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From quotient trigroups to groups

Guy Biyogmam, Simplice Tchamna and Calvin Tcheka

Abstract. In this paper, we study the notion of normality in the category of trigroups, and

construct quotient trigroups. This allows us to establish analogues for trigroups of some useful

results on groups, namely, the �rst, second and third isomorphism theorems as well as some of

their related corollaries. Our construction provides a new functorial link between the categories

of groups and trigroups.

1. Introduction

The concept of digroups originated from the work of J. L. Loday on dialgebras
[9], and were formally axiomatized by M. Kinyon in his contribution to the Co-
quecigrue problem; an analogue of Lie's third theorem which consists to associate
a grouplike object to a given Leibniz algebra by �antidi�erentiation�. More pre-
cisely, Kinyon showed in [4] that conjugating digroups equipped with a manifold
structure di�erentiate to Leibniz algebras [7]. Digroups was also independently
introduced by K. Liu [5] and R. Felipe [3], and further studied in [10].

In their study of trialgebras and families of polytopes [8], Loday and Ronco
provided an axiomatic de�nition of associative trioids. This led the authors to
introduce the category of trigroups as associative trioid � also called trisemigroups�
equipped with bar-units and in which each element has a bar-inverse. Trigroups
are generalizations of digroups to algebraic structures with three operations, since
forgetting one operation of a trigroup yields a digroup structure. Analogue to the
relationship between digroups and Leibniz algebras provided by Kinyon in [4], it is
shown in [2] that conjugating linear trigroups yields Lie 3-racks [1], which produce
Leibniz 3-algebras [6] when di�erentiated with respect to the distinguish bar-unit.

At the beginning of the last century, Evarist Galois introduced in the classical
theory of groups the notion of normal subgroups which played a fundamental role
in de�ning quotient groups and in the so-called isomorphism theorems which are
very important in the general development of Group Theory (see [12]). In 2016,
Ongay, Velasquez and Wills-Toro de�ned normal subdigroups [11] and studied a
construction of quotient digroups and the corresponding analogues of Isomorphism
Theorems. Our aim in this paper is to conduct a similar study on trigroups using
a di�erent approach. Our study produces a di�erent quotient on the underlying
digroup associated to a trigroup. More precisely, we use the notion of conjugation
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of trigoups provided in [2] to de�ne the concept of normality on trigroups. This
allows us to de�ne a congruence for which the quotient set has a group structure,
i.e. a trivial trigroup structure. It is worth mentioning that our construction of
quotient trigroup produces a functor from the category of trigroups to the category
of groups, other than the functor provided in [2].

2. Trigroups

Recall from [2] that a trisemigroup (A,`,⊥,a) is a set A equipped with three
binary associative operations `, ⊥ and a respectively called left, middle and right,
and satisfying the following conditions:

x ` (y ` z) = (x a y) ` z (p1)

x ` (y ` z) = (x ⊥ y) ` z (p2)

x ` (y a z) = (x ` y) a z (p3)

x ` (y ⊥ z) = (x ` y) ⊥ z (p4)

x a (y a z) = x a (y ` z) (p5)

x a (y a z) = x a (y ⊥ z) (p6)

(x ⊥ y) a z = x ⊥ (y a z) (p7)

(x a y) ⊥ z = x ⊥ (y ` z) (p8)

for all x, y, z ∈ A.
A trisemigroup A is a trigroup if there exists an element 1 ∈ A satisfying

1 ` x = x = x a 1 for all x ∈ A (I)

and for all x ∈ A, there exists x−1 ∈ A (called inverse of x) such that

x ` x−1 = 1 = x−1 a x and x ⊥ x−1 = 1 = x−1 ⊥ x.

Let UA := {e ∈ A : e ` x = x = x a e for all x, y ∈ A} be the set of bar-units of A.
Recall also that a morphism between two trigroups is a map that preserves the

three binary operations and is compatible with bar-units and inverses.

Remark 2.1. [2, Lemma 4.5]

(a) The set JA = {x−1 : x ∈ A} is a group in which `=⊥=a .

(b) The mapping φ : A → JA de�ned by x 7→ (x−1)−1 is an epimorphism of
trigroups that �xes JA, and Ker φ = UA.

(c) x ` 1 = 1 ⊥ x = x ⊥ 1 = 1 a x = (x−1)−1 for all x ∈ A.

(d) (x ⊥ y)−1 = y−1 ⊥ x−1 for all x, y ∈ A.
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(e) (x ` y)−1 = y−1 ` x−1 = y−1 a x−1 = (x a y)−1 for all x, y ∈ A. Conse-
quently, ((x−1)−1)−1 = x−1.

(f) x−1 ` x ` y = x ` x−1 ` y = y for all x, y ∈ A.

The following results are consequences of Remark 2.1 and will be heavily used
without reference throughout the paper to simplify proofs.

Remark 2.2.

(a) x−1 ` 1 = x−1 = 1 a x−1 for all x ∈ A.

(b) x ` y = (x−1)−1 ` y for all x, y ∈ A.

(c) x a y = x a (y−1)−1 for all x, y ∈ A.

Proof. The assertion (a) follows by Remark 2.1(c). For (b) and (c), we have again
by Remark 2.1(c), (x−1)−1 ` y = (x ` 1) ` y = x ` (1 ` y) = x ` y and
x a (y−1)−1 = x a (1 a y) = (x a 1) a y = x a y.

3. Subtrigroups

In this section we de�ne sub-objects in the category of trigroups, and study the
concept of normality on these sub-objects.

De�nition 3.1. We say that a trigroup A is trivial if A = JA.

Proposition 3.2. A trigroup (A,`,⊥,a) is trivial if and only if (x−1)−1 = x for

all x ∈ A.

Proof. The proof is straightforward by De�nition 3.1.

For the rest of the paper, all trigroups are assumed to be non-trivial unless
otherwise stated.

De�nition 3.3. Let (A,`,⊥,a) be a trigroup with distinguish bar-unit 1. A
subset S of A is said to be a subtrigroup of A if (S,`,⊥,a) is a trigroup with
distinguish bar-unit 1.

Proposition 3.4. Let (A,`,⊥,a) be a trigroup with distinguish bar-unit 1, and
H a nonempty subset of A. H is a subtrigroup of A if and only H is closed under

the operations `,⊥,a, and x−1 ∈ H for all x ∈ H.

Proof. The proof of the forward direction is obvious. For the converse, it is enough
to verify that 1 ∈ H. Indeed, since H is nonempty there is some x0 ∈ H, which
yields x−10 ∈ H, and thus 1 = x0 ` x−10 ∈ H.

Proposition 3.5. Let A be a trigroup. Then (JA,`=a=⊥) and (UA,`,a,⊥) are
subtrigroups of A.



32 G. Biyogmam, S. Tchamna and C. Tcheka

Proof. JA is a subtrigroup of A since by Remark 2.1(a), JA ⊆ A and JA is a
group in which `=⊥=a . To show that UA is a subtrigroup of A, notice that for

all e, e′ ∈ UA, e ` e′ = e′, e a e′ = e, (e ⊥ e′) ` x p2
= e ` (e′ ` x) = e ` x = x

and x a (e ⊥ e′)
p6
= x a (e a e′) = (x a e) a e′ = x a e = x for all x ∈ A. So UA

is closed under the operations `,⊥,a . In addition, e−1 ∈ UA by [2, Lemma 4.6].
The result follows by Proposition 3.4.

Proposition 3.6. Let φ : A→ A′ be a morphism of trigroups. Then:

(a) Ker φ is a subtrigroup of A.

(b) If S is a subtrigroup of A, then φ(S) is a subtrigroup of A′.

(c) If S′ is a subtrigroup of A′, then φ−1(S′) is a subtrigroup of A.

Proof. To prove (a), �rst notice that φ(1A) = 1A′ , so Ker φ 6= ∅. Now Let x, y ∈
Ker φ. Then φ(x ` y) = φ(x) ` φ(y) = 1A′ ` 1A′ = 1A′ , φ(x a y) = φ(x) a
φ(y) = 1A′ a 1A′ = 1A′ , φ(x ⊥ y) = φ(x) ⊥ φ(y) = 1A′ ⊥ 1A′ = 1 and φ(x−1) =
(φ(x))−1 = 1A′ . Thus by proposition 3.4, Ker φ is a subtrigroup of A. The proofs
of (b) and (c) are similar.

Consider the following sets: x ? S = {x ? s, s ∈ S} and S ? x = {s ? x, s ∈ S},
where ? ∈ {`,⊥,a}. In [2], the operation [−,−,−] : A×A×A→ A given by
[x, y, z] = (x ⊥ y) ` z a (y−1 ⊥ x−1), was de�ned as a generalization of the
conjugation on digroups [4, Equation (13)] to trigroups. Using this operation, we
de�ne normality of subtrigroups as follows:

De�nition 3.7. Let (A,`,⊥,a) be a trigroup with distinguish bar-unit 1. A
subtrigroup S of A is said to be normal if (x ⊥ y) ` S a (y−1 ⊥ x−1) ⊆ S for all
x, y ∈ A.

This de�nition extends the following de�nition of normality in digroups to
trigroups.

De�nition 3.8. [11, De�nition 4] A subdigroup S of a digroup (A,`,a) is said
to be normal if x ` S a x−1 ⊆ S for all x ∈ A.

It turns out that normality in a trigroup is completely determined by its un-
derlying digroup structure, as proven in the following Lemma.

Lemma 3.9. Let (A,`,⊥,a) be a trigroup with distinguish bar-unit 1 and S a

subtrigroup of A. Then S is a normal subtrigroup of A i� S is a normal subdigroup

of the underlying digroup (A,`,a).

Proof. Let (A,`,⊥,a) be a trigroup and S a normal subtrigroup of A. Then for
all x ∈ A,
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x ` S a x−1 = x ` (1 ` S) a x−1 p2= (x ⊥ 1) ` S a x−1

= (x ⊥ 1) ` (S a 1) a x−1 = (x ⊥ 1) ` S a (1 a x−1)
p6
= (x ⊥ 1) ` S a (1 ⊥ x−1) ⊆ S.

The converse is obvious since for all x, y ∈ A we have by setting z = x ⊥ y,
(x ⊥ y) ` S a (x ⊥ y)−1 = z ` S a z−1 ⊆ S

Lemma 3.10. Let (A,`,⊥,a) be a trigroup with distinguish bar-unit 1. A subtri-

group S of A is said to be normal if and only if (x ⊥ y) ` S = S a (x ⊥ y) for all

x, y ∈ A.
Proof. Assume that S is a normal subtrigroup of A. Let x, y ∈ A and set z = x ⊥ y.
For all s ∈ S, we have: z ` s a z−1 = s′ for some s′ ∈ S, i.e., z ` s = z ` (s a 1)

= z ` (s a (z−1 a z)) = z ` ((s a z−1) a z) p3= (z ` s a z−1) a z = s′ a z. So
(x ⊥ y) ` S ⊆ S a (x ⊥ y).

For the reverse inclusion,
S a z = ((z ` z−1) ` S a 1) a z = (z ` (z−1 ` S) a 1) a z

= z ` ((z−1 ` S) a 1) a z)) = z ` (z−1 ` S a (1 a z))
= z ` (z−1 ` S a (z−1)−1) ⊆ z ` S since S is normal.

Conversely, assume that (x ⊥ y) ` S = S a (x ⊥ y) for all x, y ∈ A. Then,

(x ⊥ y) ` S a (y−1 ⊥ x−1) = ((x ⊥ y) ` S) a (x ⊥ y)−1

= (S a (x ⊥ y)) a (x ⊥ y)−1

= S a ((x ⊥ y) a (x ⊥ y)−1)
= S since (x ⊥ y) a (x ⊥ y)−1 ∈ UA.

Therefore S is a normal subtrigroup of A.

The following Lemma is the normality transfer condition for trigroups.

Lemma 3.11. Let (A,`,⊥,a) be a trigroup. If S is a subtrigroup of A and R is

a normal subtrigroup of A, then S ∩R is a normal subtrigroup of S.

Proof. The proof is obvious since for all s ∈ S, we have s ` S ∩ R a s−1 ⊆ S due
to closure under the operations `,a, and s ` S ∩ R a s−1 ⊆ R since R is normal
in A. The result follows by Lemma 3.9.

Remark 3.12. Let (A,`,⊥,a) be a trigroup and S a normal subtrigroup of A.
Then S ⊥ x−1 = x−1 ` S for all x ∈ A.
Proof. Let x ∈ A. Since x−1 ` x ∈ UA, we have

S ⊥ x−1 = (x−1 ` x) ` (S ⊥ x−1) = x−1 ` (x ` (S ⊥ x−1))
p7
= x−1 ` ((x ` S) ⊥ x−1) = x−1 ` ((S a x) ⊥ x−1)
= x−1 ` (S ⊥ (x ` x−1)) = x−1 ` (S ⊥ 1) = x−1 ` (1 a S)
p3
= (x−1 ` 1) a S = x−1 a S.
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This completes the proof.

Lemma 3.13. Let φ : A → A′ be a morphism of trigroups. Then Ker φ is a

normal subtrigroup of A. Consequently, the set UA of bar-units of A is a normal

subtrigroup of A.

Proof. By Proposition 3.5, Proposition 3.6 and Lemma 3.9, it remains to show
that for all x ∈ A, x ` Ker φ a x−1 ⊆ Ker φ. Indeed, let z ∈ Ker φ,

φ(x ` z a x−1) = φ(x) ` φ(z) a φ(x−1) = φ(x) ` 1 a (φ(x))−1

= (φ(x) ` 1) a (φ(x))−1 = ((φ(x))−1)−1 a (φ(x))−1 = 1.

So x ` z a x−1 ∈ Ker φ. Consequently, UA is a normal subtrigroup by Remark
2.1.

Lemma 3.14. Let A be a trigroup. Then the group JA of inverses of elements in

A is a normal subtrigroup of A.

Proof. By Proposition 3.5 and Lemma 3.9, it is enough to show that if x ∈ A,
then x ` JA a x−1 ⊆ JA. Notice that for all y ∈ A,

x ` y = x ` (1 ` y) = (x ` 1) ` y = (x−1)−1 ` y.

So x ` JA a x−1 = (x−1)−1 ` JA a x−1 ⊆ JA since x−1, (x−1)−1 ∈ JA.

Lemma 3.15. Let φ : A→ A′ be a morphism of trigroups. Then,

(a) If S is a normal subtrigroup of A and φ is surjective, then φ(S) is a normal

subtrigroup of A′.

(b) If S′ is a normal subtrigroup of A′, then φ−1(S′) is a normal subtrigroup of

A.

Proof. To prove (a), assume that S is a normal subtrigroup of A and φ is surjective.
By Proposition 3.6 and Lemma 3.9, it remains to show that y ` φ(S) a y−1 ⊆ φ(S)
for all y ∈ A′. let y ∈ A′ and s ∈ S. Then, y = φ(x) for some x,∈ A. We have

y ` φ(s) a y−1 = φ(x) ` φ(s) a (φ(x))−1 = φ(x) ` φ(s) a φ(x−1)
= φ(x ` s a x−1) ∈ φ(S) since S is normal in A.

The proof of (b) is similar.
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4. Quotient trigroups

4.1. From quotient trigroups to groups

In an e�ort to study the notion of quotient of a given trigroup by a normal subtri-
group, we de�ne an equivalence relation for which the equivalence classes are the
cosets of the normal subtrigroup, and the equivalence class of the identity element
is the normal subtrigroup.

Lemma 4.1. Let (A,`,⊥,a) be a trigroup, and S a subtrigroup of A. Then the

following assertions are true:

(a) g ` S = S ⇐⇒ g−1 ∈ S ⇐⇒ S a g = S for all g ∈ A.

(b) g ` S = h ` S ⇐⇒ g−1 a h ∈ S.

(c) S a g = S a h, ⇐⇒ g ` h−1 ∈ S

Proof. For (a), it is clear that for all g ∈ A, (g−1)−1 = g ` 1 ∈ g ` S. So if g `
S = S, then (g−1)−1 ∈ S which implies g−1 ∈ S. Conversely, let g ∈ A such that
g−1 ∈ S. So g ` 1 = (g−1)−1 ∈ S. Then g ` S = g ` (1 ` S) = (g ` 1) ` S ⊆ S
since S is closed under the operation ` . For the reverse inclusion, we have for all
s ∈ S, that s = 1 ` s = (g ` g−1) ` s = g ` (g−1 ` s) ∈ g ` S. This proves that
g ` S = S ⇐⇒ g−1 ∈ S. The proof of the other equivalence is similar.

To prove (b), let g, h ∈ A such that g ` S = h ` S, then there exists s ∈ S such
that h ` 1 = g ` s. So

g−1 a h = g−1 a (h a 1)
p5)
= g−1 a (h ` 1) = g−1 a (g ` s)

p5
= g−1 a (g a s) = (g−1 a g) a s = 1 a s ∈ S.

Conversely, let g, h ∈ A such that g−1 a h ∈ S. Then

h ` S = ((g ` g−1) ` h) ` S = (g ` (g−1 ` h)) ` S
= g ` ((g−1 ` h) ` S) = g ` (g−1 ` (h ` S))
p1
= g ` ((g−1 a h) ` S) ⊆ g ` S.

The reverse inclusion holds also since h−1 a g = h−1 a (g−1)−1 = (g−1 a h)−1 ∈ S.
The proof of (c) is similar to the proof of (b).

Proposition 4.2. Let (A,`,⊥,a) be a trigroup and S a subtrigroup of A. De�ne

the relation: For x, y ∈ A,

x ∼ y ⇐⇒ x−1 a y ∈ S.

Then ∼ is an equivalence relation and the equivalence classes are the left cosets

x ` S, x ∈ A (orbits of the action of S on A.)
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Proof. For all x, y, z ∈ A, we have

i) x−1 a x = 1 ∈ S,

ii) if x−1 a y ∈ S then y−1 a x = y−1 a (x−1)−1 = (x−1 a y)−1 ∈ S,

iii) if x−1 a y ∈ S and y−1 a z ∈ S, then

x−1 a z = (x−1 ` 1) a z = (x−1 ` (y ` y−1)) a z p1= ((x−1 a y) ` y−1) a z)
p3
= (x−1 a y) ` (y−1 a z) ∈ S.

These prove that ∼ is respectively re�exive, symmetric and transitive, and by
Lemma 4.1(b), the equivalence classes are left cosets x ` S

By the fundamental theorem of equivalence relations, the relation ∼ partitions
A into the left cosets x ` S, x ∈ A. Let A/S be the set of left cosets. De�ne the
following binary operations B,M,C: A/S ×A/S → A/S by:

(g ` S) B (h ` S) = (h ` g) ` S

(g ` S) C (h ` S) = (h a g) ` S

(g ` S) M (h ` S) = (h ⊥ g) ` S.

We have the following result.

Lemma 4.3. Let (A,`,⊥,a) be a trigroup and S a normal subtrigroup of A. Then

for all x, y ∈ A, x ∼ y ⇐⇒ x−1 ` S a y ⊆ S.

Proof. Let x, y ∈ A such that x ∼ y i.e. x−1 a y ∈ S. Since y a y−1 ∈ UA, it
follows that for all s ∈ S,

(x−1 ` s) ay = (x−1 ` ((y a y−1) ` s)) a y p1= (x−1 ` (y ` (y−1 ` s))) a y
p1
= ((x−1 a y) ` (y−1 ` s)) a y p3= (x−1 a y) ` (y−1 ` (s a y)) ∈ S

since S is normal and S is closed under ` . For the converse, if x, y ∈ A such that
x−1 ` S a y ⊆ S, then x−1 a y = (x−1 ` 1) a y ∈ (x−1 ` S) a y ⊆ S.

Proposition 4.4. Let (A,`,⊥,a) be a trigroup and S a normal subtrigroup of A.

Then the binary operations B,M,C are well-de�ned and equip A/S with a structure

of a group with unit S and the inverse of the class g ` S is the class g−1 ` S.

Proof. First we verify that the operations B, M, and C are equal, then we verify
their well-de�nition and their compatibility with the equivalence relation ∼ . In-
deed, let x, y ∈ A. Then, since y−1 ` x−1 = y−1 a x−1 = y−1 ⊥ x−1 as `=a=⊥
in JA, It follows that

(x ` y)−1 a (x a y) = (x ⊥ y)−1 a (x a y) = (x a y)−1 a (x a y) = 1 ∈ S.
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So (x ` y) ∼ (x ⊥ y) ∼ (x a y). Therefore,

(x ` S) B (y ` S) = (x ` S) M (y ` S) = (x ` S) C (y ` S).

To show the well-de�nition, let x, y, a, b ∈ A such that x ∼ y, a ∼ b.
So z := a−1 a b ∈ S and thus x−1 ` z a y ∈ S by Lemma 4.3. Then

(a ` x)−1 a (b ` y) = (x−1 ` a−1) a (b ` y) p3= x−1 ` (a−1 a (b ` y))
p5
= x−1 ` (a−1 a (b a y)) = x−1 ` ((a−1 a b) a y)
= x−1 ` (z a y) ∈ S.

So (a ` x) ∼ (b ` y).
To show that S is the unique bar-unit , we prove that UA/S = {S}. Indeed,

notice that for all a, x ∈ A,

(x a a)−1 a x = (a−1 a x−1) a x = a−1 a (x−1 a x) = a−1 a 1 = a−1

and

(a ` x)−1 a x = (x−1 ` a−1) a x = (a−1 ` x−1) a x p3
= a−1 ` (x−1 a x) = a−1.

So x a a ∼ x ⇐⇒ a−1 ∈ S ⇐⇒ a ` x ∼ x. Therefore,

UA/S = {a ` S : a−1 ∈ S} = {S}

by the �rst property of Lemma 4.1. That the inverse of the class g ` S is the class
g−1 ` S is straighforward. We can now conclude that if (A,`,⊥,a) is a trigroup,
then (A/S,B=M=C) is a group.

Remark 4.5. Proposition 4.4 provides another functor from the category of tri-
groups to the category of groups.

Remark 4.6. Note that every normal subtrigroup is the kernel of some trigroup
homomorphism. More precisely, if S is a normal subtrigroup of a trigroup A, then
the natural projection A→ A/S is a homomorphism with kernel equal to S.

4.2. A First Isomorphism Theorem for trigroups

Lemma 4.7. Let φ : A→ A′ be a morphism of trigroups and S a normal subtri-

group of A containing Ker φ. If t ∈ A such that φ(t) ∈ φ(S), then t−1 ∈ S.

Proof. Under the hypothesis, we have φ(t) = φ(s) for some s ∈ S. So φ(t ` s−1) =
φ(t) ` φ(s−1) = 1. Thus t ` s−1 ∈ Ker φ ⊆ S. Therefore t−1 = ((t−1)−1)−1 ∈ S
since (t−1)−1 = t ` 1 = t ` (s−1 a s)) = (t ` s−1) a s ∈ S.
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Proposition 4.8. Let A and A′ be two trigroups and S a normal subtrigroup of

A. Let φ : A → A′ be a morphism of trigroups such that Ker (φ) ⊆ S. Then there

is an isomorphism of groups φ̂ : A/S → Imφ/φ(S). In particular, if S = ker(φ)

then this isomorphism becomes φ̂ : A/ker(φ)→ Imφ/{1}.

Proof. Since S is a normal subtrigroup of A and φ : A → A a morphism of
trigroups, then φ(S) is normal subtrigroup of Imφ by Lemma 3.15. Moreover

x ∼ y ⇐⇒ x−1 a y ∈ S ⇐⇒ φ(x−1 a y) ∈ φ(S)⇐⇒ φ(x−1) a φ(y) ∈ φ(S)
⇐⇒ (φ(x))−1 a φ(y) ∈ φ(S)⇐⇒ φ(x) ∼ φ(y).

Note that the implication x−1 a y ∈ S ⇐= φ(x−1 a y) ∈ φ(S) above is due to
Lemma 4.7 since y−1 a x = y−1 a (x−1)−1 = (x−1 a y)−1 ∈ S and the relation ∼
is symmetric. Therefore φ induces the isomorphism: φ̂ : A/S −→ Imφ/φ(S) such

that x ` S 7−→ φ̂(x ` S) = φ(x) ` φ(S).

Corollary 4.9. Let A be a trigroup. Then there is a group isomorphism

A/UA ∼= JA.

Proof. By the assertion (b) of Remark 2.1, the mapping A→ JA de�ned by x 7→
(x−1)−1 is an epimorphism of trigroups with kernel UA. Moreover JA/{1} = JA
since JA is a group. We conclude the proof using Proposition 4.8.

Corollary 4.10. Let A be a trigroup. Then there is a group isomorphism

A/{1} ∼= A/UA.

Proof. Clearly, the map A
π−→ A/UA , a 7−→ a ` UA is a trigroup epimorphism

whose kernel is ker(π) = {1} since by the �rst property of Lemma 4.1, we have
a ` UA = UA ⇐⇒ a−1 ∈ UA ∩ JA = {1} ⇐⇒ a = 1. By proposition 4.8, there
is a group isomorphism A/{1} ∼= A/UA.

Corollary 4.11. Let A and B be two trigroups. Then A can be identi�ed with a

normal subtrigroup A × UB of A × B and there is a group isomorphism A×B
A×UB

∼=
B/{1}.

Proof. Assume that (A,`,a,⊥) and (B,`′,a′,⊥′) are two trigroups. Then clearly
(A×B,B,C,D) is a trigroup with operations given by

(a1, b1) B (a2, b2) = (a1 ` a2, b1 `′ b2),
(a1, b1) C (a2, b2) = (a1 a a2, b1 a′ b2),
(a1, b1) D (a2, b2) = (a1 ⊥ a2, b1 ⊥′ b2).
It is easy to verify that the map A × B θ−→ B/UB , (a, b) 7−→ b ` UB is a

trigroup epimorphism whose kernel is ker(θ) = A × UB by the �rst property of
Lemma 4.1 and since e ∈ UB ⇐⇒ e−1 ∈ UB . By proposition 4.8, there is a group
isomorphism A×B

A×UB

∼= B/UB . Now since B/UB ∼= B/{1} thanks to Corollary 4.10,
the proof is complete.
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4.3. A Second Isomorphism Theorem for trigroups

In this section, we use our construction of quotients on trigroups to prove an
analogue of the second isomorphism theorem for trigroups. Consider the following
set:

S ? S′ = {x ? x′, x ∈ S and x′ ∈ S′} where ? ∈ {`,a}.

Lemma 4.12. Let A be a trigroup, and S, R two subtrigroups of A such that

s ` R = R a s for all s ∈ S. Then the following hold:

(a) The set R̂ =: {x ∈ A : x−1 ∈ R} is a subtrigroup of A containing R.

(b) S ` R is a subtrigroup of A.

(c) R is a normal subtrigroup of S ` R.

(d) S ∩ R̂ is a normal subtrigroup of S.

Proof. The proof of (a) is straightforward since R is a subtrigroup of A.
To show (b), we verify the properties of Proposition 3.4. Indeed, Let s, s1 ∈ S

and r, r1 ∈ R. Since R a s1 = s1 ` R, it follows that r a s1 = s1 ` r2 for some
r2 ∈ R.

1) (s ` r) ` (s1 ` r1)
p1
= ((s ` r) a s1) ` r1

p3
= (s ` (r a s1)) ` r1

= (s ` (s1 ` r2)) ` r1 = (s ` s1) ` (r2 ` r1) ∈ S ` R.

2) (s ` r) a (s1 ` r1)
p3
= s ` (r a (s1 ` r1))

p5
= s ` (r a (s1 a r1))

= s ` ((r a s1) a r1) = s ` ((s1 ` r2) a r1)
p3
= (s ` (s1 ` r2)) a r1 = ((s ` s1) ` r2) a r1
p3
= (s ` s1) ` (r2 a r1) ∈ S ` R.

3) (s ` r) ⊥ (s1 ` r1)
p8
= ((s ` r) a s1) ⊥ r1

p3
= (s ` (r a s1)) ⊥ r1

= (s ` (s1 ` r2)) ⊥ r1 = ((s ` s1) ` r2) ⊥ r1
p4
= (s ` s1) ` (r2 ⊥ r1) ∈ S ` R.

4) Since R a s−1 = s−1 ` R, then r−1 a s−1 = s−1 ` r0 for some r0 ∈ R. So
(s ` r)−1 = r−1 ` s−1 = r−1 a s−1 = s−1 ` r0 ∈ S ` R.

To show (c), we �rst notice that R ⊆ S ` R since r = 1 ` r for all r ∈ R. Now
let s ∈ S and r, r0 ∈ R. Then

(s ` r) ` r0 a (s ` r)−1 = (s ` r) ` r0 a (r−1 ` s−1)
p5
= (s ` r) ` r0 a (r−1 a s−1)
= s ` (r ` r0 a r−1) a s−1 ∈ s ` R a s−1 ⊆ R.

To show (d), we �rst notice that S ∩ R̂ 6= ∅ as 1 ∈ S ∩ R̂. Also it is clear that

S ∩ R̂ ⊆ S. Now for all s ∈ S and t ∈ S ∩ R̂, we have s ` t a s−1 ∈ S since
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S is a subtrigroup of A. Also, since s ` R = R a s, s ` t−1 = t′ a s for some
t′ ∈ R. So s ` t−1 a s−1 = (t′ a s) a s−1 = t′ a (s a s−1) = t′ ∈ R. We now
have (s ` t a s−1)−1 = (s−1)−1 ` t−1 a s−1 = s ` t−1 a s−1 ∈ R, and thus

s ` t a s−1 ∈ R̂. Therefore, s ` t a s−1 ∈ S ∩ R̂.

Corollary 4.13. Let A be a trigroup, and S and R two subtrigroups of A such

that s ` R = R a s for all s ∈ S. Then there is a group isomorphism

(S ` R)/R ∼= S/(S ∩ R̂).

Proof. By Lemma 4.12, S ` R is a subtrigroup of A having R as a normal subtri-
group, and that S ∩R is a normal subtrigroup of S. The map

S −→ (S ` R)/R, s 7→ s ` R

is clearly a surjective homomorphism. Its kernel is S ∩ R̂ by the �rst property of
Lemma 4.1. The result now follows using Proposition 4.8.

Corollary 4.14. Let A be a trigroup, R a normal subtrigroup of A and S a

subtrigroup of A such that A = S ` R. Then

A/R ∼= S/(S ∩ R̂).

Proof. The proof is straightforward as a direct consequence of Corollary 4.13.

Corollary 4.15. Let A be a trigroup. Then there are group isomorphisms

(JA ` UA)/UA ∼= JA and (UA ` JA)/JA ∼= {UA}

Proof. By Lemma 3.13 and Lemma 3.14, JA and UA are normal subtrigroups of
A. This implies that e ` JA = JA a e and j ` UA = UA a j for all e ∈ UA and
j ∈ JA. So, UA and JA are respectively normal subgroups of JA ` UA and UA ` JA
by Lemma 4.12. Note that ĴA = A, thus UA ∩ ĴA = UA. Also, since JA is a group,
JA ∩ ÛA = {1}. We now have (JA ` UA)/UA ∼= JA/{1} ∼= JA and (UA `
JA)/JA ∼= UA/UA ∼= {UA} by Corollary 4.13.

4.4. A Third Isomorphism Theorem for trigroups

Lemma 4.16. Let A be a trigroup, and S, R two normal subtrigroups of A such

that S is a subtrigroup of R. Then R̂/S is a normal subgroup of A/S.

Proof. By Lemma 3.11, S is a normal subtrigroup of R̂, and R̂/S is a subtrigroup of
A/S. Now, let a ∈ A. Then for all r ∈ R, r−1 ∈ R. So, (a ` r a a−1)−1 = (a−1)−1 `
r−1 a a−1 ∈ R since R is a normal subtrigroup of A. Hence a ` r a a−1 ∈ R̂. We
now have

(a ` S) B (r ` S) C (a−1 ` S) = ((a ` r) ` S) C (a−1 ` S)

= (a ` r a a−1) ` S ∈ R̂/S.

Hence R̂/S is a normal subtrigroup of A/S.



From quotient trigroups to groups 41

Proposition 4.17. Let A be a trigroup, and S and R two normal subtrigroups of

A such that S is a normal subgroup of R. Then, there is a group ismorphism

(A/S)/(R̂/S) ∼= A/R.

Proof. Under the hypothesis of the proposition, S is also a normal subtrigroup of
R̂. Now consider the map: A/S

τ−→ A/R, (a ` S) 7−→ (a ` R). Then τ is obviously
a surjective morphism of groups whose kernel is ker(τ) = R̂/S, by the �rst property
of Lemma 4.1. We now conclude by proposition 4.8 that (A/S)/(R̂/S) ∼= A/R.
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