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Translatability determines the structure

of certain types of idempotent quasigroups

Wieslaw A. Dudek and Robert A. R. Monzo

Abstract. We prove that in certain types of k-translatable idempotent quasigroups, the value

of k determines all possible orders of k-translatable idempotent quasigroups of a particular type.

From this, all k-translatable idempotent quesigroups of that type can be calculated, as well as

their parastrophe types. Four operators on the collection of all idempotent, translatable quasi-

groups are de�ned and formulae determining relationships amongst them are given. Necessary

and su�cient conditions are given for particular types of idempotent, translatable quasigroups

to be perpendicular to their dual quasigroup.

1. Introduction

The notion of a k-translatable groupoid was an outcrop of the observation that
certain quadratical quasigroups are translatable [6]. This led to the determination
of the structure of idempotent, translatable quasigroups in general and of types
of idempotent, translatable quasigroups in particular (Theorems 4.2 and 4.27 [5]).
These results and Theorem 4.2 [7] inspired the work in this paper.

To say that an idempotent quasigroup (Q, ·) of order n is k-translatable is a
powerful statement. It implies that x · y = [ax + by]n for some a ∈ {2, 3, . . . , n}
and odd n > 1, where [a + b]n = 1, [a + kb]n = 0 and [t]n equals t calculated
modulo n (cf. [5]). In addition, the greatest common divisor of a and n is 1, as is
that of b and n and k and n. Also, there exist unique values a′, b′ and k′ such that
[aa′]n = [bb′]n = [kk′]n = 1, where k′ is the value of the translatability of the dual
quasigroup (Q, ∗) and x ∗ y = [bx+ ay]n. Therefore, [b+ k′a]n = 0. The products
of the parastrophes of (Q, ·) and their translatability can also be determined (cf.
[5]). We note that idempotent k-translatable quasigroups are medial, that is they
satisfy the identity xy · zw = xz · yw, and therefore they are what is called in the
literature IM -quasigroups (cf. [9]). We denote the collection of all idempotent,
medial quasigroups as IMQ. We de�ne IKQ as the collection of all idempotent,
k-translatable quasigroups. By Corollary 4.5 [5], IKQ ⊂ IMQ.

To simplify the size of some of the tables we will sometimes let (a, b) denote the
idempotent k-translatable quasigroup x · y = [ax + by]n, where [a + b]n = 1. For
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example, (3, 3) denotes the idempotent 4-translatable quasigroup x ·y = [3x+3y]5,
and (2, 10) denotes the idempotent 2-translatable quasigroup x · y = [2x+ 10y]11.

In this paper we examine certain types of idempotent k-translatable quasi-
groups. Each type T in Table 3.1 satis�es a single identity uT = vT , with
uT = uT (x, y) and vT = vT (x, y). Each identity yields a function FT (a) such
that [FT (a)]n = 0. This formula allows us to calculate the possible values of n;
that is, for each value of a, the formula determines the possible orders of the
members of T. Also, the value of a′ and k′ are determined by the value of k.

The function HT denotes the function HT = HT (k), where [HT (k)]n = 0.
The products of the parastrophes of a given (Q, ·) ∈ T and the value of their
translatability can also be determined by k, the value of the translatability of
(Q, ·). Also, in any type T we can calculate all k-translatable quasigroup members
of T, for any value of k. We give tables of such quasigroup members for each type
T and each value of k, for k ∈ {2, 3, . . . , 10}. The main results are given in Tables
3.1, 3.2, 3.3 and 3.4, from which most other results and tables follow.

We examine, for each T, the dual collection T∗ and the inverse collection −T
and prove that the above analysis also applies to these collections of quasigroups.
Some interrelationships between di�erent types of idempotent k-translatable quasi-
groups, their dual collections, their inverse collections and the collections T+1 and
T−1 are also given.

We will show how these results link with the work of Belousov. He proved that
any minimal non-trivial identity in a quasigroup is parastrophically equivalent to
one of seven identity types [1]. We prove that �ve of those identities determine
types of idempotent k-translatable quasigroups and that the remaining two iden-
tities do not. We prove in Corollary 6.4 that if T is the collection of quadratical
quasigroups or the collection of a�ne regular octagonal quasigroups, then any
quasigroup member of T is perpendicular to its dual quasigroup.

2. Preliminary de�nitions, examples and results

A groupoid (in other terminology: a magma) is a non-empty set Q with a binary
operation (called a multiplication) de�ned on Q and denoted by dot or juxtapo-
sition. For clarity of record we will limit the number of parentheses. Instead of
(x · y) · z, we will write xy · z.

Let us recall that a groupoid (, ·) is a quasigroup if for every a, b ∈ Q there
exist unique elements x, y ∈ Q such that ax = b and ya = b. An element x of
a groupoid (Q, ·) is idempotent if x · x = x. A �nite groupoid Q = {1, 2, . . . , n}
is called k-translatable, where 1 6 k < n, if the second row of its multiplication
table is obtained from the �rst row by inserting the last k entries of the �rst row
into the �rst k entries of the second row and the �rst n − k entries of the �rst
row into the last n− k entries of the second row. This operation is repeated from
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the second row, to obtain the entries of the third row, and so on until the table is
�lled (cf. [5]).

The following are the Cayley tables of a 2-translatable idempotent quasigroup
of order 3, a 3-translatable idempotent quasigroup of order 5 and a 4-translatable
idempotent quasigroup of order 7.

1 2 3

1 1 3 2
2 3 2 1
3 2 1 3

1 2 3 4 5

1 1 3 5 2 4
2 5 2 4 1 3
3 4 1 3 5 2
4 3 5 2 4 1
5 2 4 1 3 5

1 2 3 4 5 6 7

1 1 3 5 7 2 4 6
2 7 2 4 6 1 3 5
3 6 1 3 5 7 2 4
4 5 7 2 4 6 1 3
5 4 6 1 3 5 7 2
6 3 5 7 2 4 6 1
7 2 4 6 1 3 5 7

It is known that an idempotent k-translatable quasigroup of order n is induced
by the additive group of integers modulo n, where, for simplicity of our calcula-
tions, 0 is identi�ed with n, i.e., instead of Q = {0, 1, . . . , n − 1} we consider the
set Q = {1, 2, . . . , n}. In this convention, an idempotent k-translatable quasigroup
of order n has the form

x · y = [ax+ (1− a)y]n, where [a+ k(1− a)]n = 0

and the greatest common divisor of k and n is 1. Obviously, the greatest common
divisor of a and n (also a − 1 and n) must be 1. The value n must be odd and
greater than or equal to 3, while k > 2 (cf. [5, Lemma 4.1]).

It follows that idempotent k-translatable quasigroups satisfy particular identity
types if and only if [FT (a)]n = 0 for some function FT (a) that is determined by
the identity that de�nes the type T .

The identity types here explored determine well-known types of quasigroups,
such as quadratical (Q : xy · x = zx · yz), hexagonal (H : xy · x = y), golden
square (GS : (xy · z) · z = y), right modular (RM : xy · z = zy · x) and left modular

(LM : x·yz = z ·yx), a�ne regular octagonal (ARO : xy ·y = yx·x) and pentagonal

(P : (xy ·x)y ·x = y). In addition we examine the identities (yx ·x)x = y (denoted
as C3) and x(y · yx) = y (denoted as U).

For a given collection T of idempotent k-translatable quasigroups we de�ne
the following collection of quasigroups

T∗ = {(1− a, a) ∈ IMQ} | (a, 1− a) ∈ T},
−T = {(−a, 1 + a) ∈ IMQ | (a, 1− a) ∈ T},
T+t = {(a+ t, 1− a− t) ∈ IMQ | (a, 1− a) ∈ T},
T−t = {(a− t, 1 + t− a) ∈ IMQ | (a, 1− a) ∈ T},

where t ∈ {1, 2, . . .}.
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These two theorems, that are a modi�cation of Theorems 4.26 and 4.27 from
[5], will be used later.

Theorem 2.1. A k-translatable, naturally ordered quasigroup (Q, ·) of order n
with the multiplication de�ned by x · y = [ax + (1 − a)y]n, where a ∈ Zn and

[a+ (1− a)k]n = 0 is

(1) quadratical if and only if [2a2 − 2a+ 1]n = 0,

(2) hexagonal if and only if [a2 − a+ 1]n = 0,

(3) GS-quasigroup if and only if [a2 − a− 1]n = 0,

(4) right modular quasigroup if and only if [a2 + a− 1]n = 0,

(5) left modular quasigroup if and only if [a2 − 3a+ 1]n = 0,

(6) ARO-quasigroup if and only if [2a2]n = 1,

(7) C3 quasigroup if and only if [a3]n = 1.

Theorem 2.2. A naturally ordered quasigroup (Q, ·) of order n with the multipli-

cation de�ned by x · y = [ax+ (1− a)y]n, where a ∈ Zn and [a+ (1− a)k]n = 0 is

a k-translatable

(1) quadratical quasigroup if and only if k = [1− 2a]n,

(2) hexagonal quasigroup if and only if k = [1− a]n,

(3) GS-quasigroup if and only if k = [a+ 1]n,

(4) right modular quasigroup if and only if k = [−1− a]n,

(5) left modular quasigroup if and only if k = [a− 1]n,

(6) ARO-quasigroup if and only if k = [−1− 2a]n,

(7) C3 quasigroup if and only if [(1− a2)k]n = 1.

We will also need the following characterization of a pentagonal quasigroup
proved in [7].

Theorem 2.3. A groupoid (Q, ·) of order n > 2 is a pentagonal quasigroup induced
by the group Zn if and only if x ·y = [ax+(1−a)y]n and [a4−a3+a2−a+1]n = 0
for some a ∈ Zn such that a and n, also a − 1 and n, are relatively prime. Such

a quasigroup is k-translatable for k = [1− a− a3]n.
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3. The main theorem

In this section we �nd identities amongst various types of idempotent, k-translatable
quasigroup types T and their dual and inverse collections T∗ and −T. We then
�nd the values of HT (k), a, a

′ and k′ as functions of k.

Theorem 3.1. The following identities between classes of idempotent quasigroups

induced by the additive groups Zn are valid:

(1) Q = Q∗,

(2) H = H∗ = −C3,

(3) GS = GS∗=−RM,

(4) RM = −(GS∗),

(5) LM = RM∗,

(6) ARO = −ARO,

(7) C3 = −H = −(H∗).

Proof. In the proof we use Theorem 2.1.

(1): (a, 1− a) ∈ Q⇔ [2a2 − 2a+ 1]n = 0⇔ [2(1− a)2 − 2(1− a) + 1]n = 0⇔
(1− a, a) ∈ Q⇔ (a, 1− a) ∈ Q∗.

(2): (a, 1− a) ∈ H⇔ [a2 − a+ 1]n = 0⇔ [(1− a)2 − (1− a) + 1]n = 0⇔
(1− a, a) ∈ H⇔ (a, 1− a) ∈ H∗

and

(a, 1− a) ∈ C3⇔ [a2 + a+ 1]n = 0⇔ [(−a)2 − (−a) + 1]n = 0⇔
(−a, a+ 1) ∈ H⇔ (a, 1− a) ∈ −H. So, H∗ = H = −(−H) = −C3.

(3): GS = GS∗ = −RM and RM = −GS.

(a, 1− a) ∈ GS⇔ [a2 − a− 1]n = 0⇔ [(1− a)2 − (1− a)− 1]n = 0⇔
(1− a, a) ∈ GS⇔ (a, 1− a) ∈ GS∗

(4): (a, 1− a) ∈ RM⇔ [a2 + a− 1]n = 0⇔ [(−a)2 − (−a)− 1]n = 0⇔
(−a, a+ 1) ∈ GS⇔ (a, 1− a) ∈ −GS. So, −RM = −(−GS) = GS.

(5): RM = LM∗ and LM = RM∗.

(a, 1− a) ∈ RM⇔ [a2 + a− 1]n = 0⇔ [(1− a)2 − 3(1− a) + 1]n = 0⇔
(1− a, a) ∈ LM⇔ (a, 1− a) ∈ LM∗.

(6): (a, 1− a) ∈ ARO⇔ [2a2 − 1]n = 0⇔ [2(−a)2 − 1]n = 0⇔
(−a, a+ 1) ∈ ARO⇔ (a, 1− a) ∈ −ARO.

(7) is a consequence of the above facts.



58 W. A. Dudek and R. A. R. Monzo

Theorem 3.2. If T is any one of the following types: Q, H, GS, RM, LM,

ARO, ARO∗, C3, C3∗, P, P∗, U, U∗, −LM, −(C3∗), −U, −(U∗), −(ARO∗),
−P or −(P∗), then the values of FT (a), HT (k), k, a, a

′ and k′ are as indicated

in the tables below, where all entries are calculated modulo n.

Table 3.1.

T FT (a) k HT (k)

Q 2a2 − 2a+ 1 1− 2a k2 + 1

H a2 − a+ 1 1− a k2 − k + 1

GS a2 − a− 1 a+ 1 k2 − 3k + 1

RM a2 + a− 1 −1− a k2 + k − 1

LM a2 − 3a+ 1 a− 1 k2 − k − 1

ARO 2a2 − 1 −1− 2a k2 + 2k − 1

ARO∗ 2a2 − 4a+ 1 2a− 1 k2 − 2k − 1

C3 a2 + a+ 1 ta− t 3k2 − 3k + 1

C3∗ a2 − 3a+ 3 3− a k2 − 3k + 3

P a4 − a3 + a2 − a+ 1 1− a3 − a k4 − 2k3 + 4k2 − 3k + 1

P∗ a4 − 3a3 + 4a2 − 2a+ 1 1− a3 + 2a2 − 2a k4 − 3k3 + 4k2 − 2k + 1

U a3 − 3a2 + 2a− 1 a2 − 2a+ 1 k3 − 2k2 + k − 1

U∗ a3 − a+ 1 1− a2 − a k3 − k2 + 2k − 1

Table 3.2.

T a a′ k′

Q 2a = 1− k k + 1 −k
H 1− k k 1− k

GS k − 1 k − 2 3− k

RM −1− k −k k + 1

LM k + 1 2− k k − 1

ARO 2a = −1− k −k − 1 k + 2

ARO∗ 2a = k + 1 3− k k − 2

C3 1− 3k 3k − 2 3− 3k

C3∗ 3− k −tk tk + 1

P −k3 + k2 − 3k + 1 k3 − 2k2 + 4k − 2 −k3 + 2k2 − 4k + 3

P∗ −k3 + 2k2 − 2k + 1 k3 − 3k2 + 4k − 1 −k3 + 3k2 − 4k + 2

U k3 − k2 2k − k2 k2 − 2k + 1

U∗ −1− k2 −k2 + k − 1 k2 − k + 2
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Table 3.3.

T FT (a) k HT (k)

−LM a2 + 3a+ 1 5k = 1− a 5k2 − 5k + 1

−(C3∗) a2 + 3a+ 3 7k = 3− a 7k2 − 9k + 3

−U a3 + 3a2 + 2a+ 1 7k = −a2 − 4a+ 1 7k3 − 10k2 + 5k − 1

−(U∗) a3 − a− 1 a2 + a+ 1 k3 − 5k2 + 4k − 1

−(ARO∗) 2a2 + 4a+ 1 7k = 1− 2a 7k2 − 6k + 1

−P a4+a3+a2+a+1 5k=a4−a2−2a+2 5k4−10k3+10k2−5k+1

−(P∗) a4+3a3+4a2+2a+1 11k=−a3−4a2−8a+1 11k4−21k3+16k2−6k+1

Table 3.4.

T a a′ k′

−LM 1− 5k 5k − 4 5− 5k

−(C3∗) 3− 7k 3a′ = 7k − 6 3k′ = 9− 7k

−U −7k2 + 3k − 1 −7k2 + 10k − 4 7k2 − 10k + 5

−(U∗) k2 − 4k + 1 −k2 + 5k − 3 k2 − 5k + 4

−(ARO∗) 2a = 1− 7k 7k − 5 6− 7k

−P −5k3 + 5k2 − 5k + 1 5k3−10k2+ 10k−4 −5k3+ 10k2−10k+ 5

−(P∗) −11k3+ 10k2−6k + 1 11k3−21k2+16k−5 −11k3+ 21k2−16k+ 6

Proof. The values of k listed in Table 3.1, column 3, can be checked using the
fact that [a + k(1 − a)]n = 0. In the case of P, [a + (1 − a − a3)(1 − a)]n =
[a4 − a3 + a2 − a+ 1]n = 0. Note that C3 quasigroups have order n = 3t+ 1 (cf.
[2]) and so [2t]n = [−1−t]n. Therefore, [a+(ta−t)(1−a)]n = [−ta2+2ta−t+a]n =
[−t(a2+a+1)]n = 0, which proves that k = [ta− t]n in C3 quasigroups with order
n = 3t+ 1.

Once the values of k in Table 3.1 have been veri�ed, these can be used to check
the values of a, listed in Table 3.2, as a function of k, using also the value of
FT (a). For example, in the case of P∗ since k = [1 − a3 + 2a2 − 2a]n, using the
fact that [a4 − 3a3 + 4a2 − 2a+ 1]n = 0 it follows that k2 = [−a3 + a2 − a]n and
k3 = [−2a2 + a − 1]n. Then, we get [−k3 + 2k2 − 2k + 1]n = [(2a2 − a + 1) +
(−2a3 + 2a2 − 2a) + (−2 + 2a3 − 4a2 + 4a) + 1]n = a. Similarly, for U we can
calculate that k2 = [a2 − a]n and k3 = [a2]n. Hence, a = [k3 − k2]n. Using these
values of a as a function of k, substituting them into the formula 0 = [FT (a)]n
gives the value of HT (k) listed in column 3 of Table 3.1. Alternatively, we can
substitute the value of a as a function of k into the formula [a + k(1 − a)]n = 0.
So, with P for example, [a+k(1−a)]n = 0 and a = [−k3+k2−3k+1]. Therefore,
0 = [−k3 + k2 − 3k + 1 + k(k3 − k2 + 3k)]n = [k4 − 2k3 + 4k2 − 3k + 1]n.
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The listings of the values of a′ in Table 3.2 can be checked using the fact that
[ka]n = [k + a]n. For example, in Q, [2a2 − 2a + 1]n = 0 and k = [1 − 2a]n.
Then [a(k + 1)]n = [(1 − 2a) + 2a]n = 1 and so a′ = k + 1. In the case of C3∗,
[(−tk)a]n = [−t(k + a)]n = [−t((3− a) + a)]n = [−3t]n = 1 and so a′ = [−tk]n in
a C3∗ quasigroup of order n = 3t+ 1.

The values of k′ in Table 3.2 follow from the fact that k′ = [1− a′]n, which in
turn follows from the fact that 0 = [b+ k′a]n = [k′a+(1− a)]n = [k′+(1− a)a′]n.

−LM: If (a, 1 − a) ∈ −LM, then (−a, a + 1) ∈ LM and, by Theorem 2.1, 0 =
[(−a)2−3(−a)+1]n = [a2+3a+1]n. Now 1 = [a(−a−3)]n and so, a′ = [−a−3]n.
But k′ = [1− a′]n = [a+ 4]n. Then, 1 = [kk′]n = [k(a+ 4)]n = [5k + a]n and so,
[5k]n = [1 − a]n and a = [1 − 5k]n. Therefore, a′ = [−a − 3]n = [5k − 4]n and
k′ = [a+4]n = [5−5k]n. Finally, 1 = [kk′]n = [5k−5k2]n and so, 0 = [5k2−5k+1]n.

−(C3∗): If (a, 1 − a) ∈ −(C3∗), then (−a, 1 + a) ∈ C3∗ and, by Theorem 2.1,
0 = [(−a)3 − 3(−a) + 3]n = [a2 + 3a + 3]n. But k = [a(k − 1)]n and so, 0 =
[(k − 1)a2 + 3(k − 1)a + 3(k − 1)]n which, using the fact that [ka]n = [k + a]n,
implies 0 = [7k + a − 3]n. Therefore, [7k]n = [3 − a]n and a = [3 − 7k]n. Now,
1 = [kk′]n = [a(k − 1)k′]n = [(3 − 7k)(k − 1)k′]n = [10 − 7k − 3k′]n and so
[3k′]n = [9 − 7k]n. The last gives 3 = [9k − 7k2]n and so, 0 = [7k2 − 9k + 3]n.
Moreover, k′ = [1−a′]n implies [3k′]n = [3−3a′]n and [3a′]n = [3−3k′]n = [7k−6]n.

−U: If (a, 1 − a) ∈ −U, then (−a, a + 1) ∈ U and, according to Table 3.1,
0 = [(−a)3 − 3(−a) + 2(−a)− 1]n = [a3 + 3a2 + 2a+ 1]n. Using this fact and the
fact that k = [a(k − 1)]n, the identity 0 = [(k − 1)3(a3 + 3a2 + 2a + 1)]n implies
0 = [7k3 − 10k2 + 5k − 1]n. Then, 1 = [7k3 − 10k2 + 5k]n = [k(7k2 − 10k + 5)]n
implies k′ = [7k2 − 10k + 5]n. Consequently, a

′ = [1− k′]n = [−7k2 + 10k − 4]n.
Using the fact that [ka]n = [k + a]n, the identity 0 = [k(a3 + 3a2 + 2a + 1)]n

implies [7k]n = [−a2−4a+1]n. Also, since 1 = [7k+a2+4a]n, a
′ = [7ka′+a+4]n

we obtain a = [a′ − 4− 7ka′]n = [(−7k2 + 10k − 4)− 4− 7k(−7k2 + 10k − 4)]n =
[49k3 − 77k2 + 38k − 8]n = [7(7k3 − 10k2 + 5k − 1) + (−7k2 + 3k − 1)]n. Thus,
a = [−7k2 + 3k − 1]n.

−(U∗): If (a, 1 − a) ∈ −(U∗), then (−a, 1 + a) ∈ U∗. Hence, by Table 3.1,
0 = [(−a)3 − (−a) + 1]n = [a3 − a − 1]n. Then, [a + (a2 + a + 1)(1 − a)]n =
[−a3 + a+1]n = 0 implies k = [a2 + a+1]n. But k = [a(k− 1)]n, so [(k− 1)k]n =
[(k−1)(a2+a+1)]n = [3k+a−1]n. Hence, a = [k2−4k+1]n. Also, k = [a(k−1)]n =
[(k2−4k+1)(k−1)]n = [k3−5k2+5k−1]n and so, [k3−5k+4k−1]n = 0. Then,
[k(k2−5k+4)]n = 1. Thus, k′ = [k2−5k+4]n and a′ = [1−k′]n = [−k2+5k−3]n.

−(ARO∗): If (a, 1−a) ∈ −(ARO∗), then (−a, 1+a) ∈ ARO∗ and, by Table 3.1,
0 = [2(−a)2 − 4(−a) + 1]n = [2a2 + 4a + 1]n. Since k = [a(k − 1)]n we also have
0 = [(k− 1)2(2a2 +4a+1)]n = [7k2− 6k+1]n. So, 1 = [6k− 7k2]n = [k(6− 7k)]n
and therefore, k′ = [6 − 7k]n and a′ = [7k − 5]n. Now, 0 = [k(2a2 + 4a + 1)]n
together with [ka]n = [k+ a]n imply 0 = [2a+ 7k− 1]n. So, [2a]n = [1− 7k]n and
[7k]n = [1− 2a]n.
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−P: If (a, 1 − a) ∈ −P, then (−a, 1 + a) ∈ P. Hence, by Table 3.1, we have
0 = [(−a)4 − (−a)3 + (−a)2 − (−a) + 1]n = [a4 + a3 + a2 + a + 1]n. Using the
fact that [ka]n = [k + a]n, the identity 0 = [k(a4 + a3 + a2 + a + 1)]n implies
0 = [5k + a3 + 2a2 + 3a − 1]n. Applying k = [a(k − 1)]n to the identity 0 =
[(k−1)4(a4+a3+a2+a+1)]n we obtain 0 = [5k4−10k3+10k2−5k+1]n. Thus,
1 = [k(−5k3 + 10k2 − 10k + 5)]n. Consequently, k′ = [−5k3 + 10k2 − 10k + 5]n
and a′ = [5k3 − 10k2 + 10k − 4]n. Now, from [(−5k3 + 5k2 − 5k + 1)a′]n =
[−25k6 + 75k5 − 125k4 + 125k3 − 80k2 + 30k − 4]n = [−5k2(5k4 − 10k3 + 10k2 −
5k+1)+5k(5k4− 10k3 +10k2− 5k+1)− 5(5k4− 10k3 +10k2− 5k+1)+1]n = 1
we conclude that a = [−5k3 + 5k2 − 5k + 1]n.

−(P∗): If (a, 1−a) ∈ −(P∗), then (−a, 1+a) ∈ P∗. Hence, by Table 3.1, we have
0 = [(−a)4 − 3(−a)3 + 4(−a)2 − 2(−a) + 1]n = [a4 + 3a3 + 4a2 + 2a+ 1]n. Using
the fact that [ka]n = [k+a]n, the identity 0 = [k(a4+3a3+4a2+2a+1)]n implies
0 = [11k+a3+4a2+8a−1]n. Then, using the fact that k = [a(k−1)]n, the identisty
0 = [(k−1)4(a4+3a3+4a2+2a+1)]n implies 0 = [11k4−21k3+16k2−6k+1]n.
This means that 1 = [−11k3+21k2−16k+6]n. So, k

′ = [−11k4−21k3+16k2+6]n
and a′ = [11k3−21k2+16k−5]n. Finally, using 0 = [11k4−21k3+16k2−6k+1]n,
we can calculate that [aa′]n = 1 for a = [−11k3 + 10k2 − 6k + 1]n.

This completes the proof of Theorem 3.2

Theorem 3.3. Let (Q, ·) be an idempotent k-translatable quasigroup of order n.
If m divides n, then (Q, ·) has an idempotent k′-translatable subquasigroup of order

m, where k′ = [k]m.

Proof. An idempotent k-translatable quasigroup (Q, ·) of order n is induced by the
group Zn and its automorphism ϕ(x) = [ax]n, where a and n are relatively prime.
If m divides n, then Zn has a subgroup (H,+) of order m. It is isomorphic to the
group Zm. Since a and m are relatively prime too, ϕ calculated modulo m, is an
automorphism of the group Zm and [a+ (1− a)k′]m = 0 for k′ = [k]m. So, (H, ·)
is an idempotent k′-translatable quasigroup induced by Zm and consequently by
the subgroup (H,+).

4. Idempotent k-translatable quasigroups for k 6 10

Using our Theorem 3.2 for each value of k we can calculate all idempotent k-
translatable quasigroups for the types of quasigroups discussed in the previous
section. To calculate the orders of these quasigroups we bear in mind that the
order n is odd and that the values of FT (a) and HT (k) calculated in Tables 3.1
to 3.4 are equivalent to 0 modulo n. For example, for k = 5 in H, we have
0 = [k2 − k + 1]n = [21]n = [3 · 7]n. This means that for k = 5 the possible orders
n > k are 7 or 21. Using Table 3.2 we see that for n = 7, a = [1−k]7 = [−4]7 = 3;
for n = 21, a = [−4]21 = 17. Thus, (3, 5) and (17, 5) are members of H. Similarly
for C3∗ and k = 6 we have HT (6) = 21, so possible order n of a 6-translatable C3∗
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quasigroup is 3, 7 or 21. But, in this case should be n > 6 and n = 3t+1. Thus a
6-translatable C3∗ quasigroup has order 7. Then, by Table 3.2, a = [−3]7 = 4 and
[FT (4)]7 = 0. Hence a multiplication of a 6-translatable C3∗ quasigroup of order
7 is given by x · y = [4x+ 4y]7. Therefore (4, 4) ∈ C3∗.

Calculations for other cases are similar and we skip them. Obtained results
are presented in Tables 4.1 and 4.2.

Table 4.1.

T k = 2 k = 3 k = 4 k = 5 k = 6

Q (2, 4) (4, 2) (7, 11) (11, 3) (16, 22)

H (2, 2) (5, 3) (10, 4) (3, 5), (17, 5) (26, 6)

GS − − (3, 3) (4, 8) (5, 15)

RM (2, 4) (7, 5) (14, 6) (23, 7) (34, 8)

LM − (4, 2) (5, 7) (6, 14) (7, 23)

ARO (2, 6) (5, 3) (9, 15) (14, 4) (20, 28)

ARO∗ − − (6, 2) (3, 5) (15, 9)

C3 (2, 6) (11, 9) (26, 12) (47, 15) (4, 4), (9, 5)
(74, 18)

C3∗ − − (6, 2) (11, 3) (4, 4)

P (2, 10) (4, 2), (7, 5) (122, 60) (347, 115) (794, 198)
(29, 27)

P∗ (2, 4) (17, 15) (5, 7), (82, 40) (4, 8), (9, 23) (10,2), (58,14)
(257, 85) (626, 156)

U − (7, 5) (3, 3), (6, 2) (21, 59) (31, 119)
(13, 23)

U∗ (2, 6) (13, 11) (3, 3), (5, 7) (83, 27) (154, 38)
(38, 18)

−LM (2, 10) (17, 15) (42, 20) (77, 25) (122, 30)

−(C3∗) (2, 12) (8, 6), (21, 19) (54, 26) (3, 5), (6, 14) (28, 40)
(101, 33)

−(ARO∗) (2, 16) (13, 11) (31, 59) (56, 18) (26,6), (88,130)

−U (2,4) (58, 56) (206, 102) (4, 8), (16, 44) (946, 236)
(2, 24) (488, 162)

−(U∗) − − − (6, 14) (13, 47)

−P (2, 30) (107, 105) (5, 7), (25, 47) (4, 8), (49, 143) (3722, 930)
(522, 260) (1577, 525)

(3, 3), (5, 7)
−(P∗) (2, 60) (7,5),(22,20) (22, 10), (38, 18) (3467, 1155) (26,6), (266,66)

(227, 225) (53,103),(115,327) (8210, 2052)
(1138, 568)
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Table 4.2.

T k = 7 k = 8 k = 9 k = 10

Q (22, 4) (3, 11), (29, 37) (37, 5) (46, 56)

H (37, 7) (12, 8), (50, 8) (65, 9) (4, 10), (82, 10)

GS (6, 24) (7, 35) (8, 4), (8, 48) (9, 63)

RM (3, 9), (47, 9) (62, 10) (79, 11) (98, 12)

LM (8, 34) (9, 3), (9, 47) (10, 62) (11, 79)

ARO (27, 5) (35, 45) (44, 6) (3, 15)

ARO∗ (4, 14) (28, 20) (5, 27) (45, 35)

C3 (107, 21) (3, 11), (146, 24) (5, 27) (242, 30)

C3∗ (27, 5) (38, 6) (13, 7), (51, 7) (66, 8)

P (27, 5), (52, 10) (190, 472) (8, 4), (308, 184) (6, 6), (593, 169)
(1577, 315) (2834, 472) (4727, 675) (7442, 930)

(53, 259) (5, 27), (20, 132) (6, 6), (35, 27)
P∗ (1297, 259) (2402, 400) (4097, 585) (28, 94), (523, 148)

(6562, 820)

U (43, 209) (6, 12), (11, 13) (4, 20), (23, 3) (91, 719)
(57, 335) (73, 43), (73, 503)

(13, 7), (23, 13))

U∗ (257, 51) (398, 66) (13, 83), (51, 83) (818, 102)
(583, 83)

−LM (177, 35) (242, 40) (13, 7), (317, 45) (6, 6), (33, 9)
(402, 50)

−(C3∗) (237, 47) (326, 54) (103, 61), (429, 61) (546, 68)

−(ARO∗) (127, 25) (173, 229) (226, 32) (286, 356)

−U (66, 324) (12, 8), (46, 112) (3796, 542) (19, 5), (118146)
(1622, 324) (2558, 426) (5378, 672)

−(U∗) (22, 4) (33, 191) (46, 314) (6, 6), (12, 38)
(61, 17), (61, 479)

−P (3, 9), (138, 684) (9, 3), (623, 829) (37, 5), (562, 80) (8, 24), (735, 587)
(7527, 1505) (13682, 2280) (22997, 3285) (36402, 4550)

−(P∗) (13, 59), (48, 234) (30242, 5040) (4359, 7263) (6, 6), (6403, 1829)
(16627, 3325) (50843, 7263) (80482, 10060)

Note that similar results can be obtained for negative values of k. Obtained
quasigroups will be [k]n-translatable quasigroups of order n > 2, where n is a
divisor of HT (k).

For example, for U∗, where 0 = [k3 − k2 + 2k− 1]n, substituting k = −5 gives
0 = [−161]n = [161]n = [7 · 23]n. If n = 7, then a = [−1 − k3]n = [−26]7 = 2,
which gives x · y = [2x + 6y]7. Since [23 − 2 + 1]7 = 0, (2, 6) ∈ U∗. If n = 23,
then a = [−26]23 = [−3]23 = 20 and [(−3)3 − (−3) + 1]23 = 0. So, (20, 4) ∈ U∗.
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In this case, k = [−5]23 = 18. Finally, if n = 161, then a = [−26]161 = 135,
(135, 27) ∈ U∗ and k = [−5]161 = 156.

In a similar way we can calculate analogous results for quasigroups other types
T mentioned in the previous sections.

Below we present obtained results for U∗, where k ∈ {−1,−2, . . . ,−10}, once
again omitting the detailed calculations.

Table 4.3.

k n a U∗ [k]n

−1 5 3 (3, 3) 4

−2 17 12 (16, 6) 15

−3 43 33 (33, 11) 40

−4 89 72 (72, 18) 85

−5 161 = 7 · 23 [−26]n (2, 6), (20, 4), (135, 27) 2, 18, 156

−6 265 = 5 · 53 [−37]n (3, 3), (16, 38), (228, 38) 4, 47, 259

−7 407 = 11 · 37 [−50]n (5, 7), (24, 14), (357, 51) 4, 30, 400

−8 593 528 (528, 66) 585

−9 829 747 (747, 83) 820

−10 1121 = 19 · 59 [−101]n (13, 7), (17, 43), (1020, 102) 9, 49, 1111

In [10] Vidak proved that if (Q, ·) is a pentagonal quasigroup then (Q, ◦),
de�ned as x ◦ y = (yx · x)x · y, is a golden square quasigroup. If the pentagonal
quasigroup (Q, ·) is also translatable and of order n then, as we have seen, x · y =
[ax+(1−a)y]n, with [a4−a3+a2−a+1]n = 0 and x◦y = [(a−a4)x+(1+a4−a)y]n.
We can easily check that (Q, ◦) ∈ GS using Table 3.1. Since [a5+1]n = 0, we have
also [(a− a4) + (1− a4 + a)(1 + a4 − a)]n = 0. Therefore, (Q, ◦) is [1− a4 + a]n-
translatable. So, for every translatable pentagonal quasigroup of order n there
is a translatable golden square quasigroup of order n. Note that by [7] a �nite
pentagonal quasigroup has order 5s or 5s + 1. By Table 4.1, a 6-translatable
GS-quasigroup has order 19. Hence, it is not pentagonal.

Notice that {(3, 9), (9, 3)} ⊆ −P. Accordingly, we have the following de�nition.

De�nition 4.1. The set dp(T) = {(a, 1 − a) | (a, 1 − a), (1 − a, a) ∈ T} is called
the set of T dual pairs.

If T ∈ {Q,H,GS} then, by Theorem 3.1, T = T∗ and dp(T) = T = dp(T∗).
From Table 3.1, it follows that if (a, 1 − a) ∈ RM ∩ RM∗ = RM ∩ LM, then
0 = [a2 + a− 1]n = [a2 − 3a+ 1]n and so [4a]n = 2. Thus 0 = [4(a2 + a− 1)]n =
[2a − 2]n gives [2a]n = 2. Hence, 2 = [4a]n = [2(2a)]n = 4 and so [2]n = 0. This
is impossible because 2 < a < n. Similarly, LM ∩ LM∗ = ∅. In this way we have
proved:

Proposition 4.2. dp(LM) = ∅ = dp(RM).
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Proposition 4.3. dp(C3) = {(4, 4)} = dp(C3∗).

Proof. C3 and C3∗-quasigroups have order n = 3t+ 1.
If (a, 1− a) ∈ dp(C3), then, by Table 3.1, we have 0 = [(1− a)2 +(1− a)+ 1]n

= [a2−3a+3]n which together with 0 = [a2+a+1]n gives [4a]n = 2. Consequently,
0 = [4(a2 + a + 1)]n = [2a + 6]n, i.e., [2a]n = [−6]n. So, 2 = [4a]n = [2(2a)]n =
[−12]n which means that 0 = [14]n. But n = 3t+1, so n = 7. Therefore, [2a]7 = 1
and a = 4.

If (a, 1 − a) ∈ dp(C3∗), then, by Table 3.1, we have 0 = [a2 − 3a + 3]n.
Also, 0 = [(1 − a)2 − 3(1 − a) + 3]n = [a2 + a + 1]n and consequently, 0 =
[a2 − 3a + 3]n = [(a2 + a + 1) − 4a + 2]n = [−4a + 2]n. So, [4a]n = 2. Thus
0 = [4(a2−3a+3)]n = [2a+6]n, i.e., [2a]n = [−6]n. Hence 2 = [2(2a)]n = [−12]n.
So, [14]n = 0 and, as in the previous case, n = 7, a = 4.

Proposition 4.4. dp(ARO) = ∅ = dp(ARO∗).

Proof. 0 = [2a2− 1]n and 0 = [2(1− a)2− 1]n = [2a2− 4a+1]n. So, [4a− 2]n = 0
and 2 = [4a2]n = [2a]n. Hence, 1 = [2a2]n = [2a]n = 2, contradiction.

Proposition 4.5. dp(U) = {(3, 3)} = dp(U∗).

Proof. If (a, 1 − a) ∈ dp(U), then 0 = [(1 − a)3 − 3(1 − a)2 + 2(1 − a) − 1]n =
[−a3 + a− 1]n, which gives [a3]n = [a− 1]n. Therefore, 0 = [a3− 3a2 +2a− 1]n =
[−3a2+3a−2]n, i.e., [3a2]n = [3a−2]n. Hence, [3(a−1)]n = [3a3]n = [3a2−2a]n =
[a− 2]n. So, [2a]n = 1. Thus [a2]n = [2a(a2)]n = [2(a− 1)]n = [2a− 2]n = [−1]n.
Consequently, a = [(2a)a]n = [−2]n. This together with [a3]n = [a − 1]n implies
n = 5 and a = 3.

Now, if (a, 1−a) ∈ dp(U∗), then 0=[a3−a+1]n and 0 = [(1−a)3−(1−a)+1]n =
[−(a3−a+1)+3a2−3a+2]n = [3a2−3a+2]n, by Table 3.1. Thus, [3a

2]n = [3a−2]n
and 0 = [3a2 − 2a+ 3]n = [(3a− 2)a− 3a+ 3]n = [−2a+ 1]n. Hence, [2a]n = 1 =
[4a2]n. So, [a+ 1]n = [(2a)a+ 4a2]n = [6a2]n = [6a− 4]n = [3− 4]n = [−1]n. So,
a = [−2]n and 1 = [2a]n = [−4]n. Thus, 0 = [5]n and a = 3.

Proposition 4.6. dp(−LM) = {(6, 6)}.

Proof. If (a, 1−a)∈dp(−LM), then 0=[a2+3a+1]n and 0=[(1−a)2+3(1−a)+1]n
= [a2 − 5a + 5]n = [(a2 + 3a + 1) − 8a + 4]n = [−8a + 4]n. Hence, [8a]n = 4 and
0 = [8(a2 + 3a+ 1)]n = [4a+ 20]n. Thus, 4 = [2(4a)]n = [−40]n and so [44]n = 0.
Since n must be odd (cf. [5, Lemma 4.1]), n = 11 and [8a]11 = 4. This equation
has only one solution a = 6.

The proofs of the next two propositions are very similar to the proof of Propo-
sition 4.6.

Proposition 4.7. dp(−(C3∗) = {(10, 10)}.

Proposition 4.8. dp(−(U∗)) = {(6, 6)}.
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Proposition 4.9. dp(−(ARO∗)) = {(4, 4)}.

Proof. For (a, 1 − a) ∈ dp(−(ARO∗)) we have 0 = [2a2 + 4a + 1]n. Also 0 =
[2(1 − a)2 + 4(1 − a) + 1]n = [2a2 − 8a + 7]n = [(2a2 + 4a + 1) − 12a + 6]n =
[−12a + 6]n. Hence, [12a]n = 6 and 0 = [6(2a2 + 4a + 1)]n = [6a + 18]n. Thus,
6 = [2(6a)]n = [−36]n and so [42]n = 0. Since, n must be odd, n is equal to 3, 7
or 21. For n = 3 the possible values of a are 1 or 2. These values do not satisfy
the condition [2a2 + 4a + 1]3 = 0, so the case n = 3 is impossible. For n = 21
the equation [12a]21 = 6 is solved only by a = 4, but then [2a2 + 4a + 1]21 6= 0,
This also is impossible. The equation [12a]7 = 6 has only one solution a = 4. It
satis�es the equation [2a2 + 4a+ 1]7 = 0. Hence dp(−(ARO∗)) = {(4, 4)}.

Proposition 4.10. dp(−U) = {(12, 12)}).

Proof. For the pair (a, 1 − a) ∈ dp(−U) we have 0 = [a3 + 3a2 + 2a + 1]n and
0 = [(1−a)3+3(1−a)2+2(1−a)+1]n = [−a3+6a2−11a+7]n = [9a2−9a+8]n.
Hence, [9a2]n = [9a − 8]n which together with 0 = [9(a3 + 3a2 + 2a + 1)]n gives
[46a]n = [23]n. Consequently, [a2]n = [−22a + 40]n and [207a]n = [368]n. So,
[23a]n= [230a−207a]n =[115−368]n = [−253]n. Thus, [23]n = [46a]n = [−506]n.
Therefore n = 529 or n = 23.

For n = 529 we have [23a]529 = [−253]529 = 276 and a = 12. But such a does
not satisfy [a3 + 3a2 + 2a+ 1]529 = 0. If n = 23, then from [a2]23 = [−22a+ 40]23
it follows that a = 12. Such a satis�es [a3 + 3a2 + 2a+ 1]23 = 0.

Proposition 4.11. dp(P) = {(6, 6)} = dp(P∗).

Proof. If (a, 1−a) ∈ dp(P), then 0 = [a4−a3+a2−a+1]n, i.e., [a
5]n = [−1]n. In

this case also 0 = [(1−a)4−(1−a)3+(1−a)2−(1−a)+1]n = [−2a3+3a2−a]n. So,
[2a3]n = [3a2 − a]n, whence, multiplying by a3, a2 and a we obtain, respectively,
[a4]n = [2a − 3]n, [a

3]n = [3a4 + 2]n = [6a − 7]n and [a2]n = [3a3 − 2a4]n =
[14a−15]n, which together with [a4−a3+a2−a+1]n = 0 gives [9a]n = 10. Thus,
[10a]n = [9a2]n = 5 . So, a = [−5]n and [55]n = 0. Hence n is equal to 5, 11 or
55. The case n = 5 is impossible because in this case a = 0, Also the case n = 55
is impossible since a and n should be relatively prime. For n = 11, a = 6 satis�es
these conditions.

If (a, 1 − a) ∈ dp(P∗), then 0 = [a4 − 3a3 + 4a2 − 2a + 1]n. In this case also
0 = [(1− a)4− 3(1− a)3 +4(1− a)2− 2(1− a) + 1]n = [a4− a3 + a2− a+1]n. So,
(a, 1 − a) ∈ P ∩P∗. Also (1 − a, a) ∈ P ∩P∗. Thus, dp(P∗) ⊆ dp(P) = {(6, 6)}.
Direct computation shows that (6, 6) ∈ dp(P∗). Therefore dp(P) = dp(P∗).

Proposition 4.12. dp(−P) = {(3, 9), (9, 3), (16, 16), (47, 295), (295, 47)}.

Proof. If (a, 1− a) ∈ dp(−P), then, by Table 3.3,

[a4 + a3 + a2 + a+ 1]n = 0, (1)
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which implies [a5]n = 1. Then also, 0 = [(1−a)4+(1−a)3+(1−a)2+(1−a)+1]n =
[a4 − 5a3 + 10a2 − 10a+ 5]n, i.e.,

[a4]n = [5a3 − 10a2 + 10a− 5]n. (2)

From this, multiplying by a and 4, we obtain [5a4]n = [10a3− 10a2 +5a+1]n and
[4a4]n = [20a3 − 40a2 + 40a− 20]n. So,

[a4]n = [−10a3 + 30a2 − 35a+ 21]n.

Therefore, [−50a3 + 150a2 − 175a + 105]n = [5a4]n = [10a3 − 10a2 + 5a + 1]n,
whence, as a consequence, we get

[60a3]n = [160a2 − 180a+ 104]n.

On the other hand, (1) together with (2) imply [6a3]n = [9a2−11a+4]n. Thus,
[90a2 − 110a+ 40]n = [60a3]n = [160a2 − 180a+ 104]n. So,

[70a2]n = [70a− 64]n. (3)

From this, multiply successively by a4, a and a2 we get [70a]n = [70− 64a4]n,
[70a3]n = [6a − 64]n and [70a4]n = [6a2 − 64a]n, which, together with (1), gives
0 = [70(a4 + a3 + a2 + a+ 1)]n = [6a2 + 82a− 58]n, i.e.,

[6a2]n = [58− 82a]n. (4)

Since [64a2]n = [70a−6a2−64]n, by (3), we also have [4a2]n = [64a2−60a2]n =
[(70a − 6a2 − 64) − (580 − 820a)]n = [890 − 6a2 − 644]n and so, [890a − 644]n =
[4a2 + 6a2]n = [4a2 + 58 − 82a]n. Hence, [4a2]n = [972a − 702]n. Then [2a2]n =
[6a2−4a2]n = [760−1054a]n. Thus, [972a−702]n = [2(2a2]n = [1520−2108a]n. So,
[3080a]n = [2222]n and [3080a2]n = [2222a]n. Now, using this equation and (3),
we obtain 0 = [44(70a2−70a+64)]n = [3080a2−3080a+2816]n = [−858a+2816]n.
Thus, [858a]n = [2816]n, which implies, [2574a]n = [3(858a)]n = [8448]n. Hence,
[506a]n = [3080a − 2574a] = [−6226]n, [352a]n = [858a − 506a] = [9042]n and
[308a]n = [2(858a)− 4(352a)]n = [−30536]n. Consequently,

[44a]n = [352a− 308a]n = [39578]n. (5)

But [39578]n= [44a]n= [308a− 6(44a)]n= [−30536− 237468]n= [−268004]n. So,
[307582]n = 0. Since 307582 = 2× 112 × 31× 41 and n must be an odd number,
the possible values of n are 11, 31, 41, 121, 341, 451, 1 271, 3 751, 4 961, 13 981
and 153 791.

We will consider each case separately. Note �rst that (a, b) ∈ dp(−P) if and
only if both a and b satisfy (1) and [a+b]n = 1. Then a and b satisfy the congruence
(5) too.
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(n = 11). Since k < n = 11, from Tables 4.1 and 4.2 it follows that in this case
only pairs (3, 9) and (9, 3) are dual.

(n = 31). Then (5) reduces to the congruence 13a ≡ 22(mod 31). Since the
greatest common divisor of 13 and 31 is 1, this congruence has only one solution
a = 16. This solution satis�es (1). Obviously, (16, 16) ∈ dp(−P).

(n = 41). Then (5) has the form 3a ≡ 13(mod 41) and has only one solution
a = 18. The pair (18, 24) ∈ −P, but 24 does not satis�es the above congruence.
Thus for n = 41 the set dp(−P) is empty.

(n = 121). Then 44a ≡ 11(mod 121). Since the greatest common divisor of 44
and 11 is 11, this congruence has 11 solutions. Any a satisfying the congruence
44a ≡ 11(mod 121) satis�es also the congruence 4a ≡ 1(mod 11), which has only
one solution a = 3. Thus the set S of solutions of 44a ≡ 11(mod 121) consists of
the numbers the form 3 + 11k, k = 0, 1, 2, . . . , 10. Since for any a, b ∈ S we have
[a + b]11 = 6, so [a + b]121 6= 1. This means that for n = 121 the set dp(−P) is
empty.

(n = 341). Then 44a ≡ 22(mod 341). This congruence has 11 solutions. Any
a satisfying this congruence satis�es also the congruence 4a ≡ 2(mod 31), which
has only one solution a = 16. Thus the solutions of 44a ≡ 22(mod 341) have the
form x = 16 + 31k, k = 0, 1, 2, . . . , 10. Direct calculations shows that only pairs
(47, 295) and (295, 47) are dual.

(n = 451). Then 44a ≡ 341(mod 451). This congruence has 11 solutions. Any
a satisfying this congruence also satis�es the congruence 4a ≡ 31(mod 41), which
has only one solution a = 18. Thus S = {18 + 41k | k = 0, 1, . . . , 10} is the set of
solutions of 44a ≡ 341(mod 451). Since [a+ b]41 = 36 for all a, b ∈ S, in the case
n = 451 there no dual pairs.

(n = 1271). Then 44a ≡ 177(mod 1271). This congruence is satis�ed only by
a = 264. The pair (264, 1008) ∈ −P, but 1008 does not satisfy this congruence.
So, for n = 1271 the set dp(−P) is empty.

(n = 3751). Then 44a ≡ 2068(mod 3751). This congruence has 11 solutions. Any
a satisfying this congruence satis�es also the congruence 4a ≡ 188(mod 341), which
has only one solution x = 47. Thus S = {47 + 341k | k = 0, 1, . . . , 10} contains all
solutions of the congruence 44a ≡ 2068(mod 3751). Since [a + b]341 = 94 for all
a, b ∈ S, in this case there no dual pairs.

(n = 4961). Then 44a ≡ 4851(mod 4961). This congruence has 11 solutions. Any
a satisfying this congruence satis�es also the congruence 4a ≡ 441(mod 451), which
has only one solution a = 223. Thus S = {223 + 451k | k = 0, 1, . . . , 10} contains
all solutions of the congruence 44a ≡ 441(mod 4851). Since [a+ b]451 = 446 for all
a, b ∈ S, also in this case there no dual pairs.

(n = 13 981). Then 44a ≡ 11616(mod 13981). This congruence has 11 solutions.
Proceeding as in previous cases we can see that S = {264+1271k | k = 0, 1, . . . , 10}
contains all solutions of this congruence. Since [a+ b]1271 = 528 for all a, b ∈ S, in
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this case there no dual pairs too.

(n = 153 791). Then 44a ≡ 39578(mod 153791). Analogously as in previous cases
we can see that the set S = {7890+13981k | k = 0, 1, . . . , 10} contains all solutions
of this congruence and [a+ b]13981 6= 1 for a, b ∈ S. So, in this case there no dual
pairs.

This completes the proof.

Proposition 4.13. dp(−(P∗)) = {(3, 3), (5, 7), (6, 6), (7, 5)}.

Proof. If (a, 1− a) ∈ dp((−P)∗), then, by Table 3.3,

[a4 + 3a3 + 4a2 + 2a+ 1]n = 0 (6)

and 0 = [(1−a)4+3(1−a)3+4(1−a)2+2(1−a)+1]n = [a4−7a3+19a2−23a+11]n,
i.e.,

[a4]n = [7a3 − 19a2 + 23a− 11]n. (7)

Comparing (6) with (7) we obtain

[10a3]n = [15a2 − 25a+ 10]n. (8)

Multiplying this equation by 11 and a we obtain [110a3]n = [165a2− 275a+110]n
and [10a4]n = [15a3 − 25a2 + 10a]n.

From (6) we have [10a4]n = [−30a3 − 40a2 − 20a − 10]n, which together with
the last equation implies [45a3]n = [−15a2− 30a− 10]n. Comparing this equation
with (8) multiplied by 4 we obtain

[5a3]n = [−75a2 + 70a− 50]n. (9)

Consequently, [−150a2+140a−100]n = [10a3]n = [15a2−25a+10]n. So, [165a
2]n =

[165a− 110]n. Thus,

[110a3]n = [165a2 − 275a+ 110]n = [−110a]n (10)

and [110a4]n = [−110a2]n. Now, multiplying (6) by 110 and applying the last two
expressions we obtain [330a2]n = [110a− 110]n. This and (10) imply [−330a]n =
[330a3]n = [110a2 − 110a]n. So, [110a2]n = [−220a]n and [110a3]n = [−220a2]n.
Hence [−110a]n = [110a3]n = [−220a2]n. Thus [110a]n = [220a2]n. Consequently,
[110a− 110]n = [330a2]n = [220a2 +110a2]n = [110a+110a2]n. Hence [110a

2]n =
[−110]n. Therefore, [110a]n = [220a2]n = [−220]n and [−110]n = [110a2] =
[−220a]n = [440]n, i.e., [550]n = 0. Since n must be odd, the possible values of n
are 5, 11, 25, 55 and 275.

(n = 5). Direct calculation shows that in this case only (3, 3) ∈ dp(−(P)∗).

(n = 11). In this case only (5, 7), (6, 6), (7, 5) ∈ dp(−(P∗)).
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(n = 25). Any a satisfying (6) and (7) satis�es also (9), which for n = 25 has
the form [5a3]25 = [20a]25. Solutions of this equation also satisfy the equation
[a3]5 = [4a]5. This equation has two solutions that are relatively prime to 5,
namely a = 2 and a = 3. Thus the solutions of [5a3]25 = [20a]25 should be in one of
the following sets: S′ = {2+5k | k = 0, 1, 2, 3, 4} or S′′ = {3+5k | k = 0, 1, 2, 3, 4}.
For (a, b) ∈ dp(−(P∗)), [a+ b]25 = 1. This is possible only for a, b ∈ S′′. But it is
easy to check that none of a ∈ S′′ satis�es (6). (Also none of a ∈ S′ satis�es (6).)
Hence for n = 25 the set dp(−(P∗)) is empty.

(n = 275). The number of solutions of the congruence (9) calculated modulo
275 = 11 × 25 is equal to t1 × t2, where t1 is the number of the solutions of
(9) calculated modulo 11 and t2 is the number of the solutions of (9) calculated
modulo 25 (cf. [11]). Since t2 = 0, for n = 275 the set dp(−(P∗)) is empty.

5. Moving from one type to another

The mappings T 7→T∗, T 7→ −T, T 7→T+t and T 7→T−t transform one type
of idempotent k-translatable quasigroups to another. We already know that H =
H∗ = −C3, GS = GS∗ = −RM, RM = LM∗ = −GS, LM = RM∗, ARO =
−ARO and C3 = −H. These formulae allow us to move from certain types to
others. For example, to move from GS to RM we convert any (a, 1− a) ∈ GS to
(−a, 1+a) and then (−a, 1+a) ∈ RM. Similarly, to move fromC3 toH we convert
any (a, 1−a) ∈ C3 to (−a, 1+a) and then (−a, 1+a) ∈ H. To move from RM to
LM we convert any (a, 1− a) ∈ RM to (1− a.a) and then (1− a, a) ∈ LM. Also,
(GS)+1 = LM, (LM)−1 = GS and LM = (GS)+1 = (−RM)+1 = (−(LM∗))+1.
We prove below that T = (−(T∗))+1 for any type T ⊆ IKQ.

Notice that T = T∗ does not imply −(T∗) = (−T)∗ because, H = H∗ and
−H = C3 and so, (−H)∗ = C3∗ 6= C3 = −(H∗). This proves the following
proposition.

Proposition 5.1. In general, (−T)∗ 6= −(T∗).

Theorem 5.2. For any type T of idempotent k-translatable quasigroups

−T = (T∗)−1 and T = −((T∗)−1) = (−(T∗))+1.

Proof. We have (a, 1 − a) ∈ (T∗)−1 ⇔ (a + 1,−a) ∈ T∗ ⇔ (−a, a + 1) ∈ T ⇔
(a, 1− a) ∈ −T. Since −(−T)=T, from −T = (T∗)−1 it follows T = −((T∗)−1).
Also, (a, 1−a)∈T⇔(1−a, a)∈T∗⇔(a−1, 2−a)∈−(T∗)⇔(a, 1−a)∈(−(T∗))+1.

Corollary 5.3. T∗ = −(T−1) = (−T)+1 = ((T−1)∗)−1 = ((−(T∗))∗)−1.

Proof. As a consequence of Theorem 5.2 we get, T∗ = −(−(T∗)) = ((−(T∗))∗)−1.
Also, −(T∗) = ((T∗)∗)−1 = T−1 implies T∗ = −(T−1) = ((T−1)∗)−1. Finally,
T∗ = (−T)+1.
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Corollary 5.4. T = (−(T∗))+1 = −((T∗)−1).

Proof. Observe that (a, 1− a) ∈ T⇔ (1− a, a) ∈ T∗ ⇔ (a− 1, 2− a) ∈ −(T∗)⇔
(a, 1− a) ∈ (−(T∗))+1. So, T = (−(T∗))+1. Also, (T∗)−1 = ((−T)+1)−1 = −T,
by Corollary 5.3. Hence, T = −((T∗)−1).

Corollary 5.5. −(T∗) = T−1 and (−T)∗ = T+1.

Proof. From Corollary 5.3 it follows that −(T∗) = T−1. Then, (a, 1− a) ∈ (−T)∗

⇔ (1− a, a) ∈ −T⇔ (a− 1, 2− a) ∈ T⇔ (a, 1− a) ∈ T+1.

We can now answer the question, when does −(T∗) = (−T)∗?

Theorem 5.6. (−T)∗ = −(T∗)⇔ T+1 = T−1 ⇔ T = T+2 ⇔ T = T−2.

Proof. Indeed, by Corollary 5.5, (−T)∗ = −(T∗) ⇔ T+1 = T−1. We also have,
T+1 = T−1 ⇔ T = T+2 ⇔ T = T−2.

Theorem 5.7. −(T+1) = (−T)+1 ⇔ −(T−1) = (−T)−1 ⇔ (T∗)+1 = (T−1)∗ ⇔
(T∗)−1 = (T−1)∗ ⇔ (−T)∗ = −(T∗).

Proof. We have (a, 1−a) ∈ −(T+1)⇔ (−a, 1+a) ∈ T+1 ⇔ (−1−a, 2+a) ∈ T⇔
(2+a,−1−a) ∈ T∗ ⇔ (a, 1−a) ∈ (T∗)−2 = (−T)−1 and (−T)+1 = T∗, by Corol-
lary 5.3. Therefore, −(T+1) = (−T)+1 ⇔ T∗ = (−T)−1 ⇔ −(T−1) = (−T)−1.
But by Corollary 5.3 we also have (−T)∗ = −((−T)−1), so T∗ = (−T)−1 ⇔
(−T)∗ = −(T∗).

6. Orthogonality

De�nition 6.1. Two quasigroups (Q, ·) and (Q, ◦) are called orthogonal if, for
every s, t ∈ Q, the equations x ·y = s and x◦y = t have unique solutions x, y ∈ Q.

Not every pair of idempotent translatable quasigroups of the same order are
orthogonal. The criterion of orthogonality of such quasigroups is given by the
following theorem that also can be deduced from results obtained in [8].

Theorem 6.2. The quasigroups (Q, ·) and (Q, ◦), where x · y = [ax + (1− a)y]n
and x ◦ y = [cx+ (1− c)y]n are orthogonal if a− c and n are relatively prime.

Proof. Since x · y = [ax + (1 − a)y]n and x ◦ y = [cx + (1 − c)y]n are quasigroup
operations, a and n (also c and n) are relatively prime. So, there are a′, c′ ∈ Q
such that [aa′]n = [cc′]n = 1.

Let s, t ∈ Q. Suppose that{
x · y = [ax+ (1− a)y]n = s,

x ◦ y = [cx+ (1− c)y]n = t.
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Multiply the �rst equation by a′ and the second by c′, we obtain the following
system of equations {

[x+ (a′ − 1)y]n = sa′,

[x+ (c′ − 1)y]n = tc′,

that will be written as {
[(a′ − c′)y]n = sa′ − tc′,

[x+ (c′ − 1)y]n = tc′.

This system has a unique solution if and only if the mapping ϕ(y) = [(a′ − c′)y]n
transforms Q onto Q. This is possible only in the case when a′ − c′ and n are
relatively prime. Since p divides a′ − c′ if and only if p divides a− c, a′ − c′ and n
are relatively prime if and only if a−c and n are relatively prime. This observation
completes the proof.

Corollary 6.3. A quasigroup (Q, ·), where x · y = [ax + (1 − a)y]n, and its dual

quasigroup (Q, ∗) are orthogonal if and only if 2a− 1 and n are relatively prime.

Applying this corollary to Table 3.1 we obtain

Corollary 6.4. Quasigroups from Q and ARO are orthogonal to their dual quasi-

groups.

7.Belousov's identities

Belousov in [1] proved the following Theorem.

Theorem 7.1. Any minimal nontrivial identity in a quasigroup is parastrophically

equivalent to one of the following identity types: x(x · xy) = y, x(y · yx) = y,
x · xy = yx, xy · x = y · xy, xy · yx = y, xy · y = x · xy and yx · xy = y.

We now explore these identities within IKQ. Observe �rst that the identity
x(x · xy) = y de�nes the type C3, the identity x(y · yx) = y de�nes the type U
and the identity x · xy = yx de�nes the type LM.

Proposition 7.2. In IKQ each of the identities xy · x = y · xy and xy · yx = y
de�ne a quadratical quasigroup.

Proof. Since x · y = [ax + (1 − a)y]n, each of these identities implies the identity
2a2 − 2a+ 1n = 0. So, by Theorem 2.1, (G, ·) is quadratical.

Proposition 7.3. There are no quasigroups in IKQ that satisfy either of the

identities xy · y = x · xy or yx · xy = y.

Proof. In IKQ each of these identities imply the identity [2a2 − 2a]n = 0. This
implies 0 = [k(2a2 − 2a)]n = [2(ka)a− 2ka]n = [2(k+ a)a− 2(k+ a)]n = [2a2]n =
[2a]n. So, 0 = [2ak]n = [2(k + a)]n = [2k]n, and consequently 2 = [2kk′]n = 0, a
contradiction.
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8. Parastrophes

Each quasigroup Q = (Q, ·) determines �ve new quasigroups Qi = (Q, ◦i) (called
parastrophes or conjugate quasigroups), where the operation ◦i is de�ned as follows:

x ◦1 y = z ⇔ x · z = y,
x ◦2 y = z ⇔ z · y = x,
x ◦3 y = z ⇔ z · x = y,
x ◦4 y = z ⇔ y · z = x,
x ◦5 y = z ⇔ y · x = z.

It is not di�cult to observe that these parastrophes are pairwise dual. Namely,
Q∗ = Q5, Q∗1 = Q4 and Q∗2 = Q3.

In general, such de�ned parastrophes are not isotopic, but if (Q, ·) is an idem-
potent k-translatable quasigroup of order n, then all its parastrophes are isotopic
(cf. [5]) and have simple form.

Theorem 8.1. Parastrophes of a k-translatable idempotent quasigroup (Q, ·) with
the multiplication de�ned by x · y = [ax+ by]n are t-translatable idempotent quasi-

groups of the form:
x ◦1 y = [(1− b′)x+ b′y]n,

x ◦2 y = [a′x+ (1− a′)y]n,

x ◦3 y = [(1− a′)x+ a′y]n,

x ◦4 y = [b′x+ (1− b′)y]n,

x ◦5 y = [(1− a)x+ ay]n.

Q1 is t-translatable for t = a, Q2 for t = b′, Q3 for t = b, Q4 for t = a′, Q5 for

t = k′.

Proof. By simple computations we can see that the parastrophes of (Q, ·) have the
above form. So they are idempotent quasigroups. Their t-translatability follows
from the fact that [a+ b]n = 1 and [a′ + b′]n = [a′b′]n.

Corollary 8.2. Parastrophes of a k-translatable quadratical quasigroup (Q, ·) with
the multiplication x · y = [ax+ by]n, have the form:

x ◦1 y = [kx+ (1− k)y]n,

x ◦2 y = [(k + 1)x− ky]n,

x ◦3 y = [−kx+ (k + 1)y]n,

x ◦4 y = [(1− k)x+ ky]n,

x ◦5 y = [(1− a)x+ ay]n.

Theorem 8.3. If (Q, ·) with x · y = [ax + by]n is a k-translatable quadratical

quasigroup, then its parastrophe types are as in the table below, where (u, v) in the

column x ◦i y and the row T means that the parastrophe x ◦i y of (Q, ·) is of type
T only for a = u and b = v.
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x · y x ◦1 y x ◦2 y x ◦3 y x ◦4 y x ◦5 y
Q always (2, 4) (4, 2) (2, 4) (4, 2) always

H never never never never never never

GS never (4, 2) (2, 4) (4, 2) (2, 4) never

RM (2, 4) (2, 4) never never (4, 2) (4, 2)

LM (4, 2) never (4, 2) (2, 4) never (2, 4)

ARO never never (11, 7) (7, 11) never never

ARO∗ never (7, 11) never never (11, 7) never

C3 (3, 11) never (3, 11) (11, 3) never (11, 3)

C3∗ (11, 3) (11, 3) never never (3, 11) (3, 11)

P (4, 2) never (4, 2) (2, 4) never (2, 4)

P∗ (2, 4) (2, 4) never never (4, 2) (4, 2)

U never (4, 2) (2, 4) (4, 2) (2, 4) never

U∗ never (4, 2) (2, 4) (4, 2) (2, 4) never

−LM (5, 37) never (5, 37) (37, 5) never (37, 5)

−(C3∗) (60, 38) (3, 11) (56, 6) (6, 56) (11, 3) (38, 60)

−(ARO∗) never (11, 7) (11, 3), (62, 28) (3, 11), (28, 62) (7, 11) never
(596, 562) (562, 596)

−U never (2, 4) (46, 56) (56, 46) (4, 2) never

−(U∗) never (2, 4) (7, 11) (11, 7) (4, 2) never

−P (37, 5) never (37, 5) (5, 37) never (5, 37)

−(P∗) (153, 89) (4, 2) never never (2, 4) (89, 153)

Proof. In the proof we will use conditions given in Table 3.1 and the fact that an
idempotent k-translatable quasigroup (Q, ·) is quadratical if and only if x · y =
[ax + (1 − a)y]n, where n > 1 is odd, [2a2 − 2a + 1]n = 0, k = [1 − 2a]n and
[k2]n = −1. Moreover, since Q∗ = Q5, Q

∗
1 = Q4 and Q∗2 = Q3, it is su�cient

verity only when Q, Q1 and Q2 are �xed type T, i.e., for which values of (a, b)
Q,Q1, Q2 ∈ T.

T = Q.
• Since, Q = Q∗ (Theorem 3.1), the quasigroup Q5 always is quadratical.

• x ◦1 y = [kx+ (1− k)y]n. Thus, 0 = [2k2 − 2k + 1]n = [4a − 3]n = [−2k − 1]n.
So, 0 = [(−2k − 1)k]n = [2 − k]n. Hence k = 2, n = k2 + 1 = 5 and [2a]5 = 4,
which gives (2, 4).

• x ◦2 y = [(k + 1)x − ky]n. Then 0 = [2(k1)
2 − 2(k + 1) = 1]n = [2k − 1]n. So,

0 = [(2k − 1)k]n = [−2− k]n. Hence, n = k2 + 1 = 5, [2a]5 = 3 and a = 4, which
gives (4, 2).

T = H.
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If Q ∈ H, then 0 = [2a2−2a+1]n = [a2−a+1]n, which is impossible. So, Q 6∈ H.

• If Q1 ∈ H, then 0 = [k2 − k + 1]n = [−1− k + 1]n = [−k]n, a contradiction.

• If Q2 ∈ H, then 0 = [(k+1)2−(k+1)+1]n = [k2+k+1]n = [k]n, a contradiction.

T = −(ARO∗). If Q ∈ −(ARO∗), then 0 = [2a2 − 2a + 1]n = [a2 + 4a + 1]n.
This gives [6a]n = 0. But then 0 = [3(2a2 − 2a+ 1)]n = 3. So, must be n = 3 and
a = 2, which is impossible

• If Q1 ∈ −(ARO∗), then 0 = [2k2 + 4k + 1]n implies [4k]n = 1. Thus [−4]n = k,
n = k2 + 1 = 17 and [2a]17 = [1 − k]17 = 5. So, a = 11, which gives the pair
(11, 7).

• If Q2 ∈ −(ARO∗), then 0 = [2(k+1)2+4(k+1)+1]n = [8k+5]n. Hence, [8k]n =
[−5]n, [−5k]n = [−8]n and k = [16k − 15k]n = [−34]n. Thus 0 = [k2 + 1]n = 1157
means that the possible values of n are 13, 89 and 1157. For n = 13 we obtain
k = [−13]13 = 5 and 2a = [1 − k]13 = 9. So, a = 11, which gives the pair (11, 3).
By similar calculations, for n = 89 we get k = 55 and (62, 28), for n = 1157 we
obtain k = 1123 and (598, 562).

For other types the proof is analogous, so we omit it.
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