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Continuous homomorphisms, the left-gyroaddition

action and topological quotient gyrogroups

Watchareepan Atiponrat and Rasimate Maungchang

Abstract. Recently, many properties of gyrogroups have been discovered. In this work, we

investigate some properties of topological gyrogroups, speci�cally, the continuity of some homo-

morphisms, the canonical decomposition, and the continuity of the left-gyroaddition action.

1. Introduction

A gyrogroup is a generalization of a group of which the associative law is replaced
by a more generalized version called, the left gyroassociative law and an additional
property called, the left loop property, see Section 2 for more details and examples.
Its structures were discovered by A. A. Ungar from the study of the Einstein
velocity addition, see [13] and the references therein. Since then, many properties
of gyrogroups have been discovered by active researchers in the �eld, see [3], [4],
[7], [8], [9], [11], [12], [14]. A large portion of its algebraic properties was studied
by T. Suksumran, for example, the isomorphism theorems, Cayley's Theorem,
Lagrange's Theorem, gyrogroup actions, etc., see [7], [8], [11]. He is now extending
his study to metric aspect of the gyrogroups, see [10].

From the topological aspect, W. Atiponrat, R. Maungchang, and T. Suksum-
ran have been studying the separation axioms of the topological gyrogroups, see
[1], [2], [15]. In this work, we continue the study of topological gyrogroups, in
particular, we investigate the continuity of some homomorphisms, the canonical
decomposition, and the continuity of the left-gyroaddition action.

2. De�nitions and background

In this section, we include basic de�nitions, examples, and theorems involving the
topological gyrogroups. Readers are recommended to see [1], [8], [11], and [14] for
further details and examples.

Let (G1,⊕1) and (G2,⊕2) be groupoids. A function f : G1 → G2 is a called
a homomorphism if f(x ⊕1 y) = f(x) ⊕2 f(y) for any x, y ∈ G1. A bijective
homomorphism is called an isomorphism. An isomorphism of a groupoid (G,⊕)
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to itself is called a groupoid automorphism and we denote the set of all groupoid
automorphisms of a groupoid (G,⊕) by Aut(G,⊕).

De�nition 2.1 (De�nition 2.7 of [14]). Let (G,⊕) be a nonempty groupoid. We
say that (G,⊕) or just G (when it is clear from the context) is a gyrogroup if the
following hold:

1. There is a unique identity element 0G ∈ G such that

0G ⊕ x = x = x⊕ 0G for all x ∈ G;

2. For each x ∈ G, there exists a unique inverse element 	x ∈ G such that

	x⊕ x = 0G = x⊕ (	x);

3. For any x, y ∈ G, there exists gyr[x, y] ∈ Aut(G,⊕) such that

x⊕ (y ⊕ z) = (x⊕ y)⊕ gyr[x, y](z)

for all z ∈ G; (left gyroassociative law)

4. For any x, y ∈ G, gyr[x⊕ y, y] = gyr[x, y]. (left loop property)

We give an example of a gyrogroup which is not a group. It is called a Möbius
gyrogroup.

Example 2.2. Let D be the complex open unit disk {z ∈ C : |z| < 1}. De�ne a
Möbius addition ⊕M : D× D→ D by

a⊕M b =
a + b

1 + āb
,

for all a, b ∈ D. This map is well de�ned and its image lies in D, see Theorem 5.5.2
of [5] for the proof. It is obvious that 0 is the identity and −a is the inverse of a, for
any a ∈ D. (D,⊕M ) is not a group because the associative property does not hold.
For example, if a = 1/2, b = i/2, and c = −1/2, then a⊕M (b⊕M c) = (10+15i)/26
but (a⊕M b)⊕M c = (8 + 15i)/34. However, (D,⊕M ) is a gyrogroup with

gyr[a, b](c) =
1 + ab̄

1 + āb
c for any a, b, c ∈ D,

as proved in section 3.4 of [14].

Adding a topology to a gyrogroup motivates the following de�nition.

De�nition 2.3 (De�nition 1 of [1]). A triple (G, T ,⊕) is called a topological
gyrogroup if and only if

1. (G, T ) is a topological space;
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2. (G,⊕) is a gyrogroup; and

3. The binary operation ⊕ : G×G→ G is continuous, where G×G is endowed
with the product topology, and the operation of taking the inverse, i.e.,
	( · ) : G→ G, x 7→ 	x, is continuous.

Sometimes we will just say thatG is a topological gyrogroup if the binary operation
and the topology are clear from the context.

From the previous example, if we consider D as a subspace of C endowed with
the standard topology, then it can be shown that ⊕M and 	M are continuous. So
D is a topological gyrogroup.

The following are some basic algebraic and topological properties of gyrogroups
and topological gyrogroups which will be needed later in our work.

Proposition 2.4 (Proposition 6 of [11]). Suppose (G,⊕) is a gyrogroup and A ⊆
G. Then the following are equivalent:

1. gyr[x, y](A) ⊆ A for all x, y ∈ G.

2. gyr[x, y](A) = A for all x, y ∈ G.

Lemma 2.5 (Proposition 32 of [7]). Let (G1,⊕1) and (G2,⊕2) be gyrogroups, and
let f : G1 → G2 be a homomorphism. Then the following are true:

1. f(0G1
) = 0G2

.

2. For any x ∈ G1, f(	1x) = 	2f(x).

Following the notation in [14], for any pair of elements x, y in a gyrogroup
(G,⊕), we let x�y denote x⊕gyr[x,	y](y), and let x�y denote x⊕gyr[x, y](	y).

Theorem 2.6 (Theorem 2.10, 2.22 and 2.35 of [14]). Let (G,⊕) be a gyrogroup.
For any x, y, z ∈ G, the following are true:

1. (	x)⊕ (x⊕ y) = y. (left cancellation law)

2. (x� y)⊕ y = x. (right cancellation law)

3. gyr[x, y](z) = 	(x⊕ y)⊕ (x⊕ (y ⊕ z)). (gyrator identity)

4. (x⊕ y)⊕ z = x⊕ (y ⊕ gyr[y, x](z)). (right gyroassociative law)

Akin to the case of topological groups, topological gyrogroups admit the fol-
lowing properties.

Proposition 2.7 (Proposition 3 of [1]). Let (G, T ,⊕) be a topological gyrogroup.
Then, for each a ∈ G, the maps x 7→ x ⊕ a and x 7→ a ⊕ x, where x ∈ G, are
homeomorphisms.
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Proposition 2.8 (Corollary 5 of [1]). Suppose that (G, T ,⊕) is a topological gy-
rogroup, x ∈ G, and A,B ⊆ G. Then the following are true:

1. A is open if and only if 	A, x⊕A and A⊕ x are open.

2. If A is open, then A⊕B and B ⊕A are open.

Next we introduce subgyrogroups and necessary concepts. This also leads us
to the de�nition of quotient gyrogroups and the left-gyroaddition action.

De�nition 2.9 (Section 4 of [11]). Let H be a nonempty subset of a gyrogroup
(G,⊕). ThenH is called a subgyrogroup of G and denoted byH 6 G if (H,⊕|H×H)
is a gyrogroup and gyr[a, b]|H ∈ Aut(H,⊕|H×H) for all a, b ∈ H.

A subgyrogroup H is called an L-subgyrogroup and denoted by H 6L G if

gyr[a, h](H) = H,

for all a ∈ G, h ∈ H.

It is easy to see that {0} is trivially an L-subgyrogroup. For a nontrivial
example, see Example 18 of [11].

Proposition 2.10 (Proposition 14 of [11]). Let H be a nonempty subset of a
gyrogroup (G,⊕). Then H 6 G if and only if 	h ∈ H and h ⊕ k ∈ H for all
h, k ∈ H.

Lemma 2.11. Let H be a subgyrogroup of a gyrogroup (G,⊕). Then h⊕H = H
for each h ∈ H.

Proof. Let h ∈ H. By Proposition 2.10, h⊕H ⊆ H. On the other hand, if k ∈ H,
then k = h ⊕ (	h ⊕ k) by the left cancellation law. Again, by Proposition 2.10,
	h⊕ k ∈ H so k = h⊕ (	h⊕ k) ∈ h⊕H which implies H ⊆ h⊕H. As a result,
h⊕H = H.

When H is a subgyrogroup of a gyrogroup (G,⊕), we use the notation G/H to
stand for the set of all left cosets of H, i.e. G/H = {x⊕H : x ∈ G}. The notion
of L-subgyrogroups enables us to work with the set of all left cosets easily.

Proposition 2.12 (Proposition 19 of [11]). Let H be an L-subgyrogroup of a
gyrogroup (G,⊕). Then, for any a, b ∈ G, a⊕H = b⊕H if and only if 	a⊕b ∈ H.

Proposition 2.13 (Proposition 20 of [11]). Let H be an L-subgyrogroup of a
gyrogroup (G,⊕). Then the set G/H = {x⊕H : x ∈ G} forms a partition of G.

Being a subgyrogroup and an L-subgyrogroup are preserved by homomor-
phisms in the following sense.

Proposition 2.14 (Proposition 24 of [11]). Let f : G → H be a homomorphism
between gyrogroups, and let K 6 G. Then f(K) 6 H. Moreover, if K 6L G and
f is surjective, then f(K) 6L H.
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Proposition 2.15 (Proposition 25 of [11]). Let f : G → H be a homomorphism
between gyrogroups, and let K 6 H. Then f−1(K) 6 G. Moreover, if K 6L H,
then f−1(K) 6L G. In particular, ker f 6L G.

Upcoming, trying to obtain a nice object like normal subgroups, we de�ne
normal subgyrogroups which allow a familiar binary operation on the set of all left
cosets.

De�nition 2.16 (Section 5 of [11]). Let H be a nonempty subset of a gyrogroup
(G,⊕). Then H is called a normal subgyrogroup of G and denoted by H E G if
H = ker f for some homomorphism f : G→ K where K is a gyrogroup.

Lemma 2.17 (the paragraph after Proposition 25 of [11]). Let (G,⊕) be a gy-
rogroup. If H E G, then gyr[x, y](H) = H for all x, y ∈ G. In particular, H is an
L-subgyrogroup of G.

Theorem 2.18 (Theorem 27 of [11]). Let (G,⊕) be a gyrogroup, and let H E G.
Then the function

⊕
: G/H×G/H → G/H de�ned by (x⊕H, y⊕H) 7→ (x⊕y)⊕H

is a binary operation. Furthermore, (G/H,
⊕

) becomes a gyrogroup such that H
is the identity element and 	x⊕H is the inverse of x⊕H for each x⊕H ∈ G/H.

De�nition 2.19 (Section 5 of [11]). Let (G,⊕) be a gyrogroup, and let H E G.
The gyrogroup (G/H,

⊕
) in Theorem 2.18 is called the quotient gyrogroup, and

the function q : G→ G/H such that x 7→ x⊕H is called a canonical projection.

Theorem 2.20 (Theorem 28 of [11] (The �rst isomorphism theorem)). Let (G1,⊕1)
and (G2,⊕2) be gyrogroups, and let f : G → H be a homomorphism. Then the
map g ⊕ ker f 7→ f(g) gives rise to an isomorphism between G/ ker f and f(G).

We end this section with the de�nition of the left-gyroaddition action.

De�nition 2.21 (De�nition 3.1 of [8]). Let (G,⊕) be a gyrogroup, and let X be
a set. A function · : G×X → X, written ·((a, x)) = a · x, is a (gyrogroup) action
of G on X if

1. 0G · x = x for all x ∈ X, and

2. a · (b · x) = (a⊕ b) · x for all a, b ∈ G, x ∈ X.

Theorem 2.22 (Theorem 4.5 of [8]). Let H be a subgyrogroup of (G,⊕). Then
the function · : G×G/H → G/H such that for all g ∈ G, x⊕H ∈ G/H,

g · (x⊕H) = (g ⊕ x)⊕H

de�nes a gyrogroup action of G on G/H if and only if

gyr[a, b](x⊕H) ⊆ x⊕H

for all a, b ∈ G, x⊕H ∈ G/H.

De�nition 2.23 (De�nition 4.4 of [8]). Following the language of Theorem 2.22,
the function · : G × G/H → G/H is called the left-gyroaddition action if it is a
gyrogroup action.
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3. Continuous homomorphisms

In this section, we prove the continuity of some homomorphisms and the canonical
decomposition of topological gyrogroups.

Proposition 3.24. Let (G1, T1,⊕1) and (G2, T2,⊕2) be topological gyrogroups.
Let f : G1 → G2 be a homomorphism. Then f is continuous if and only if it is
continuous at 0G1 .

Proof. (⇒) Obvious.
(⇐) Let x ∈ G1. If U is a neighborhood of f(x), then 	2f(x) ⊕2 U is a

neighborhood of 0G2
by Proposition 2.8. So there is a neighborhood W of 0G1

such that f(W ) ⊆ 	2f(x) ⊕2 U . As a result, x ⊕1 W is a neighborhood of x
such that f(x ⊕1 W ) = {f(x ⊕1 w) : w ∈ W} = {f(x) ⊕2 f(w) : w ∈ W} =
f(x) ⊕2 f(W ) ⊆ f(x) ⊕2 (	2f(x) ⊕2 U) = {f(x) ⊕2 (	2f(x) ⊕2 u) : u ∈ U} = U
by the left cancellation law (see Theorem 1). Hence f is continuous at x. Since x
is arbitrary, f is continuous.

Lemma 3.25. Let H be a subgyrogroup of a topological gyrogroup (G, T ,⊕) such
that gyr[a, b](x⊕H) ⊆ x⊕H for all a, b ∈ G, x⊕H ∈ G/H [or let H E G]. Suppose
G/H is equipped with the quotient topology induced by q. Then the canonical
projection q : G→ G/H is a continuous open map.

Proof. Since G/H is endowed with the quotient topology induced by q, q is con-
tinuous. Next, let U ⊆ G be an open set. Then q(U) = {u ⊕ H : u ∈ U}. We
will show that q−1(q(U)) = U ⊕H. If a ∈ q−1(q(U)), then q(a) = a⊕H = u⊕H
for some u ∈ U . As a result, 	u⊕ a ∈ H by Proposition 2.12. Thus 	u⊕ a = h
for some h ∈ H so a = u⊕ h ∈ U ⊕H by the left cancellation law. On the other
hand, if x ∈ U ⊕ H, then x = v ⊕ k for some v ∈ U , k ∈ H. We obtain that
q(x) = x⊕H = (v⊕k)⊕H = v⊕(k⊕gyr[k, v](H)) = v⊕(k⊕H) = v⊕H ∈ q(U);
the fourth and �fth equalities come from our assumption together with Proposi-
tion 2.4 [or come from Lemma 2.17 for the case H E G] and Lemma 2.11. So
x ∈ q−1(q(U)) and we can conclude that q−1(q(U)) = U ⊕H which is an open set
by Proposition 2.8. Hence q is an open map.

Theorem 3.26. (Canonical decomposition) Let (G1, T1,⊕1) and (G2, T2,⊕2) be
topological gyrogroups. Let f : G1 → G2 be a continuous homomorphism. Then
the following are true:

G1 G2

f

G1/ ker f f(G1)

iq

f̃
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(1) The above diagram commutes where q : G1 → G1/ ker f is the canonical

projection, f̃ : G1/ ker f → f(G1) is a function de�ned by g ⊕1 ker f 7→ f(g)
for all g ∈ G1, and i : f(G1)→ G2 is the inclusion map.

(2) i : f(G1) → G2 is an injective continuous homomorphism, and f̃ is a con-
tinuous isomorphism.

(3) f is an open map if and only if f(G1) is open in G2 and f̃ is an open map.

(4) f̃ is an open map if and only if f(U) is open in f(G1) for all open subset U
of G1.

Proof. To see (1), we �rst show that f̃ is well de�ned. If a, b ∈ G are so that
a⊕1 ker f = b⊕1 ker f , then 	1b⊕1 a ∈ ker f by Proposition 2.12. Thus f(	1b)⊕2

f(a) = f(	1b⊕1 a) = 0G2
so 	2f(	1b) = f(a) by the left cancellation law. Hence

f(b) = f(a) by Lemma 2.5. Next, the diagram commutes because for any a ∈ G1,

f(a) = i(f(a)) = i(f̃(a⊕1 ker f)) = i(f̃(q(a))).
To prove (2), i is injective and continuous because it is a restriction of the

identity map. Moreover, it is a homomorphism since f(G1) is a gyrogroup by

Proposition 2.14. On the other hand, f̃ is an isomorphism by the �rst isomorphism
theorem. Next, we show that f̃ is continuous. Let U be an open subset of f(G1).
Then there is an open subset W of G2 such that U = W ∩ f(G1). Since f is
continuous, f−1(W ) is open in G1. Then q(f−1(W )) is an open subset of G1/ ker f
by Lemma 3.25. Now observe that

f̃−1(U) = f̃−1(W ∩ f(G1)) = f̃−1(i−1(W ∩ f(G1))) = f̃−1(i−1(f(f−1(W ))))

= f̃−1(i−1((i ◦ f̃ ◦ q)(f−1(W )))) = q(f−1(W )).

So f̃−1(U) is open in G1/ ker f , and hence f̃ is continuous.
Now we prove (3). (⇒): Suppose that f is an open map. Then f(G1) is open

in G2. To see that f̃ is an open map, let U be an open subset of G1/ ker f . Since q
is continuous, q−1(U) is open. Moreover, f(q−1(U)) is open because f is an open

map. Then f̃(U) = (i−1 ◦ f ◦ q−1)(U) is open because i, q are continuous.

(⇐): Let f(G1) be open in G2, and let f̃ be an open map. We will show that f is

an open map. Let U be an open subset of G1. Then (f̃ ◦ q)(U) is open in f(G1)

because q and f̃ are open maps. Since f(G1) is open in G2, (f̃ ◦ q)(U) is open in

G2. Notice that f(U) = (i ◦ f̃ ◦ q)(U) = i((f̃ ◦ q)(U)) = (f̃ ◦ q)(U). Hence f(U) is
open in G2 which implies that f is an open map.

Finally, we prove (4). (⇒): Assume that f̃ is an open map. Let U be an open

subset of G1. Then (f̃ ◦ q)(U) is open in f(G1) because q and f̃ are open maps.

Observe that f(U) = i((f̃ ◦ q)(U)) = (f̃ ◦ q)(U). So f(U) is open in f(G1).
(⇐): Suppose that f(U) is open in f(G1) for all open subset U of G1. To see that

f̃ is an open map, let W be an open subset of G1/ ker f . Then (i−1◦f ◦q−1)(W ) =
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(f ◦ q−1)(W ) = f(q−1(W )) is open in f(G1) by the assumption and the fact that

q is continuous. Since f̃(W ) = (i−1 ◦ f ◦ q−1)(W ), f̃ is an open map.

4. Action and topological quotient gyrogroups

In our last section, we consider the set of all left cosets of an L-subgyrogroup
H in a topological gyrogroup (G, T ,⊕). According to Proposition 2.13, we can
assign the quotient topology induced by canonical projection to G/H and study
the continuity of the left-gyroaddition action · : G×G/H → G/H where G×G/H
is endowed with the product topology. In addition, if H E G, then (G/H,

⊕
) is a

gyrogroup so we can examine the continuity of
⊕

.
From now on, let T denote the quotient topology induced by the canonical

projection q : G→ G/H. In addition, we will assume that G/H is endowed with
T in our proof when the topology is needed to be specify. We begin this section
by providing some basic facts of G/H in the following proposition which the proof
in topological group version can be adopted.

Proposition 4.1. Let (G, T ,⊕) be a topological gyrogroup, and let H 6 G be such
that gyr[a, b](x⊕H) ⊆ x⊕H for all a, b ∈ G, x⊕H ∈ G/H. Then the following
are equivalent:

1. (G/H,T) is T2.

2. (G/H,T) is T1.

3. H is a closed subset of G.

Proof. (1⇒ 2): Trivial.
(2⇒ 3): Observe that H = q−1({H}) because of Lemma 2.11 and Proposition

2.12. Since q is continuous and {H} is closed because (G/H,T) is T1, we gain the
result.

(3⇒ 1): We will show that the set {(x⊕H, y⊕H) : x⊕H = y⊕H} is closed
in G/H ×G/H together with the product topology. Notice that {(x⊕H, y⊕H) :
x ⊕H = y ⊕H} ⊆ {(x ⊕H, y ⊕H) : 	x ⊕ y ∈ H} by Proposition 2.12. On the
other hand, {(x⊕H, y⊕H) : 	x⊕y ∈ H} ⊆ {(x⊕H, y⊕H) : x⊕H = y⊕H} by
the fact that gyr[a, b](x⊕H) ⊆ x⊕H for all a, b ∈ G, x⊕H ∈ G/H, Proposition
2.4 and, again, Proposition 2.12. So {(x ⊕ H, y ⊕ H) : x ⊕ H = y ⊕ H} =
{(x ⊕H, y ⊕H) : 	x ⊕ y ∈ H}. Next, observe that G/H × G/H − {(x ⊕H, y ⊕
H) : x ⊕ H = y ⊕ H} = G/H × G/H − {(x ⊕ H, y ⊕ H) : 	x ⊕ y ∈ H} =
{(x ⊕ H, y ⊕ H) : 	x ⊕ y /∈ H} = (q × q) ◦ (	(·) × Id) ◦ (⊕−1)(G − H), where
q × q is the product of two open quotient maps and Id : G → G is the identity
function. Since ⊕ is continuous and H is closed, ⊕−1(G−H) is open. Moreover,
	(·) × Id : G × G → G × G is a homeomorphism so (	(·) × Id) ◦ (⊕−1)(G −H)
is open. Finally, it is a well-known fact in topology that the product of two open
maps is an open map. Hence (q × q) ◦ (	(·) × Id) ◦ (⊕−1)(G −H) is open. This
implies that {(x⊕H, y ⊕H) : x⊕H = y ⊕H} is closed.
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Lemma 4.2. Let H be a subgyrogroup of a gyrogroup (G,⊕), gyr[a, b](x ⊕H) ⊆
x⊕H for all a, b ∈ G, x⊕H ∈ G/H. Then, for all a ∈ G and x⊕H, y⊕H ∈ G/H,
(a⊕ x)⊕H = (a⊕ y)⊕H if and only if x⊕H = y ⊕H.

Proof. (⇐): Use Theorem 2.22.
(⇒): Suppose (a ⊕ x) ⊕ H = (a ⊕ y) ⊕ H. We will show that 	y ⊕ x ∈ H

which implies x ⊕H = y ⊕H. Let (a ⊕ x) ⊕ h1 ∈ (a ⊕ x) ⊕H. By assumption,
gyr[a, b](H) ⊆ H, for all a, b ∈ G. So gyr[a, b](H) = H, for all a, b ∈ G, by
Proposition 2.4. Then, for some h2, h3, h4, h5 ∈ H,

(a⊕ x)⊕ h1 = (a⊕ y)⊕ h2,

a⊕ (x⊕ h3) = a⊕ (y ⊕ h4),

x⊕ h3 = y ⊕ h4,

	y ⊕ (x⊕ h3) = h4,

(	y ⊕ x)⊕ h5 = h4,

	y ⊕ x = h4 � h5.

Moreover, h4 � h5 = h4 ⊕ gyr[h4, h5](	h5) ∈ H. Hence 	y ⊕ x ∈ H.

Theorem 4.3. Let H be a subgyrogroup of a topological gyrogroup (G, T ,⊕) such
that gyr[a, b](x ⊕ H) ⊆ x ⊕ H for all a, b ∈ G, x ⊕ H ∈ G/H. Then the left-
gyroaddition action · : G×G/H → G/H is transitive. Furthermore, for each a ∈
G, the function fa : G/H → G/H de�ned by fa(x⊕H) = a ·(x⊕H) = (a⊕x)⊕H
for all x⊕H ∈ G/H is a homeomorphism.

Proof. To begin with, we show that the action is transitive. Let x ⊕H, y ⊕H ∈
G/H. Then (y�x) · (x⊕H) = ((y�x)⊕x)⊕H = y⊕H, by the right cancellation
law.

Next, we prove the last sentence of the theorem. Let a ∈ G. We �rst show that
the function fa : G/H → G/H de�ned by fa(x⊕H) = a ·(x⊕H) = (a⊕x)⊕H for
each x⊕H ∈ G/H is a continuous bijection. Lemma 4.2 shows that fa is injective.
Moreover, for any x⊕H ∈ G/H, fa((	a⊕x)⊕H) = (a⊕ (	a⊕x))⊕H = x⊕H.
So fa is bijective. To see the continuity of fa, let La : G → G be such that
La(x) = a ⊕ x for all x ∈ G. Then La is a homeomorphism by Proposition 2.7.
Observe that q ◦ La = fa ◦ q where q : G→ G/H is the canonical projection. So,
for each open set U ⊆ G/H, we have f−1a (U) = q(L−1a (q−1(U))) which is open
by Lemma 3.25. We conclude that fa is a continuous bijection. It is not hard to
check that f−1a = f	a which is a continuous bijection by similar proof. Thus fa is
a homeomorphism.

In some special occasion, the continuity of the left-gyroaddition action is es-
tablished.

Theorem 4.4. Suppose that H is a compact subgyrogroup of a topological gy-
rogroup (G, T ,⊕) such that gyr[a, b](x⊕H) ⊆ x⊕H for all a, b ∈ G, x⊕H ∈ G/H.
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Then the left-gyroaddition action of G on G/H is transitive. Moreover, it is con-
tinuous when G×G/H is endowed with the product topology.

Proof. The action is transitive by Theorem 4.3. Next, we show that the map
· : G×G/H → G/H de�ned by ·((a, x⊕H)) = a · (x⊕H) = (a⊕ x)⊕H for all
a ∈ G, x⊕H ∈ G/H is continuous when the topology on G×G/H is the product
topology. Suppose (a, x⊕H) ∈ G×G/H. Let U ⊆ G/H be an open set containing
·((a, x⊕H)) = (a⊕ x)⊕H. Observe that a⊕ (x⊕H) = (a⊕ x)⊕ gyr[a, x](H) =
(a⊕ x)⊕H by our assumption and Proposition 2.4. Moreover, q((a⊕ x)⊕H) =
q({(a⊕x)⊕h : h ∈ H}) = {((a⊕x)⊕h)⊕H : h ∈ H} = {(a⊕x)⊕ (h⊕gyr[h, a⊕
x](H)) : h ∈ H} = {(a⊕ x)⊕ (h⊕H) : h ∈ H} = {(a⊕ x)⊕H : h ∈ H} ⊆ U ; the
fourth and �fth equalities come from our assumption together with Proposition
2.4 and Lemma 2.11. So a ⊕ (x ⊕H) = (a ⊕ x) ⊕H ⊆ q−1(U) which is an open
set because q is continuous. Thus, for each h ∈ H, there are open sets Uh, Vh of
G such that a ∈ Uh, x⊕ h ∈ Vh, and Uh ⊕ Vh ⊆ q−1(U) because ⊕ is continuous.
It is clear that x ⊕ H ⊆

⋃
h∈H Vh. Since H is compact, x ⊕ H is compact by

Proposition 2.7. Hence x⊕H ⊆ Vh1
∪ ... ∪ Vhl

for some h1, ..., hl ∈ H, l ∈ N. Let
Ũ = Uh1

∩ ... ∩ Uhl
and Ṽ = Vh1

∪ ... ∪ Vhl
. Then Ũ ⊕ Ṽ ⊆ q−1(U), a ∈ Ũ and

x⊕H ⊆ Ṽ where Ũ , Ṽ are open in G. Notice that x ∈ x⊕H ⊆ Ṽ which implies
x⊕H = q(x) ∈ q(Ṽ ). Moreover, q(Ṽ ) is open by Lemma 3.25. Hence Ũ × q(Ṽ ) is
a neighborhood of (a, x⊕H) such that

·(Ũ × q(Ṽ )) = {u · q(v) : u ∈ Ũ and v ∈ Ṽ }

= {u · (v ⊕H) : u ∈ Ũ and v ∈ Ṽ }

= {(u⊕ v)⊕H : u ∈ Ũ and v ∈ Ṽ }

= {q(u⊕ v) : u ∈ Ũ and v ∈ Ṽ }

= q(Ũ ⊕ Ṽ ) ⊆ q(q−1(U)) = U.

We conclude that the action is continuous.

Next, we will explore the continuity of
⊕

when H E G. Let us start with the
following theorem.

Theorem 4.5. Let H be a subgyrogroup of a topological gyrogroup (G, T ,⊕) such
that gyr[a, b](x⊕H) ⊆ x⊕H for all a, b ∈ G, x⊕H ∈ G/H [or let H E G]. Then
T is a discrete topology if and only if H is an open subset of G.

Proof. (⇒) Suppose T is a discrete topology. We obtain that {H} is an open subset
of G/H. Since q is continuous, q−1({H}) is open. It is not hard to prove that
q−1({H}) = H by using Lemma 2.11 and Proposition 2.12. The result follows.

(⇐) We will show that for each x ∈ G, the singleton set {x⊕H} is open. Since
H is an open subgyrogroup of G, x⊕H is open in G by Proposition 2.8. Observe
that q(x ⊕ H) = {(x ⊕ h) ⊕ H : h ∈ H} = {x ⊕ (h ⊕ gyr[h, x](H)) : h ∈ H} =
{x ⊕ (h ⊕ H) : h ∈ H} = {x ⊕ H}; again, the third and fourth equalities come
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from our assumption together with Proposition 2.4 [or come from Lemma 2.17 for
the case H E G] and Lemma 2.11. Since q is an open map, {x⊕H} = q(x⊕H)
is open in G/H.

When H is a normal subgyrogroup of a topological gyrogroup (G, T ,⊕), it is
possible that (G/H,T,

⊕
) turns into a topological gyrogroup. Fortunately, we can

show that this is the case.

De�nition 4.6. Let (G, T ,⊕) be a topological gyrogroup, and let H E G. Then
the quotient gyrogroup (G/H,

⊕
) is called the topological quotient gyrogroup if

(G/H,T,
⊕

) is a topological gyrogroup.

Theorem 4.7. Let (G, T ,⊕) be a topological gyrogroup, and let H E G. Then
(G/H,T,

⊕
) is a topological quotient gyrogroup.

Proof. It is a well-known result in topology that the product of two open quotient
maps is also a quotient map. So q × q : G×G→ G/H ×G/H is a quotient map.
To prove that

⊕
is continuous, it is enough to show that

⊕
◦(q× q) is continuous

by Theorem 22.2 of [6]. Notice that (
⊕
◦(q × q))((x, y)) = q(x)

⊕
q(y) = (x ⊕

H)
⊕

(y ⊕H) = (x⊕ y)⊕H = (q ◦ ⊕)((x, y)) for all x, y ∈ G. Since q and ⊕ are
continuous, we have that

⊕
◦(q× q) is continuous which implies the continuity of⊕

. Next, for each x⊕H ∈ G/H, 	x⊕H is its inverse element by Theorem 2.18.
As a result, the inverse operation x⊕H 7→ 	x⊕H is continuous since it is equal
to q composed with 	( · ).

A careful reader might ask for the continuity of the left-gyroaddition action
in general settings. On one hand, this problem is still open for us. On the other
hand, we provide an easy example of occasion that the action is continuous without
employing compactness of the subgroup H.

Remark 4.8. Consider (D, T ,⊕M ) where T is the discrete topology on D or
the subspace topology of C endowed with the standard topology. It is clear that
(D, T ,⊕M ) is a topological gyrogroup which is not compact. Let H = D. Then H
is not compact, and H is a normal subgyrogroup of D such that gyr[a, b](x⊕H) ⊆
x ⊕ H for all a, b ∈ D, x ⊕ H ∈ D/H. Since D/H is a singleton set, the left-
gyroaddition action is continuous when D × D/H is equipped with the product
topology.

Finally, we would like to end our work with the succeeding question.

Question 1. Is the left-gyroaddition action continuous in general?
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