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Hyperidentities with permutations leading to the

isotopy of invertible binary algebras to a group

Sergey S. Davidov and Davit A. Shahnazaryan

Abstract. Using the second-order formulas we obtained characterizations of binary invertible
algebras principally isotopic to a group or to an abelian group.

1. Introduction

A binary algebra (Q; Σ) is called an invertible algebra or system of quasigroups if each operation
in Σ is a quasigroup operation. Invertible algebras with second order formulas �rst were con-
sidered by Shau�er [12, 13] in connection with coding theory. He pointed out that the resulting
message would be more di�cult to decode by unauthorized receiver than in the case when a single
operation is used for calculation. Later such algebras were investigated by Aczel [1], Belousov
[3, 4], Sade [11], Movsisyan [8, 9, 10] and others.

It is well known [5] that with each quasigroup A the next �ve quasigroups are connected:

A−1, −1A, −1(A−1), (−1A)−1, A∗,

where A∗(x, y) = A(y, x). These quasigroups are called inverse quasigroups or parastrophes.
Like this, with each invertible algebra (Q; Σ) the next �ve invertible algebras are connected:

(Q; Σ−1), (Q;−1 Σ), (Q;−1 (Σ−1)), (Q; (−1Σ)−1), (Q; Σ∗),

where

Σ−1 = {A−1 |A ∈ Σ},
−1Σ = {−1A |A ∈ Σ},

−1(Σ−1) = {−1(A−1) |A ∈ Σ},

(−1Σ)−1 = {(−1A)−1 |A ∈ Σ},
Σ∗ = {A∗ |A ∈ Σ}.

Each of these invertible algebras is called a parastrophe of the algebra (Q; Σ).

Let us recall that the following absolutely closed second-order formula:

∀X1, . . . , Xm∀x1, . . . , xn (ω1 = ω2),

∀X1, . . . , Xk∃Xk+1 . . . , Xm∀x1, . . . , xn (ω1 = ω2),

where ω1, ω2 are words written in the functional variables, X1, . . . , Xm, and in the objective
variables, x1, . . . , xn, are called ∀(∀)-identity or hyperidentity and ∀∃(∀)-identity. For see [8].

The groupoid Q(A) is isotopic to the groupoid Q(B) if exist three permutations α, β, γ of Q
such that γB(x, y) = A(αx, βy) for all x, y ∈ Q. The isotopy of the form T = (α, β, ε), where ε
is the identity map, is called a principal isotopy.
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The class of quasigroups isotopic to groups �rst were considered by Belousov [4]. Varieties of
quasigroups isotopic to groups have been considered by Glukhov, Gvaramia, Sokhatsky and oth-
ers. In [6] the concept of identities with permutations was introduced and isotopies of quasigroups
to groups was characterized by these identities.

We introduce the notion of the hyperidentity with permutations and using these hyperiden-
tities we obtain characterizations of binary invertible algebras principally isotopic to a group.

2. Auxiliary concepts and results

We start with some concepts and results, which are necessary for further considerations.

De�nition 2.1. The triplet T = (α, β, γ) of permutations of the set Q is called an autotopy of
the groupoid Q(·), if the identity γ(x · y) = αx · βy is true for for all x, y ∈ Q. If T = (α, β, γ) is
an autotopy of the groupoid Q(A), then we write AT = A.

In the case α = β = γ the triplet T = (α, α, α) is an automorphism. It is easy to see that
the set of autotopies of Q(·) forms a group.

De�nition 2.2. The third component γ of the autotopy T = (α, β, γ) of the groupoid Q(·) is
called a quasi-automorphism of Q(·).

Lemma 2.3. (cf. [3]) Any quasi-automorphism γ of a group Q(·) has the form:

γ = R̃sγ0, (γ = L̃sδ0) (1)

where γ0 (δ0) is an automorphism of the group Q(·), R̃sx = x · s (L̃sx = s · x), s ∈ Q and,

conversely, the map γ de�ned by the equality (1) is a quasi-automorphism of the group Q(·).

Lemma 2.4. (cf. [3]) Let γ be a quasi-automorphism of the group Q(·). Then γ is an auto-

morphism if and only if γ1 = 1, where 1 is the identity element of the group Q(·).

Lemma 2.5. (cf. [3]) Let α, β, γ, δ, σ, τ be permutations of the set Q, such that the equality

β(α(x · y) · z) = γx · δ(σy · τz)
is valid in the group Q(·) for all x, y, z ∈ Q. Then the permutations α, β, γ, δ, σ, τ are quasi-

automorphisms of the group Q(·).

Lemma 2.6. (cf. [3]) A permutation α of Q is a quasi-automorphism of the group Q(·) if and

only if for all x, y ∈ Q the equality

α(xy) = αx · (α1)−1 · αy,
where 1 is the identity of Q(·), is valid.

Theorem 2.7. (cf. [3]) If a non-empty set Q is a quasigroup under each of four operations

A1, A2, A3, A4 satisfying the identity:

A1(A2(x, y), z) = A3(x,A4(y, z)), (2)

then there exists the operation (·) such Q(·) is a group isotopic to all these four quasigroups.

Theorem 2.8. (cf. [2]) if a non-empty set Q is a quasigroup under each of six operations

A1, A2, A3, A4, A5, A6 satisfying the identity:

A1(A2(x, y), A3(z, u)) = A4(A5(x, z), A6(y, u)), (3)

then there exists the operation (·) such that Q(·) is an abelian group isotopic to all these six

quasigroups, i.e.,

A1(x, y) = αx · βy, A4(x, y) = χx · ϕy,
A2(x, y) = α−1(γx · δy), A5(x, y) = χ−1(γx · θy),

A3(x, y) = β−1(θx · ψy), A6(x, y) = ϕ−1(δx · ψy),

where α, β, γ, δ, χ, ϕ, ψ, θ are permutations of Q.
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De�nition 2.9. We say that a binary algebra (Q; Σ) is isotopic to the groupoid Q(·), if each
operation in Σ is isotopic to the groupoid Q(·), i.e., for every operation A ∈ Σ there exists
permutations αA, βA, γA of Q such that:

γAA(x, y) = αAx · βAy,

for every x, y ∈ Q.

Theorem 2.10. (cf. [7]) The invertible algebra (Q; Σ) is principally isotopic to a group if and

only if for all A,B ∈ Σ the following second-order formula

A(−1A(B(x,B−1(y, z)), u), v) = B(x,B−1(y,A(−1A(z, u), v))),

is valid in the algebra (Q; Σ ∪ Σ−1 ∪−1 Σ).

3. Main results

We denote by LA,a and RA,a the left and right translations of the binary algebra (Q; Σ):

LA,a : x 7→ A(a, x) (RA,a : x 7→ A(x, a)).

If (Q; Σ) is an invertible algebra, then these translations are bijections for all a ∈ Q.
We will consider second order formulas (called hyperidentities with permutations or hyperi-

dentities in (Q; Σ)) of the following form:

βA,B
1 A(βA,B

2 B(βA,B
3 x, βA,B

4 y), βA,B
5 z) = B(βA,B

6 x, βA,B
7 A(βA,B

8 y, βA,B
9 z)),

where x, y, z are objective variables, βA,B
i (i = 1, . . . , 9) are permutations on Q dependent on

A,B ∈ Σ. By doing paremeter replacement those formulas may be transformed into second
order formulas with less number of paramaters:

αA,B
1 A(αA,B

2 B(x, y), z) = B(αA,B
3 x, αA,B

4 A(αA,B
5 y, αA,B

6 z)). (4)

Theorem 3.11. If the second order formula (4) is valid in the algebra (Q; Σ) for all A,B ∈ Σ

and for some permutations αA,B
i (i = 1, . . . , 6), then the algebra (Q; Σ) is principally isotopic to

a group.

Conversely, if the invertible algebra (Q; Σ) is principally isotopic to a group Q(·), then for

all A,B ∈ Σ there exist permutations αA,B
i (i = 1, . . . , 6) such that the second order formula (4)

is valid in the algebra (Q; Σ).

Proof. Let (4) hold in (Q; Σ) for all A,B ∈ Σ and for some permutations αA,B
i (i = 1, . . . , 6).

The second order formula (4) is a particular case of (2), where

A1(x, y) = αA,B
1 A(x, y), A2(x, y) = αA,B

2 B(x, y),

A3(x, y) = B(αA,B
3 x, y), A4(x, y) = αA,B

4 A(αA,B
5 x, αA,B

6 y).

According to Theorem 2.7, the quasigroups A1, A2, A3, A4 are isotopic to the same group Q(·):

A1(x, y) = α−1(βx · γy), A2(x, y) = α−1
1 (β1x · γ1y),

A3(x, y) = λ−1(µx · νy), A4(x, y) = λ−1
1 (µ1x · ν1y).

Having in consideration the last equalities and (2) we get:

α−1(βα−1
1 (β1x · γ1y) · γz) = λ−1(µx · νλ−1

1 (µ1y · ν1z))

or
λα−1(βα−1

1 (x · y) · z) = µβ−1
1 x · νλ−1

1 (µ1γ
−1
1 y · ν1γ−1z).
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According to Lemma 2.5, λα−1 = θ is a quasi-automorphism of the group Q(·). Fixing the
operation A, we �x the permutation α, too. Then, every operation B ∈ Σ has the form:

B(x, y) = A3((αA,B
3 )−1x, y) = A3(φx, y) = λ−1(µφx · νy)

or
B(x, y) = α−1θ−1(φ′x · νy).

Since the permutation θ−1 is a quasi-automorphism of the group Q(·), then

B(x, y) = α−1(θ−1φ′x · (θ−11)−1 · θ−1νy) = α−1(φ′′x · ψy),

where φ′′x = θ−1φ′x(θ−11)−1, ψx = θ−1νx and 1 is the identity element of the group Q(·).
Consider the operation:

x ◦ y = α−1(αx · αy).

Q(◦) is isomorphic to the group Q(·). Thus, (Q(◦) is a group and

B(x, y) = α−1φ′′x ◦ α−1ψy

or
B(x, y) = fx ◦ gy.

Hence, Q(B) is principally isotopic to the group Q(◦) and since B is an arbitrary operation from
Σ, this proves the statement.

Conversely, if an invertible algebra is principally isotopic to a group, then according to
Theorem 2.10 the following formula is valid:

A(−1A(B(x,B−1(y, z)), u), v) = B(x,B−1(y,A(−1A(z, u), v))).

Taking into account that

A−1(x, u) = RA−1,ux = LA−1,xu and −1A(v, x) = L−1A,vx = R−1A,xv

the above formula may be re-written in the form:

A[R−1A,uB(x, z), v] = B[x, LB−1,yA(R−1A,uL
−1
B−1,y

z, v)].

This for u = a, y = b, where a, b ∈ Q are �xed, gives (4), where

αA,B
1 = αA,B

3 = αA,B
6 = ε, αA,B

2 = R−1A,a, αA,B
4 = LB−1,b, αA,B

5 = R−1A,aL
−1
B−1,b

,

and completes the proof.

Corollary 3.12. (cf. [6]) The class of quasigroups isotopic to a group is characterized by the

identity:

x(b\((z/a)v)) = ((x(b\z))/a)v,

where a and b are �xed.

Theorem 3.13. The invertible algebra (Q; Σ) is principally isotopic to an abelian group if and

only if for all A,B ∈ Σ the second-order formula

A(−1A(B(x, z), y), A−1(y,B(w, u))) = A(−1A(B(w, z), y), A−1(y,B(x, u))). (5)

Proof. Let (Q; Σ) be an invertible algebra principally isotopic to an abelian group Q(·), i.e.,
every operation A ∈ Σ has the form:

A(x, y) = αAx · βAy, (6)

where αA, βA are permutations of the set Q. Then from (6) we obtain:

A−1(x, y) = β−1
A (αAx · y) and −1A(x, y) = α−1

A (x · βAy), (7)

where x is the inverse element of x in the group Q(·).
Using the identities (6) and (7) we can prove that left and right sides of (5) are the same.
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Conversely, let (5) be satis�ed in (Q; Σ ∪ Σ−1 ∪−1 Σ) for all A,B ∈ Σ. For y = a it has the
form:

A(C(x, z), D(w, u)) = A(C(w, z), D(x, u)), (8)

where C(x, y) = −1A(B(x, y), a) and D(x, y) = A−1(a,B(x, y)).
Let's write (8) in the form:

A(C∗(z, x), D(w, u)) = A(C∗(z, w), D(x, u)). (9)

Obviously, the operations C, C∗ and D are inverse operations. According to Theorem 2.8, the
quasigroups Q(A), Q(C∗) and Q(D) are isotopic to the same abelian group Q(·). Hence,

A(x, y) = αx · βy, C∗(x, y) = α−1(γx · δy), D(x, y) = β−1(θx · ψy),

for some permutations α, β, γ, δ, θ, ψ of Q.
Fixing the operation A, we also �x the permutation α. Then:

C∗(y, x) = C(x, y) = −1A(B(x, y), a) = R−1A,aB(x, y) = α−1(γy · δx),

or
B(x, y) = R−1

−1A,a
α−1(γy · δx), B(x, y) = R−1

−1A,a
α−1I(Iδx · Iγy),

where I(x) = x assigns to x its inverse x calculated in the group Q(·). Then the permutation
φ = IαR−1A,a depends only on A. Thus, Q(◦), where x ◦ y = ϕ−1(ϕx · ϕy), is an abelian group
is isomorphic to the group Q(·). In the group Q(◦) the operation B has the form:

B(x, y) = fx ◦ gy,

where f = ϕ−1Iδ, g = ϕ−1Iγ are permutations of Q. Thus, Q(B) is principally isotopic to the
group Q(◦) and since B is an arbitrary operation from Σ, this proves the theorem.

Theorem 3.14. If the second order formula

αA,B
1 A[αA,B

2 B(αA,B
3 x, αA,B

4 z), αA,B
5 B(αA,B

6 w,αA,B
7 v)] = A[αA,B

8 B(w, z), αA,B
9 B(x, v)] (10)

is valid in the invertible algebra (Q; Σ) for all A,B ∈ Σ and for some permutations αA,B
i where

i = 1, 2, . . . , 9, then the algebra (Q; Σ) is principally isotopic to an abelian group.

Conversely, if the invertible algebra (Q; Σ) is principally isotopic to an abelian group Q(·),
then for all A,B ∈ Σ there are permutations αA,B

i , i = 1, 2, . . . , 9, such that the second order

formula (10) is valid in the algebra (Q; Σ).

Proof. Let (10) holds in (Q; Σ) for all A,B ∈ Σ and for some permutations αA,B
i , i = 1, 2, . . . , 9.

Then (10) is a particular case of (3), where

A1(x, y) = αA,B
1 A(x, y), A2(x, y) = αA,B

2 B(αA,B
3 x, αA,B

4 y), A3(x, y) = αA,B
5 B(αA,B

6 x, αA,B
7 y),

A4(x, y) = A(x, y), A5(x, y) = αA,B
8 B(x, y), A6(x, y) = αA,B

9 B(x, y).

According to Theorem 2.8, the quasigroups A1, A2, A3, A4, A5, A6 are isotopic to the same
abelian group Q(·):

A1(x, y) = αx · φy, A2(x, y) = α−1(γx · δy), A3(x, y) = φ−1(λx · βy),

A4(x, y) = ψx · σy, A5(x, y) = ψ−1(γx · λy), A6(x, y) = σ−1(δx · βy).

Fixing B, we obtain A5(x, y) = αA,B
8 B(x, y) = ψ−1(γx · λy). Thus ψ is �xed too. Then

Q(◦), where
x · y = ψ−1x ◦ ψ−1y.

is an abelian group and A(x, y) = A4(x, y) = ψx · σy = x ◦ ψ−1σy. Thus, Q(A) is principally
isotopic to the group Q(◦) and as A ∈ Σ is an arbitrary operation, this proves the statement.
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Conversely, if the invertible algebra (Q; Σ) is principally isotopic to an abelian group, then
according to Theorem 3.13 the formula is valid:

A(−1A(B(x, z), y), A−1(y,B(w, u))) = A(−1A(B(w, z), y), A−1(y,B(x, u))).

Then,
A[R−1A,yB(x, z), LA−1,yB(w, u)] = A[R−1A,yB(w, z), LA−1,yB(x, u)].

This for �xed y = a ∈ Q gives (10) with

α1 = α3 = α4 = α6 = α7 = ε, α8 = α2 = R−1A,a, α5 = α9 = LA−1,a.

Corollary 3.15. The class of quasigroups isotopic to an abelian group is characterized by the

identity:

(xz/y)(y\wu) = (wz/y)(y\xu),

where y is �xed.
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