G)$ the proper intersection power graph which is obtained by removing the identity element from its vertex set.

In [2], the authors asked which groups do have the property that the power graph is connected when the identity is removed?
In this paper, we try to answer to this question for the intersection power graph. We will show that if the prime graph of a finite group G is disconnected, then $P_{I}^{*}(G)$ is disconnected. Furthermore, we will prove several statements about the connectivity of the proper intersection power graph.

Throughout this paper, G is a finite group and $G^{*}=G \backslash\{e\}$. We use $x \sim y$ to denote two distinct vertices x and y of a graph are joined.

2. Main results

Let G be a group and M_{i} for $i \in\{1, \ldots t\}$ be all maximal cyclic subgroups of G. We use $\Gamma_{M}(G)$ to denote a graph which its vertex set is the set of all maximal cyclic subgroups of G and two distinct vertices M_{i} and M_{j} are adjacent if their intersection is not trivial.

Let $P_{I}^{*}(G)$ be connected and let M and M^{\prime} be two maximal cyclic subgroups of G. Consider $M=\langle m\rangle$ and $M^{\prime}=\left\langle m^{\prime}\right\rangle$, where $m, m^{\prime} \in G$. We know that there exists a path between m and m^{\prime} in $P_{I}^{*}(G)$, since $P_{I}^{*}(G)$ is connected. Hence,

$$
m=x_{1} \sim x_{2} \sim \ldots \sim x_{n}=m^{\prime}
$$

where $x_{i} \in G$. Assume that M_{i} is a maximal cyclic subgroup of G such that $x_{i} \in M_{i}$, for every $1 \leqslant i \leqslant n$. Since $x_{i} \sim x_{i+1}$ in $P_{I}^{*}(G)$, so $M_{i} \cap M_{i+1} \neq\{e\}$, which implies that $M_{i} \sim M_{i+1}$ in $\Gamma_{M}(G)$, for every $1 \leqslant i \leqslant n-1$. It follows that $\Gamma_{M}(G)$ is connected.

Conversely, let $\Gamma_{M}(G)$ be connected and $g, g^{\prime} \in G^{*}$, where $G^{*}=G \backslash\{e\}$. There exist maximal cyclic subgroups M and M^{\prime} of G such that $g \in M$ and $g^{\prime} \in M^{\prime}$. Since $\Gamma_{M}(G)$ is connected, so there is a path between M and M^{\prime} in $\Gamma_{M}(G)$. Hence

$$
M=M_{1} \sim M_{2} \sim \ldots \sim M_{n}=M^{\prime}
$$

Let $M_{i}=\left\langle m_{i}\right\rangle$, for every $1 \leqslant i \leqslant n$. We have $M_{i} \sim M_{i+1}$. As a result, $M_{i} \cap M_{i+1} \neq$ $\{e\}$, for every $1 \leqslant i \leqslant n-1$. Assume $x_{i} \in M_{i} \cap M_{i+1}$. Then $m_{i}^{s}=x_{i}=m_{i+1}^{t}$, for some $s, t \in \mathbb{N}$ and for every $1 \leqslant i \leqslant n-1$. Consequently, $m_{i} \sim m_{i+1}$ in $P_{I}^{*}(G)$ and so $m_{1} \sim m_{2} \sim \ldots \sim m_{n}$ is a path in $P_{I}^{*}(G)$. Moreover, we have $g=m_{1}^{l}$, for some $l \in \mathbb{N}$, which implies that $g \sim m_{1}$ in $P_{I}^{*}(G)$. Similarly, we have $g^{\prime} \sim m_{n}$ in $P_{I}^{*}(G)$. It follows that $P_{I}^{*}(G)$ is connected. Therefore, we have proved the following result.

Lemma 2.1. Let G be a finite group. Then $P_{I}^{*}(G)$ is connected if and only if $\Gamma_{M}(G)$ is connected.

The set of all element orders of G is denoted by $\omega(G)$, which is closed and partially ordered by the divisibility. As a result, it is uniquely determined by the set $\mu(G)$, the subset of its maximal elements.

We use $\Gamma_{\mu}(G)$ to denote a graph whose vertex set is $\mu(G)$ where $s, t \in \mu(G)$ are adjacent if $\operatorname{gcd}(s, t) \neq 1$.

Let $\Gamma_{M}(G)$ be connected. Moreover, assume that m and m^{\prime} are two arbitrary elements of $\mu(G)$. There exist maximal cyclic subgroups M and M^{\prime} such that $|M|=m$ and $\left|M^{\prime}\right|=m^{\prime}$. Since $\Gamma_{M}(G)$ is connected, so we can consider the following path from M to M^{\prime} in $\Gamma_{M}(G)$:

$$
M=M_{0} \sim M_{1} \sim \ldots \sim M_{n-1} \sim M_{n}=M^{\prime} .
$$

Since $M_{i} \sim M_{i+1}$, we deduce that $\operatorname{gcd}\left(\left|M_{i}\right|,\left|M_{i+1}\right|\right) \neq 1$, for every $0 \leqslant i \leqslant n-1$. We know that M_{i} is a maximal cyclic subgroup of G, which implies that $\left|M_{i}\right| \in$ $\mu(G)$, for every $0 \leqslant i \leqslant n$. Consequently, by definition of $\Gamma_{\mu}(G)$ we can consider the following path between m and m^{\prime} in $\Gamma_{\mu}(G)$:

$$
m=\left|M_{0}\right| \sim\left|M_{1}\right| \sim \ldots \sim\left|M_{n-1}\right| \sim\left|M_{n}\right|=m^{\prime}
$$

which implies that $\Gamma_{\mu}(G)$ is connected. Therefore, we have proved the following result.

Lemma 2.2. Let G be a finite group. If $\Gamma_{M}(G)$ is connected, then $\Gamma_{\mu}(G)$ is connected.

By Lemmas 2.1 and 2.2, we have:
Corollary 2.3. Let G be a finite group. If $\Gamma_{\mu}(G)$ is disconnected then $P_{I}^{*}(G)$ is disconnected.

Let G be a finite group. The set of all prime divisors of $|G|$ is denoted by $\pi(G)$. The prime graph is a graph associated to a group G. Its vertex set is equal to $\pi(G)$ where two distinct prime numbers p and q of $\pi(G)$ are adjacent if and only if G has an element of order $p q$. This graph is denoted by $\Gamma(G)$.

Let $\Gamma_{\mu}(G)$ be connected. Moreover, suppose that p and p^{\prime} are two prime numbers of $\pi(G)$. It follows that there are m and m^{\prime} in $\mu(G)$ such that $p \mid m$ and $p^{\prime} \mid m^{\prime}$. We know that there exists a path between m and m^{\prime} in $\Gamma_{\mu}(G)$. As a consequence, $m=m_{0} \sim m_{1} \sim \ldots \sim m_{n}=m^{\prime}$, where $m_{i} \in \mu(G)$, for every $0 \leqslant i \leqslant$ n. Since $m_{i} \sim m_{i+1}$, so there is a prime number r_{i} such that $r_{i} \mid \operatorname{gcd}\left(m_{i}, m_{i+1}\right)$, for every $0 \leqslant i \leqslant n-1$. Consequently, $r_{i} r_{i+1} \mid m_{i+1}$ and hence $r_{i} \sim r_{i+1}$ in $\Gamma(G)$, for every $0 \leqslant i \leqslant n-1$. Furthermore, we have $p, r_{0} \mid m_{0}$ and $p^{\prime}, r_{n} \mid m_{n}$ and so we get $p \sim r_{0}$ and $p^{\prime} \sim r_{n}$ in $\Gamma(G)$. Therefore, $p \sim r_{0} \sim r_{1} \sim \ldots \sim r_{n} \sim p^{\prime}$ is a path in $\Gamma(G)$. It follows that $\Gamma(G)$ is connected.

Conversely, let $\Gamma(G)$ be connected and $m, m^{\prime} \in \mu(G)$. Let p and p^{\prime} be two prime numbers such that $p \mid m$ and $p^{\prime} \mid m^{\prime}$. Since $\Gamma(G)$ is connected, so we
assume that $p=r_{0} \sim r_{1} \sim \ldots \sim r_{n}=p^{\prime}$ is a path in $\Gamma(G)$. We know that $r_{i} \sim r_{i+1}$ in $\Gamma(G)$. As a result, there exists $u_{i} \in \mu(G)$ such that $r_{i} r_{i+1}$ divides u_{i}, for every $0 \leqslant i \leqslant n-1$. It follows that $r_{i} \mid \operatorname{gcd}\left(u_{i-1}, u_{i}\right)$, which implies that $u_{i-1} \sim u_{i}$, for every $1 \leqslant i \leqslant n-1$ in $\Gamma_{\mu}(G)$. Moreover, we know that $p \mid \operatorname{gcd}\left(m, u_{0}\right)$ and $p^{\prime} \mid \operatorname{gcd}\left(m^{\prime}, u_{n-1}\right)$ and so $m \sim u_{1}$ and $m^{\prime} \sim u_{n-1}$ in $\Gamma_{\mu}(G)$. Therefore, $m \sim u_{0} \sim u_{2} \sim \ldots \sim u_{n-1} \sim m^{\prime}$ is a path in $\Gamma_{\mu}(G)$. It follows that $\Gamma_{\mu}(G)$ is connected. Therefore, we have the following result.

Lemma 2.4. Let G be a finite group. Then $\Gamma_{\mu}(G)$ is connected if and only if $\Gamma(G)$ is connected.

Now by Corollary 2.3 and Lemma 2.4, we obtain the following result.
Theorem 2.5. Let G be a finite group. If $\Gamma(G)$ is disconnected, then $P_{I}^{*}(G)$ is disconnected.

In [7], all groups which have disconnect prime graphs, have been introduced. Hence Theorem 2.5 is so important and it motivates the following theorem.
Theorem 2.6. If G is isomorphic to one of the following groups, then $P_{I}^{*}(G)$ is disconnected.

1) A finite simple group whose prime graph is disconnected.
2) The symmetric groups S_{p}, S_{p+1}, S_{p+2}.
3) The dihedral group $D_{2 n}$, where n is an odd number.

In an arbitrary graph, a vertex is named a dominating vertex if it is adjacent to every other vertex of the graph. For instance, if G is a group, then the identity element e is a dominating vertex of the intersection power graph of G.

Let $\langle x\rangle$ be the unique minimal subgroup of G. If $g \in G^{*}$, then $x \sim g$ in $P_{I}^{*}(G)$, since $\langle x\rangle \subseteq\langle g\rangle$. It follows that $P_{I}^{*}(G)$ is connected. Moreover, x is a dominating vertex of $P_{I}^{*}(G)$. Therefore, we get the following result.
Theorem 2.7. Let G be a finite group. Then $P_{I}^{*}(G)$ is connected if G has a unique minimal subgroup.

Let $x, y \in G^{*}$ such that $x y=y x$ and $(o(x), o(y))=1$. Since x and y commute, so $(x y)^{o(y)}=x^{o(y)}$. It follows that $\left\langle x^{o(y)}\right\rangle \subseteq\langle x y\rangle$. On the other hand, since $(o(x), o(y))=1$, we conclude that $\langle x\rangle=\left\langle x^{o(y)}\right\rangle$, which implies that $x \in\langle x y\rangle$. According to the definition of power graph, $x \sim x y$ in $P(G)$. We know that $P(G)$ is a subgraph of $P_{I}(G)$ and hence $x \sim x y$ in $P_{I}^{*}(G)$. Similarly, we can show that $y \sim x y$ in $P_{I}^{*}(G)$. Therefore, $x \sim x y \sim y$ is a path in $P_{I}^{*}(G)$. Hence we have:
Lemma 2.8. Let $x, y \in G^{*}$ such that $x y=y x$ and $(o(x), o(y))=1$. Then there exists a path from x to y in $P_{I}^{*}(G)$.

Let G be a finite group. Suppose that x is the unique element of order 2 in G. As a result, $x \in Z(G)$. Let y be an arbitrary element of G^{*}. If $x \in\langle y\rangle$, then $x \sim y$ in $P^{*}(G)$ and so $x \sim y$ in $P_{I}^{*}(G)$. Otherwise, $o(y)$ is odd and so x and y are on a path in $P_{I}^{*}(G)$, by Lemma 2.8. Consequently, we get that.

Lemma 2.9. Let G be a finite group. If G has a unique element of order 2 , then $P_{I}^{*}(G)$ is connected.

Example 2.10. Consider the generalized quaternion group

$$
Q_{2^{n}}=\left\langle a, b \mid a^{2^{n-1}}=1, a^{2^{n-2}}=b^{2}, a^{b}=a^{-1}\right\rangle
$$

It has just one element of order 2. Therefore, its proper intersection power graph is connected.

Theorem 2.11. Let G be a finite group. If $Z(G)$ is not a p-group, then $P_{I}^{*}(G)$ is connected.

Proof. Assume that G is a finite group and $Z(G)$ is not a p-group. Suppose that $z_{1}, z_{2} \in Z(G)$, such that $o\left(z_{1}\right)=p$ and $o\left(z_{2}\right)=q$, where p and q are distinct prime numbers. Moreover, let x and y be two arbitrary elements of G^{*}. We consider the following two cases:

1. Let $(o(x), o(y))=1$. In this case we have:

- Assume p and q do not divide $o(x)$ and $o(y)$. Then, by Lemma 2.8,

$$
x \sim x z \sim z \sim y z \sim y \text { for } z \in\left\{z_{1}, z_{2}\right\} .
$$

- If p, q and $o(x)$ are coprime but $p^{\alpha} q^{\beta} \mid o(y)$, where $\alpha, \beta \in \mathbb{N} \cup\{0\}$ and both α and β are not zero in addition $p^{\alpha+1} \nmid o(y)$ and $q^{\beta+1} \nmid o(y)$. Without loss of generality, let $\alpha \neq 0$. Now by Lemma 2.8,

$$
x \sim x z_{2} \sim z_{2} \sim y^{o(y) / p^{\alpha}} z_{2} \sim y^{o(y) / p^{\alpha}} \sim y .
$$

- If $p^{\alpha} \mid o(x)$ and $p^{\alpha+1} \nmid o(x)$ also $q^{\beta} \mid o(y)$ and $q^{\beta+1} \nmid o(y)$, where $\alpha, \beta \in \mathbb{N}$. Consequently, by Lemma 2.8,

$$
x \sim x^{o(x) / p^{\alpha}} \sim x^{o(x) / p^{\alpha}} z_{2} \sim z_{2} \sim z_{1} z_{2} \sim z_{1} \sim y^{o(y) / q^{\beta}} z_{1} \sim y^{o(y) / q^{\beta}} \sim y
$$

2. Let $r=(o(x), o(y)) \neq 1$. In this case we have:

- If p and q do not divide r, then by Lemma 2.8 we have:

$$
x \sim x^{o(x) / r} \sim x^{o(x) / r} z \sim z \sim y^{o(y) / r} z \sim y^{o(y) / r} \sim y \text { for } z \in\left\{z_{1}, z_{2}\right\}
$$

- If $p^{\alpha} q^{\beta} \mid r$, where $\alpha, \beta \in \mathbb{N} \cup\{0\}$ and both α and β are not zero in addition $p^{\alpha+1} \nmid r$ and $q^{\beta+1} \nmid r$. Hence, by Lemma 2.8,

$$
x \sim x^{o(x) / p^{\alpha}} \sim x^{o(x) / p^{\alpha}} z_{2} \sim z_{2} \sim z_{1} z_{2} \sim z_{1} \sim y^{o(y) / q^{\beta}} z_{1} \sim y^{o(y) / q^{\beta}} \sim y
$$

Therefore, there exists a path between x and y and so $P_{I}^{*}(G)$ is connected.

Example 2.12. The proper intersection power graph of every abelian group which is not a p-group is connected.
Theorem 2.13. Assume that G is a finite nilpotent group of order n, where n is not a prime power. Then $P_{I}^{*}(G)$ is connected.
Proof. Suppose that G is a finite nilpotent group of order n. Consider $n=$ $p_{1}^{n_{1}} p_{2}^{n_{2}} \ldots p_{k}^{n_{k}}$, where $k>1$ and for every $1 \leqslant i \leqslant k, p_{i}$ is a prime and $n_{i} \in \mathbb{N} \cup\{0\}$. Let x and y be two arbitrary elements of G^{*}. Suppose that $o(x)=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{k}^{\alpha_{k}}$ and $o(y)=p_{1}^{\beta_{1}} p_{2}^{\beta_{2}} \ldots p_{k}^{\beta_{k}}$, where $\alpha_{i}, \beta_{i} \in \mathbb{N} \cup\{0\}$, for every $1 \leqslant i \leqslant k$. We consider the following two cases:

1. Let $(o(x), o(y))=1$. Since G is nilpotent, so x and y commute. Now by Lemma 2.8 , there exists a path between x and y.
2. Let $(o(x), o(y))=p_{1}^{\gamma_{1}} p_{2}^{\gamma_{2}} \ldots p_{k}^{\gamma_{k}} \neq 1$. We consider the following two cases:

- Let $o(x)$ and $o(y)$ be powers of a single prime number. For instance, $o(x)=$ $p_{1}^{\alpha_{1}}$ and $o(y)=p_{1}^{\beta_{1}}$. Since n is not a prime power, so there exists $z \in G$ such that $o(z)=p_{i}$, where $i \neq 1$. By Lemma 2.8, we have:

$$
x \sim x z \sim z \sim y z \sim y
$$

- Assume that there exist $i, j \in\{1,2, \ldots k\}$ such that $\gamma_{i} \neq 0 \neq \gamma_{j}$. Now by Lemma 2.8,

$$
x \sim x^{o(x) / p_{i}^{\alpha_{i}}} \sim x^{o(x) / p_{i}^{\alpha_{i}}} y^{o(y) / p_{j}^{\beta_{j}}} \sim y^{o(y) / p_{j}^{\beta_{j}}} \sim y .
$$

Consequently, we conclude that there is a path between x and y.

References

[1] J. Abawajy, A.V. Kelarev and M. Chowdhury, Power graphs: a survey, Electron. J. Graph Theory Appl. 1 (2013), no. 2, $125-147$.
[2] G. Alipour, S. Akbari, P.J. Cameron, R. Nikandish and F. Shaveisi, On the structure of the power graph and the enhanced power graph of a group, Electron. J. Combin. 24 (2017), no. 3, 3-16.
[3] S. Bera, On the intersection power graph of a finite group, Electron. J. Graph Theory Appl. 6 (2018), no. 1, 178 - 189.
[4] S. Bera and A.K. Bhuniya, On enhanced power graphs of finite groups, J. Algebra Appl. 17 (2017), no. 8, $185-146$.
[5] I. Chakrabarty, S. Ghosh and M.K. Sen, Undirected power graphs of semigroups, Semigroup Forum 78 (2009), $410-426$.
[6] A.V. Kelarev and S.J. Quinn, A combinatorial property and power graphs of groups, Contrib. General Algebra 12 (2000), 229 - 235.
[7] A.V. Vasiliev and E.P. Vdovin, An adjacency criterion for the prime graph of a finite simple group, Algebra and Logic 44 (2005), no. 6, 381-406.

Received June 22, 2020
Department of Mathematics, University of Qom, Qom 37185-3766, Iran
E-mail: a_babai@aut.ac.ir

[^0]: 2010 Mathematics Subject Classification: 05C25, 05C69, 20D05
 Keywords: Finite group, power graph, intersection power graph, prime graph.

