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Matched pairs of m-invertible Hopf quasigroups

Mohammad Hassanzadeh and Serkan Sütlü

Abstract. The matched pair theory (of groups) is studied for a class of quasigroups; namely,

the m-inverse property loops. The theory is upgraded to the Hopf level, and the m-invertible

Hopf quasigroups are introduced.

1. Introduction

One of the main motivations of the theory of quasigroups may be considered to
be the extension of the representation theoretical properties of the groups on the
level of quasigroups; such as the character theory [27, 58], module theory [57], or
homogeneous spaces [59, 60]. See also [19, 22, 23].

Not much later, it was discovered that there are a plethora of areas for quasi-
groups to apply. Among others, an incomplete list may consists of the coding
theory (see, for instance, [20] for the quasigroup-based MDS codes, and [42, 43]
for the quasigroup point of view towards the codes with one check symbol, as well
as [21]), cryptology [18, 24, 54], and combinatorics [9, 25, 30, 37].

In order to shed further light on the well deserved analysis of the quasigroups,
we shall develop in the present paper the matched pair construction for these
non-associative structures. The matched pair theory was introduced, initially, for
groups in order to recover the structure of a group in terms of two subgroups with
mutual actions, [12, 36, 38, 39, 61, 64]. More precisely, given a pair of groups
(G,H) with mutual actions

. : H ×G→ G, / : H ×G→ H

satisfying

y . (xx′) = (y . x)((y / x) . x′), y . 1 = 1,

(yy′) / x = (y / (y′ . x))(y′ / x), 1 / x = 1,

for any x, x′ ∈ G, and any y, y′ ∈ H, the cartesian product G ./ H := G×H is a
group with the multiplication

(x, y)(x′, y′) = (x(y . x′), (y / x)y′),
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and the unit (1, 1) ∈ G × H. In this case, the pair (G,H) of groups is called a
matched pair of groups.

As for the quasigroups, there are many such constructions. To begin with,
there are of course the direct product construction [17, 56, 44, 26, 6, 7], and the
semi-direct product construction [55, 49, 15]. There is also the crossed product
construction [14, 13, 5], which is referred as quasi-direct product in [63]. Consid-
ering these as the binary crossed products, there are, on top of these, the n-ary
crossed products [11]. The other generalizations goes under the titles of the gen-
eralized crossed product [8], and the generalized singular direct product [52, 53].
Finally, there is the Sabinin's product [48, 51] and its generalization [15, 50]. We
refer the reader also to [16].

More recently, a bicrossed product construction for quasigroups (based on the
mutual interaction of the quasigroups through permutations) is developed in [1,
Sect. 5]. The structure of the resulting bipoduct quasigroup of [1, Thm. 5.1]
encompases to that of the bicrossedproduct group of [40], and is closest to the one
developed in the present manuscript.

The matched pair construction that we shall develop here is also based on
the �mutual actions� of two objects through certain maps, though this time the
objects being m-inverse property loops, and not merely quasigroups. We shall,
furthermore, be able to relate our construction to the matched pair of groups;
which will enable us to produce an ample amount of examples motivated from the
matched pairs of groups.

Let us note that the matched pair theory of groups suit also to Hopf algebras,
the quantum analogues of groups, [40, 41, 62]. Just as well, there will be a Hopf
analogue of the theory we shall develop here.

In [35], see also [34], the authors managed to develop successfully a not-
necessarily associative (but coassociative, counital, and unital) (co)algebraH, that
they call a Hopf quasigroup, with a map S : H → H satisfying compatibility
conditions more general then those satis�ed by the antipode of a Hopf algebra. It
is further shown that kQ is a Hopf quasigroup if Q is an inverse property (IP) loop,
and that for any Hopf quasigrop H, the set G(H) of group-like elements form an
IP-loop.

Considering the Hopf algebras as linearizations of groups, one sees the antipode
of a Hopf algebra as the manifestation of the inversion on a group. This point of
view is precisely what has been studied in [34, 35], where the authors succesfully
developed the correct axioms for the antipode of the quantum analogue of an IP-
loop. Looking from a similar perspective, in the present paper we shall develop the
quantum analogue of a strictly larger family; the m-inverse property loops, which
is general enough to encompass the weak-inverse-property (WIP) of [3], as well as
the crossed-inverse (CI) property of [2]. The resulting quantum objects shall be
addressed as m-inverse property Hopf quasigroups, and their matched pair theory
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(the quantum analogue of the matcehd pair theory developed for the m-inverse
property loops) will be developed.

Finally, it deserves to be mentioned that in the level of Hopf objects there
are constructions that fell beyond the matched pair construction; most notably,
the Radford's biproduct construction, [45]. However, the Radford's biproduct con-
struction uses the category of Yetter-Drinfeld objects; that we intend to explore for
the m-inverse property Hopf quasigroups in a separate paper. As such, we expect
also to penetrate into a Hopf-cyclic type (co)homology theory for the quantum
objects constructed here.

The paper is organized as follows.

Section 2 below is about the inverse properties on quasigroups, and serves to
�x the basic de�nitions of the main objects of study. To this end, in Subsection
2.1 we collect the de�nitions of quasigroups and loops, while in Subsection 2.2 we
recall brie�y the various inverse properties on quasigroups (with a special emphasis
on the m-inverse property).

Section 3 is where we develop the matched pair theory for the m-inverse prop-
erty loops. Based on the lack of literature on semi-direct product of quasigroups
(in the sense that one quasigroup acts on the other, see for instance Proposition
3.3 and Proposition 3.4 below), and for the convenience of the reader, we begin
with a recollection of the basic results (Theorem 3.1 and Theorem 3.2) on the
direct products of quasigroups in Subsection 3.1, and then extend it to the semi-
direct products of m-inverse property loops (Proposition 3.6 and Proposition 3.7).
Finally, we achieve the full generality (proving our main results on the quasigroup
level) in Subsection 3.3, and succeed the matched pair construction for the m-
inverse property loops (Proposition 3.8 and Proposition 3.9). We also discuss the
universal property of this construction in Proposition 3.12, as an analogue of [41,
Prop. 6.2.15] for the m-inverse property loops.

Section 4, �nally, is reserved for the quantum counterparts of the main results
of Subsection 3.3. Accordingly, in Subsection 4.1 we introduce the notion of m-
invertible Hopf quasigroup in De�nition 4.1. Then, in Subsection 4.2 we establish
the matched pair theory for the m-invertible Hopf quasigroups (Proposition 4.6),
along with a suitable version (Proposition 4.9) of [41, Thm. 7.2.3].

Notation and Conventions

We shall adopt the Sweedler's notation (suppressing the summation) to denote
a comultiplication; ∆ : A→ A⊗A, ∆(a) := a

<1>
⊗a

<2>
. For the sake of simplicity,

we shall also denote, occasionally, an element in the cartesian product A × B, or
tensor product A⊗B as (a, b), rather than a⊗ b.
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2. Quasigroups with inverse properties

In this section we shall discuss the semi-direct product, and then the matched pair
constructions on two large classes of semigroups; namely the m-inverse loops, and
the Hom-groups. To this end, we review the basics of the quasigroup theory �rst.
We shall then focus on the inverse-properties (IP) over quasigroups, in order to
be able to recall the (r, s, t)-inverse quasigroups, as well as the m-inverse loops.
Finally, on the other extreme, we shall recall/review the basics of the Hom-groups.

2.1. Quasigroups

A quasigroup is a set Q with a multiplication such that for all a, b ∈ Q, there exist
unique elements x, y ∈ Q such that ax = b, ya = b. In this case, x = a\b is called
the left division, and y = b/a the right division.

Given two quasigroups Q and Q′, a quasigroup homotopy from Q to Q′ is a
triple (α, β, γ) of maps Q → Q′ such that α(x)β(y) = γ(xy) for all x, y ∈ Q. In
case α = β = γ, then we arrive at the notion of a quasigroup homomorphism. On
the other hand, a quasigroup isotopy is a quasigroup homotopy (α, β, γ) such that
all three maps are bijective.

A quasigroup Q with a distinguished idempotent element δ ∈ Q is called a
pointed idempotent quasigroup, or in short, a pique, [16]. A pique (Q, δ) is called
a loop if the idempotent element δ ∈ Q acts like an identity, i.e. xδ = δx = x for
any x ∈ Q. It, then, follows that the idempotent element δ ∈ Q is unique, and
that any x ∈ Q has a unique left inverse xλ := δ/x, xλx = δ as well as a unique
right inverse xσ := x\δ, xxσ = δ. A loop Q is said to have two-sided inverses

if xλ = xσ for all x ∈ Q. Furthermore, a loop Q is said to have the left inverse

property if xλ(xy) = y for all x, y ∈ Q, and similarly Q is said to have the right

inverse property if (yx)xσ = y, for all x, y ∈ Q. Finally, a loop is said to have
the inverse property if it has both the left inverse property and the right inverse
property. Such loops are also called the IP-loops.

Given a pique (Q, δ), there corresponds a loop B(Q) - called the corresponding
loop or cloop - with the multiplication x∗y := (x/δ)(δ\y) for any x, y ∈ Q, and the
identity element δ ∈ Q. We note that it is possible to recover the multiplication
on a pique from the one on the cloop as xy := (xδ) ∗ (δy), see, for instance, [47].

Finally, a pique (Q, δ) is called central if B(Q) is an abelian group, and the
set of all left and right multiplications of Q that �x the idempotent element δ ∈ Q
is the group Aut

(
B(Q)

)
.

A convenient way to construct quasigroups, out of groups, is the cocycle-type
group extensions, [4], see also [55, Subsect. 1.6.2].

Example 2.1. Let G be a group, (V,+) an abelian group with a right action



Matched pairs of m-invertible Hopf quasigroups 105

/ : V ×G→ V , (v, x) 7→ v / x. Then, given any ϕ : G×G→ V , the operation

(x, v)(x′, v′) := (xx′, ϕ(x, x′) + v / x′ + v′) (2.1)

is associative on Gnϕ V := G× V if and only if

dϕ(x, x′, x′′) := ϕ(x′, x′′)− ϕ(xx′, x′′) + ϕ(x, x′x′′)− ϕ(x, x′) / x′′ = 0, (2.2)

that is, ϕ : G×G→ V is 2-cocycle in the group cohomology of G, with coe�cients
in V ; in other words, ϕ ∈ H2(G,V ). As such, giving up the cocycle condition (2.2)
we arrive at the quasigroup Gnϕ V with the multiplication (2.1).

Similarly, we may construct a loop.

Example 2.2. Considering the quasigroup GnϕV of Example 2.1, we see at once
that (1, 0) ∈ Gnϕ V acts as unit, with respect to (2.1), if and only if

ϕ(1, x) = 0 = ϕ(x, 1) (2.3)

for any x ∈ G. Hence, given a group G, an abelian group (V,+) with a right action
/ : V ×G→ V , and a mapping ϕ : G×G→ V satisfying (2.3) is a loop.

We shall, for the sake of simplicity, drop the right action (that is, we shall
assume the right action to be trivial) on the sequel, and consider the examples of
the form G×ϕ V , with the multiplication

(x, v)(x′, v′) := (xx′, ϕ(x, x′) + v + v′). (2.4)

2.2. Inverse properties on quasigroups

In the present subsection we shall recall the inverse properties on quasigroups, and
in particular, on loops.

Along the lines of [33], see also [3], a loop Q is said to have the weak-inverse

property (WIP) if there is a permutation J : Q→ Q such that

xJ(x) = δ, (2.5)

and that
xJ(yx) = J(y), (2.6)

for any x, y ∈ Q. Dropping the condition (2.5), a quasigroup with 2.6 is called a
WIP quasigroup.

Similarly, a loop/quasigroup Q is said to have the crossed-inverse property (CI
property) if (2.6) is replaced by

(xy)J(x) = y. (2.7)
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We refer the reader to [31] for the applications of the CI quasigroups in cryptog-
raphy.

On the other hand, the loop/quasigroup Q has the m-inverse property if (2.6),
or (2.7), is now substituted with

Jm(xy)Jm+1(x) = Jm(y), (2.8)

where m ∈ Z, [29].

Finally, we recall that the loop/quasigroup Q is said to have the (r, s, t)-inverse
property if (2.6), (2.7), or (2.8), is exchanged with

Jr(xy)Js(x) = J t(y), (2.9)

where r, s, t ∈ Z, [33].

Remark 2.3. The condition (2.9) generalizes those given by (2.6), (2.7), or (2.8).
More precisely, the weak-inverse property is a (−1, 0,−1)-inverse property, [33],
and a crossed-inverse property is nothing but a 0-inverse property; where, in gen-
eral an m-inverse property is an (m,m+ 1,m)-inverse property.

On the other hand, it is observed in [32] that every (r, s, t)-inverse loop is
an (r, r + 1, r)-inverse loop, that is, an r-inverse loop. Though, on the level of
quasigroups, there are proper (r, s, t)-inverse quasigroups, [33].

Remark 2.4. It is critical to recall from [33, Rk. 2.2] that if Q is an (r, s, t)-inverse
quasigroup with the permutation J : Q→ Q so that Jh ∈ Aut(Q) for some h ∈ Z,
then Q is an (r + uh, s+ uh, t+ uh)-inverse quasigroup for any u ∈ Z.

Let us �nally discuss an odd-invertible loop.

Example 2.5. Let us consider the loop G×ϕ V of Example 2.2. Let also

J : G×ϕ V → G×ϕ V, J(x, v) := (x−1,−v). (2.10)

It is quite clear then that J2 = IdG×V ∈ Aut(G ×ϕ V ). Accordingly, we see at
once that

(x, v)J(x, v) = (1, 0)

if and only if
ϕ(x, x−1) = 0 (2.11)

for any x ∈ G, and that for any m = 2`+ 1,

Jm((x, v)(x′, v′))Jm+1(x, v) = Jm(x′, v′)

if and only if
J((x, v)(x′, v′))(x, v) = J(x′, v′),
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if and only if
ϕ(x′−1x−1, x) = ϕ(x, x′) (2.12)

for any x, x′ ∈ G.

To sum up, we may say that given any group G, an abelian group (V,+), and
any ϕ : G × G → V satisfying (2.3), (2.11), and (2.12), G ×ϕ V is an (2` + 1)-
invertible loop with (2.10) for any ` ∈ Z.

3. Matched pairs of m-invertible loops

In this section we shall introduce the matched pair theory for the quasigroups with
the m-inverse property. The theory that we shall develop here will thus generalize
the direct product theory in [33, Sect. 5], and the semi-direct product theory in
[55, Sect. 1.6.2] for quasigroups.

3.1. Direct products of quasigroups

To this end we shall �rst recall the direct product theory from [33, Sect. 5]. In the
utmost generality, let Q1 be an (r1, s1, t1)-inverse quasigroup with the permutation
J1 : Q1 → Q1 , and let Q2 an (r2, s2, t2)-inverse quasigroup with J2 : Q2 →
Q2. Then the direct product Q1 × Q2 is de�ned to be the quasigroup with the
permutation J1 × J2 : Q1 × Q2 → Q1 × Q2, and the multiplication given by
(q1, q2)(q′1, q

′
2) := (q1q

′
1, q2q

′
2).

Along the lines of [33, Sect. 5], let Jh1
1 ∈ Aut(Q1) and Jh2

2 ∈ Aut(Q2). In the
case that Q1 is an m1-inverse quasigroup and Q2 is an m2-inverse quasigroup, the
structure of Q1 ×Q2 is given in [33, Thm. 5.1], that we recall below.

Theorem 3.1. Assume that Q1 is an m1-inverse quasigroup with the permutation

J1 : Q1 → Q1 so that Jh1
1 ∈ Aut(Q1), and Q2 is an m2-inverse quasigroup with

J2 : Q2 → Q2 such that Jh2
2 ∈ Aut(Q2). Then Q1×Q2 is an m-inverse quasigroup

with J1 × J2 : Q1 ×Q2 → Q1 ×Q2, for any m ∈ Z that satis�es

m ≡ m1 (modh1),

m ≡ m2 (modh2).
(3.1)

As is noted in the proof of [33, Thm. 5.1], a solution to (3.1) exists if and only if
there is ` ∈ N such that m1 −m2 = (h1, h2)`. Here (h1, h2) refers to the greatest
common divisor of h1 ∈ Z and h2 ∈ Z.

If, on the other hand, Q1 is an (r1, s1, t1)-inverse quasigroup, and Q2 is an
(r2, s2, t2)-inverse quasigroup, the structure of the direct product is given by [33,
Thm. 5.2], which we recall now.



108 M. Hassanzadeh and S. Sütlü

Theorem 3.2. Let Q1 is an (r1, s1, t1)-inverse quasigroup with the permutation

J1 : Q1 → Q1 so that Jh1
1 ∈ Aut(Q1), and Q2 is an (r2, s2, t2)-inverse quasigroup

with J2 : Q2 → Q2 such that Jh2
2 ∈ Aut(Q2). Then Q1 ×Q2 is an (r, s, t)-inverse

quasigroup with J1 × J2 : Q1 ×Q2 → Q1 ×Q2, if there are u1, u2 ∈ Z such that

r − r1 = s− s1 = t− t1 = u1h1, r − r2 = s− s2 = t− t2 = u2h2.

3.2. Semi-direct products of m-invertible loops

As for the semi-direct products of quasigroups, there seems to be no approach
involving the notion of an action of a quasigroup on another. A semi-direct product
construction, using groups, is the one given in [46, 28], see also [55, Sect. 1.6.2]
which we recall below.

Proposition 3.3. Let (G,+) and (H, ·) be two groups, and. : G→ Aut(H). Then,
G×H is a quasigroup with the multiplication

(g, h)(g′, h′) := (g + g′,. (g′)(h) · h′).

The construction given in [51] uses a quasigroup, and its transassociant.

Proposition 3.4. Let Q be a quasigroup, and H be the group generated by {`(q, q′) |
q, q′ ∈ Q}, where `(q, q′) := L−1

qq′ ◦ Lq ◦ Lq′ , and Lq : Q → Q, Lq(r) := qr, is the

left translation. Then, Q×H is a quasigroup with the multiplication given by

(q, h)(q′, h′) := (qh(q′), `(q, h(q′)) ◦mq′(h) ◦ h ◦ h′),

where, for any q ∈ Q and any h ∈ H,

mq(h) := L−1
h(q) ◦ h ◦ Lq ◦ h

−1.

Let us note also that this was the point of view considered in [34, 35].

None of these constructions lead to a possible discussion on the matched pairs
of quasigroups. We thus adopt the following (more general, given in terms of
quasigroup homomorphisms) de�nition given in [55, Def. 1.318].

De�nition 3.5. A quasigroup Q is called the semi-direct product of two quasi-
groups R and S, if there is a (quasigroup) homomorphism h : Q → S, such that
the kernel ker(h) = R, and that h|S = IdS . In this case, Q is denoted by Ro S.

The motivating examples are the ones discussed within the following proposi-
tions below, on the level of (m-inverse) loops, and Hom-groups.
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Proposition 3.6. Let R and S be two loops, and let ϕ : S × R → R be a map

satisfying ϕ(s, δ) = δ and ϕ(δ, r) = r. Then a loop Q is isomorphic to the loop

Ro S := R× S with the multiplication given by

(r, s)(r′, s′) := (rϕ(s, r′), ss′), (3.2)

if and only if there are quasigroup homomorphisms iS : S → Q, iR : R → Q,
pS : Q→ S, and a map pR : Q→ R satisfying the Moufang-type identities

pR
((
iR(r)iS(s)

)(
iR(r′)iS(s′)

))
= pR(iR(r))

((
pR(iS(s)iR(r′))

)
pR(iS(s′))

)
=(

pR(iR(r))
(
pR(iS(s)iR(r′))

))
pR(iS(s′)), (3.3)

as well as pR◦iR = IdR and pS◦iS = IdS, such that RoS → Q, (r, s) 7→ iR(r)iS(s)
and Q→ Ro S, q 7→ (pR(q), pS(q)) are inverse to each other.

Proof. Letting Φ : Q → R o S to be the (quasigroup) isomorphism, we consider
the mappings

iR : R→ Q, iR(r) := Φ−1(r, δ), iS : S → Q, iS(s) := Φ−1(δ, s)

and

pR : Q→ R, pR(q) := π1(Φ(q)), pS : Q→ S, pS(q) := π2(Φ(q)),

where πi's denote the projection onto the ith component. It is evident that

(pR ◦ iR)(r) = π1(r, δ) = r,

for any r ∈ R, as such pR ◦ iR = IdR. Similarly, pS ◦ iS = IdS . We further see that

iS(ss′) = Φ−1(δ, ss′) = Φ−1
(

(δ, s)(δ, s′)
)

= Φ−1(δ, s)Φ−1(δ, s′) = iS(s)iS(s′),

that

iR(rr′) = Φ−1(rr′, δ) = Φ−1
(

(r, δ)(r′, δ)
)

= Φ−1(r, δ)Φ−1(r′, δ) = iR(r)iR(r′),

and that

pS(qq′) = p2(Φ(qq′)) = π2(Φ(q)Φ(q′)) = π2(Φ(q))π2(Φ(q′)) = pS(q)pS(q′).

On the other hand, the mapping R o S → Q, (r, s) 7→ iR(r)iS(s), becomes
Φ−1 : R o S → Q, whereas the map Q → R o S, q 7→ (pR(q), pS(q)) becomes
Φ : Q→ Ro S. Finally, we note also that

pR
((
iR(r)iS(s)

)(
iR(r′)iS(s′)

))
= pR

(
Φ−1(r, s)Φ−1(r′, s′)

)
=

pR
(
Φ−1(rϕ(s, r′), ss′)

)
= rϕ(s, r′) = pR(iR(r))

((
pR(iS(s)iR(r′))

)
pR(iS(s′))

)
=(

pR(iR(r))
(
pR(iS(s)iR(r′))

))
pR(iS(s′)).
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Conversely, let iS : S → Q, iR : R → Q, and pS : Q → S the quasigroup
homomorphisms, together with the map pR : Q → R satisfying (3.3), such that
Ψ : Ro S → Q, Ψ(r, s) := iR(r)iS(s), and Φ : Q→ Ro S, Φ(q) := (pR(q), pS(q))
are inverse to each other. Thus, the loop structure on Q induces a loop structure
on R × S. We shall, furthermore, see that this induced loop structure is in fact
one of the form (3.6). Indeed,

(δ, s)(r′, δ) = Φ(Ψ(δ, s)Ψ(r′, δ)) = Φ
((
iR(δ)iS(s)

)(
iR(r′)iS(δ)

))
= Φ

(
iS(s)iR(r′)

)
=
(
pR
(
iS(s)iR(r′)

)
, pS
(
iS(s)iR(r′)

))
=
(
pR
(
iS(s)iR(r′)

)
, pS
(
iS(s)

)
pS
(
iR(r′)

))
=(

pR
(
iS(s)iR(r′)

)
, s
)

=
(
ϕ(s, r′), s

)
,

where ϕ : S × R → R, ϕ(s, r′) := pR
(
iS(s)iR(r′)

)
. On the third equality we

used the assumption that iR, iS are quasigroup homomorphisms, while on the
�fth equality we used that of pS : Q → S being a quasigroup homomorphism.
Finally, on the sixth equality we used pS ◦ iS = IdS . Accordingly,

(r, s)(r′, s′) = Φ(Ψ(r, s)Ψ(r′, s′)) = Φ
((
iR(r)iS(s)

)(
iR(r′)iS(s′)

))
=(

pR
((
iR(r)iS(s)

)(
iR(r′)iS(s′)

))
, pS
((
iR(r)iS(s)

)(
iR(r′)iS(s′)

)))
=(

pR(iR(r))
((
pR(iS(s)iR(r′))

)
pR(iS(s′))

)
, ss′

)
=
(
rϕ(s, r′), ss′

)
.

If we ask the semi-direct product loop to have the m-inverse property, then we
have the following more precise result.

Proposition 3.7. Let (R, δ) be an m1-inverse loop with the permutation JR :
R → R so that JR(δ) = δ, and that Jh1

R ∈ Aut(R), and (S, δ) is an m2-inverse

loop with JS : S → S such that JS(δ) = δ, and that Jh2

S ∈ Aut(S). Furthermore,

let there be a map ϕ : S ×R→ R satisfying

ϕ(δ, r) = r, ϕ(s, δ) = δ,

ϕ(JmS (ss′), ϕ(Jm+1
S (s), r)) = ϕ(JmS (s′), r),

ϕ(s, JmR (rr′))ϕ(s, Jm+1
R (r)) = ϕ(s, JmR (r′)),

(3.4)

for any r, r′ ∈ R, any s, s′ ∈ S, and any m ∈ Z that satis�es

m ≡ m1 (modh1),

m ≡ m2 (modh2).
(3.5)

Then,
(
Ro S := R× S, (δ, δ)

)
is an m-invertible loop with the multiplication

(r, s)(r′, s′) :=
(
rϕ(s, r′), ss′

)
(3.6)
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and the permutation J : Ro S → Ro S,

J(r, s) := (δ, JS(s))(JR(r), δ) =
(
ϕ
(
JS(s), JR(r)

)
, JS(s)

)
, (3.7)

if and only if {
ϕ(s, r) = r if m = 2`,

ϕ(JmS (ss′), ϕ(s, r)) = ϕ(JmS (s′), r) if m = 2`+ 1,
(3.8)

for any s, s′ ∈ S, and any r ∈ R.

Proof. Assuming the conditions are met, we see at once that

(r, s)J(r, s) =
[
(r, δ)(δ, s)

][
(δ, JS(s))(JR(r), δ)

]
=[

(r, δ)(δ, s)
]
(ϕ(JS(s), JR(r)), JS(s)) =

(r, δ)
[
(δ, s)(ϕ(JS(s), JR(r)), JS(s))

]
=

(r, δ)(ϕ(s, ϕ(JS(s), JR(r))), sJS(s)) =

(r, δ)(JR(r), δ) = (rJR(r), δ) = (δ, δ).

On the other hand, since

ϕ(s, r)JR(ϕ(s, r)) = δ = ϕ(s, r)ϕ(s, JR(r)),

we conclude
JR(ϕ(s, r)) = ϕ(s, JR(r)),

which, in turn, implies that

J
(
(δ, s)(r, δ)

)
= J(ϕ(s, r), s) = (δ, JS(s))(JR(ϕ(s, r)), δ) =

(δ, JS(s))(ϕ(s, JR(r)), δ) = (ϕ(JS(s), ϕ(s, JR(r))), JS(s)) = (JR(r), JS(s)),

and then that

Jm(r, s) =

{
(JmR (r), JmS (s)), if m = 2`,

(δ, JmS (s))(JmR (r), δ), if m = 2`+ 1.

Accordingly, in the case m = 2`,

Jm
(
(r, s)(r′, s′)

)
Jm+1(r, s) = Jm(rϕ(s, r′), ss′)Jm+1(r, s) =[

(JmR (rϕ(s, r′)), δ)(δ, JmS (ss′))
][

(δ, Jm+1
S (s))(Jm+1

R (r), δ)
]

=

(JmR (rϕ(s, r′)), δ)
{

(δ, JmS (ss′))
[
(δ, Jm+1

S (s))(Jm+1
R (r), δ)

]}
=

(JmR (rϕ(s, r′)), δ)
[
((δ, JmS (ss′)))(ϕ(Jm+1

S (s), Jm+1
R (r)), Jm+1

S (s))
]

=
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(JmR (rϕ(s, r′)), δ)(ϕ(JmS (ss′), ϕ(Jm+1
S (s), Jm+1

R (r))), JmS (ss′)Jm+1
S (s)) =

(JmR (rϕ(s, r′)), δ)(ϕ(JmS (ss′), ϕ(Jm+1
S (s), Jm+1

R (r))), JmS (s′)) =

(JmR (rϕ(s, r′)), δ)(ϕ(JmS (s′), Jm+1
R (r)), JmS (s′)) =(

JmR (rϕ(s, r′))ϕ(JmS (s′), Jm+1
R (r)), JmS (s′)

)
=(

JmR (rϕ(s, r′))Jm+1
R (ϕ(JmS (s′), r)), JmS (s′)

)
=
(
JmR (r′), JmS (s′)

)
= Jm(r′, s′)

(3.9)

where; on the sixth equality we used Remark 2.4, and that m ∈ Z is a solution of
the system (3.5), on the tenth equality we used (3.8), in addition to Remark 2.4
and (3.5). In the case m = 2`+ 1,

Jm
(
(r, s)(r′, s′)

)
Jm+1(r, s) = Jm(rϕ(s, r′), ss′)Jm+1(r, s) =[

(δ, JmS (ss′))(JmR (rϕ(s, r′)), δ)
][

(Jm+1
R (r), δ)(δ, Jm+1

S (s))
]

=

(ϕ(JmS (ss′), JmR (rϕ(s, r′))), JmS (ss′))
[
(Jm+1
R (r), δ)(δ, Jm+1

S (s))
]

=[
(ϕ(JmS (ss′), JmR (rϕ(s, r′))), JmS (ss′))(Jm+1

R (r), δ)
]
(δ, Jm+1

S (s)) =

(ϕ(JmS (ss′), JmR (rϕ(s, r′)))ϕ(JmS (ss′), Jm+1
R (r)), JmS (ss′))(δ, Jm+1

S (s)) =

(ϕ(JmS (ss′), JmR (ϕ(s, r′))), JmS (ss′))(δ, Jm+1
S (s)) =

(ϕ(JmS (ss′), JmR (ϕ(s, r′))), JmS (s′)) = (JmR (ϕ(JmS (ss′), ϕ(s, r′))), JmS (s′)) =

(JmR (ϕ(JmS (s′), r′)), JmS (s′)) = (ϕ(JmS (s′), JmR (r′)), JmS (s′)) =

(δ, JmS (s′))(JmR (r′), δ) = Jm(r′, s′)

(3.10)

where; in the sixth equation we used (3.4), in the seventh equation we used Remark
2.4 and (3.5), and in the ninth equation we used (3.8).

Let, conversely, Ro S be an m-inverse loop with the multiplication (3.6) and
the permutation (3.7).

In the case m = 2`, the tenth equation of (3.9) holds, and we have

JmR (rϕ(s, r′))Jm+1
R (ϕ(JmS (s′), r)) = JmR (r′)

for any r, r′ ∈ R, and any s, s′ ∈ S. In particular, for r = δ, we see that

JmR (ϕ(s, r′)) = JmR (r′),

and that ϕ(s, r′) = r′, for any r′ ∈ R, and any s ∈ S.

In the case m = 2`+ 1, however, we have the ninth equation of (3.10), that is,

JmR (ϕ(JmS (ss′), ϕ(s, r′))) = JmR (ϕ(JmS (s′), r′)).

But then, since JR : R→ R is a permutation, we obtain

ϕ(JmS (ss′), ϕ(s, r′)) = ϕ(JmS (s′), r′)

for any r′ ∈ R, and any s, s′ ∈ S.
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3.3. Matched pairs of m-invertible loops

In order to be able to generalize De�nition 3.5 in the presence of two quasigroups,
none of which is necessarily the kernel of a quasigroup homomorphism, we adopt
the point of view of [10, 40, 45].

Proposition 3.8. Let R and S be two loops, with the maps ϕ : S × R → R and

ψ : S ×R→ S satisfying

ϕ(s, δ) = δ, ϕ(δ, r) = r, ψ(s, δ) = s, ψ(δ, r) = δ.

Then a loop Q is isomorphic to the loop R ./ S := R × S with the multiplication

given by

(r, s)(r′, s′) := (rϕ(s, r′), ψ(s, r′)s′), (3.11)

if and only if there are quasigroup homomorphisms iS : S → Q, iR : R → Q,
together with the maps pR : Q → R and pS : Q → S satisfying the Moufang-type

identities

pR
((
iR(r)iS(s)

)(
iR(r′)iS(s′)

))
= pR(iR(r))

((
pR(iS(s)iR(r′))

)
pR(iS(s′))

)
=(

pR(iR(r))
(
pR(iS(s)iR(r′))

))
pR(iS(s′)) (3.12)

and

pS
((
iR(r)iS(s)

)(
iR(r′)iS(s′)

))
= pS(iR(r))

((
pS(iS(s)iR(r′))

)
pS(iS(s′))

)
=(

pS(iR(r))
(
pS(iS(s)iR(r′))

))
pS(iS(s′)), (3.13)

as well as pR ◦ iR = IdR and pS ◦ iS = IdS, such that R ./ S → Q, (r, s) 7→
iR(r)iS(s) and Q→ R ./ S, q 7→ (pR(q), pS(q)) are inverse to each other.

Proof. Letting Φ : Q → R ./ S to be the (quasigroup) isomorphism, we consider
the mappings

iR : R→ Q, iR(r) := Φ−1(r, δ), iS : S → Q, iS(s) := Φ−1(δ, s)

and

pR : Q→ R, pR(q) := π1(Φ(q)), pS : Q→ S, pS(q) := π2(Φ(q)),

where πi's denote the projection onto the ith component. It is evident that

(pR ◦ iR)(r) = π1(r, δ) = r,

for any r ∈ R, as such pR ◦ iR = IdR. Similarly, pS ◦ iS = IdS . We further see that

iS(ss′) = Φ−1(δ, ss′) = Φ−1
(

(δ, s)(δ, s′)
)

= Φ−1(δ, s)Φ−1(δ, s′) = iS(s)iS(s′),



114 M. Hassanzadeh and S. Sütlü

and that

iR(rr′) = Φ−1(rr′, δ) = Φ−1
(

(r, δ)(r′, δ)
)

= Φ−1(r, δ)Φ−1(r′, δ) = iR(r)iR(r′).

On the other hand, the mapping R ./ S → Q, (r, s) 7→ iR(r)iS(s), becomes
Φ−1 : R ./ S → Q, whereas the map Q → R ./ S, q 7→ (pR(q), pS(q)) becomes
Φ : Q→ R ./ S. Finally, we note also that

pR
((
iR(r)iS(s)

)(
iR(r′)iS(s′)

))
= pR

(
Φ−1(r, s)Φ−1(r′, s′)

)
=

pR
(
Φ−1(rϕ(s, r′), ψ(s, r′)s′)

)
= rϕ(s, r′)= pR(iR(r))

((
pR(iS(s)iR(r′))

)
pR(iS(s′))

)
=
(
pR(iR(r))

(
pR(iS(s)iR(r′))

))
pR(iS(s′)),

and that, similarly,

pS
((
iR(r)iS(s)

)(
iR(r′)iS(s′)

))
= pS(iR(r))

((
pS(iS(s)iR(r′))

)
pS(iS(s′))

)
=(

pS(iR(r))
(
pS(iS(s)iR(r′))

))
pS(iS(s′)).

Conversely, let iS : S → Q and iR : R → Q be quasigroup homomorphisms,
together with the maps pR : Q → R and pS : Q → S satisfying (3.12) and
(3.13), such that Ψ : R ./ S → Q, Ψ(r, s) := iR(r)iS(s), and Φ : Q → R ./ S,
Φ(q) := (pR(q), pS(q)) are inverse to each other. Thus, the loop structure on Q
induces a loop structure on R × S. We shall, furthermore, see that this induced
loop structure is in fact of the form (3.20). Indeed,

(δ, s)(r′, δ) = Φ(Ψ(δ, s)Ψ(r′, δ)) = Φ
((
iR(δ)iS(s)

)(
iR(r′)iS(δ)

))
= Φ

(
iS(s)iR(r′)

)
=
(
pR
(
iS(s)iR(r′)

)
, pS
(
iS(s)iR(r′)

))
=
(
ϕ(s, r′), ψ(s, r′)

)
,

where ϕ : S ×R→ R, ϕ(s, r′) := pR
(
iS(s)iR(r′)

)
, and ψ : S ×R→ S, ψ(s, r′) :=

pS
(
iS(s)iR(r′)

)
. On the third equality we used the assumption that iR, iS are

quasigroup homomorphisms. Accordingly,

(r, s)(r′, s′) = Φ(Ψ(r, s)Ψ(r′, s′)) = Φ
((
iR(r)iS(s)

)(
iR(r′)iS(s′)

))
=(

pR
((
iR(r)iS(s)

)(
iR(r′)iS(s′)

))
, pS
((
iR(r)iS(s)

)(
iR(r′)iS(s′)

)))
=(

pR(iR(r))
((
pR(iS(s)iR(r′))

)
pR(iS(s′))

)
,
(
pS(iR(r))

(
pS(iS(s)iR(r′))

))
pS(iS(s′))

)
=
(
rϕ(s, r′), ψ(s, r′)s′

)
.

Next, we discuss the matched pair construction for the m-inverse property loops.
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Proposition 3.9. Let (R, δ) be an m1-inverse loop with the permutation JR :
R → R so that JR(δ) = δ, and that Jh1

R ∈ Aut(R), and (S, δ) is an m2-inverse

loop with JS : S → S such that JS(δ) = δ, and that Jh2

S ∈ Aut(S). Furthermore,

let there be two maps φ : S ×R→ R and ψ : S ×R→ S satisfying

φ(δ, r) = r, φ(s, δ) = δ, ψ(δ, r) = δ, ψ(s, δ) = s, (3.14)

φ(s, φ(JS(s), r)) = r, (3.15)

ψ(ψ(s, JmR (rr′)), Jm+1
R (r)) = ψ(s, JmR (r′)), (3.16)

φ(s, JmR (rr′))φ(ψ(s, JmR (rr′)), Jm+1
R (r)) = φ(s, JmR (r′)), (3.17)

ψ(s, φ(JS(s), r))ψ(JS(s), r) = δ, (3.18)

for any r, r′ ∈ R, any s, s′ ∈ S, and any m ∈ Z that satis�es

m ≡ m1 (modh1),

m ≡ m2 (modh2).
(3.19)

Then,
(
R ./ S := R× S, (δ, δ)

)
is an m-invertible loop with the multiplication

(r, s)(r′, s′) :=
(
rφ(s, r′), ψ(s, r′)s′

)
(3.20)

and the permutation

J : R ./ S → R ./ S,

J(r, s) := (δ, JS(s))(JR(r), δ) =
(
φ
(
JS(s), JR(r)

)
, ψ
(
JS(s), JR(r)

))
,

(3.21)

if and only if
φ(s, r) = r,

ψ(s, r) = s,

}
if m = 2`,

φ(JmS (ψ(s, J−mR (r))s′), φ(ψ(s, J−1
R (r)), r)) = φ(JmS (s′), r),[

ψ(JmS (ψ(s, r)s′), JmR (φ(s, r)))
]
Jm+1
S (s) = ψ(JmS (s′), JmR (r)),

}
if m = 2`+ 1,

(3.22)

for any s, s′ ∈ S, and any r, r′ ∈ R.

Proof. Assuming the conditions (3.22) are met, we see at once that

(r, s)J(r, s) =
[
(r, δ)(δ, s)

][
(δ, JS(s))(JR(r), δ)

]
=[

(r, δ)(δ, s)
]
(φ(JS(s), JR(r)), ψ(JS(s), JR(r))) =

(r, δ)
[
(δ, s)(φ(JS(s), JR(r)), ψ(JS(s), JR(r)))

]
=

(r, δ)
(
φ(s, φ(JS(s), JR(r))), ψ(s, φ(JS(s), JR(r)))ψ(JS(s), JR(r))

)
=

(r, δ)(JR(r), δ) = (rJR(r), δ) = (δ, δ),
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where on the �fth equality we used (3.15), and (3.18). Next, in view of (3.17) and
(3.16), we have(

(δ, s)(r, δ)
)
(JR(r), JS(s)) = (φ(s, r), ψ(s, r))(JR(r), JS(s)) =(

φ(s, r)φ(ψ(s, r), JR(r)), ψ(ψ(s, r), JR(r))JS(s)
)

= (δ, δ),

which implies that
J
(
(δ, s)(r, δ)

)
= (JR(r), JS(s)).

On the other hand, in view of (3.17) we have

φ(s, r)JR(φ(s, r)) = δ = φ(s, r)φ(ψ(s, r), JR(r)),

and hence we conclude

JR(φ(s, r)) = φ(ψ(s, r), JR(r)). (3.23)

Let us note further that (3.23), together with (3.16), implies

JmR (φ(s, r)) =

{
φ(s, JmR (r)) if m = 2`,

φ(ψ(s, Jm−1
R (r)), JmR (r)) if m = 2`+ 1.

Accordingly, in the case m = 2`,

Jm
(
(r, s)(r′, s′)

)
Jm+1(r, s) = Jm(rφ(s, r′), ψ(s, r′)s′)Jm+1(r, s) =[

(JmR (rφ(s, r′)), δ)(δ, JmS (ψ(s, r′)s′))
][

(δ, Jm+1
S (s))(Jm+1

R (r), δ)
]

=

(JmR (rφ(s, r′)), δ)
{

(δ, JmS (ψ(s, r′)s′))
[
(δ, Jm+1

S (s))(Jm+1
R (r), δ)

]}
=

(JmR (rφ(s, r′)), δ)
[
((δ, JmS (ψ(s, r′)s′)))(φ(Jm+1

S (s), Jm+1
R (r)), ψ(Jm+1

S (s), Jm+1
R (r)))

]
= (JmR (rφ(s, r′)), δ)

(
φ(JmS (ψ(s, r′)s′), φ(Jm+1

S (s), Jm+1
R (r))),

ψ(JmS (ψ(s, r′)s′), φ(Jm+1
S (s), Jm+1

R (r)))ψ(Jm+1
S (s), Jm+1

R (r))
)

=(
JmR (rφ(s, r′))φ(JmS (ψ(s, r′)s′), φ(Jm+1

S (s), Jm+1
R (r))),

ψ(JmS (ψ(s, r′)s′), φ(Jm+1
S (s), Jm+1

R (r)))ψ(Jm+1
S (s), Jm+1

R (r))
)

=(
JmR (r′), JmS (s′)

)
= Jm(r′, s′), (3.24)

where; on the seventh equality we used (3.22). In the case m = 2`+ 1,

Jm
(
(r, s)(r′, s′)

)
Jm+1(r, s) = Jm(rφ(s, r′), ψ(s, r′)s′)Jm+1(r, s) =[

(δ, JmS (ψ(s, r′)s′))(JmR (rφ(s, r′)), δ)
][

(Jm+1
R (r), δ)(δ, Jm+1

S (s))
]

=

(φ(JmS (ψ(s,r′)s′),JmR(rφ(s,r′))), ψ(JmS (ψ(s,r′)s′),JmR(rφ(s,r′))))
[
(Jm+1
R (r),δ)(δ, Jm+1

S (s))
]
=[

(φ(JmS (ψ(s,r′)s′),JmR(rφ(s,r′))),ψ(JmS (ψ(s,r′)s′),JmR(rφ(s,r′))))(Jm+1
R (r),δ)

]
(δ,Jm+1

S (s))=
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[(
φ(JmS (ψ(s, r′)s′), JmR (rφ(s, r′)))φ(ψ(JmS (ψ(s, r′)s′), JmR (rφ(s, r′))), Jm+1

R (r)),

ψ(ψ(JmS (ψ(s, r′)s′), JmR (rφ(s, r′))), Jm+1
R (r))

)]
(δ, Jm+1

S (s))=(
φ(JmS (ψ(s, r′)s′), JmR (φ(s, r′))), ψ(JmS (ψ(s, r′)s′), JmR (φ(s, r′)))

)
(δ, Jm+1

S (s)) =(
φ(JmS (ψ(s, r′)s′), JmR (φ(s, r′))), ψ(JmS (ψ(s, r′)s′), JmR (φ(s, r′)))Jm+1

S (s)
)

=(
φ(JmS (ψ(s,r′)s′),[φ(ψ(s,Jm−1

R (r′)),JmR(r′))]), ψ(JmS (ψ(s,r′)s′),JmR(φ(s,r′)))Jm+1
S (s)

)
=(

φ(JmS (s′),JmR(r′)), ψ(JmS (s′),JmR(r′))
)

=(δ,JmS (s′))(JmR(r′), δ) = Jm(r′, s′) (3.25)

where; in the sixth equation we used (3.17) and the second identity of (3.16), on
the eighth equation we used (3.23), and �nally on the ninth equation we used
(both identities of) (3.22), in addition to Remark 2.4 and (3.19).

Let, conversely, R ./ S be an m-inverse loop with the multiplication (3.20)
and the permutation (3.21).

In the case m = 2`, the seventh equation of (3.24) holds, and we have

JmR (rφ(s, r′))φ(JmS (ψ(s, r′)s′), φ(Jm+1
S (s), Jm+1

R (r))) = JmR (r′)

together with

ψ(JmS (ψ(s, r′)s′), φ(Jm+1
S (s), Jm+1

R (r)))ψ(Jm+1
S (s), Jm+1

R (r)) = JmS (s′)

for any r, r′ ∈ R, and any s, s′ ∈ S. In particular, for r = δ, the former equality
yields

JmR (ϕ(s, r′)) = JmR (r′),

hence ϕ(s, r′) = r′, for any r′ ∈ R, and any s ∈ S. For, on the other hand, s = δ,
the latter results in

ψ(JmS (s), Jm+1
R (r)) = JmS (s).

Once again, in view of the fact that JR : R → R and JS : S → S are both
permutations, we deduce that ψ(s, r) = s for any r ∈ R and any s ∈ S.

In the case m = 2`+ 1, however, the ninth equation of (3.25) holds, that is,

φ(JmS (ψ(s, r′)s′), [φ(ψ(s, Jm−1
R (r′)), JmR (r′))]) = φ(JmS (s′), JmR (r′)),

and

ψ(JmS (ψ(s, r′)s′), JmR (φ(s, r′)))Jm+1
S (s) = ψ(JmS (s), JmR (r′)).

The latter is nothing but the second identity of (3.22), whereas the �rst identity
of (3.22) is obtained by taking r′ = J−mR (r) in the former.
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De�nition 3.10. Assume that (R, JR, δR) is an m1-inverse property loop such
that JR(δR) = δR, and that Jh1

R ∈ Aut(R), and (S, JS , δS) be an m2-inverse

property loop such that JS(δS) = δS , and that Jh2

S ∈ Aut(S). Let also m ∈ Z be
a solution of

m ≡ m1 (modh1),
m ≡ m2 (modh2).

Then, (R,S) is called a matched pair of m-inverse property loops if (R, JR, δR) and
(S, JS , δS) satisfy the conditions (3.14)− (3.18).

Remark 3.11. We see that if (R,S) is a matched pair of m-inverse property
quasigroups, then R ./ S := R × S is an m-inverse property quasigroup if and
only if (3.22) holds. From the point of view of the generalization of groups, this
is a manifestation of the fact that any group may be considered as an odd-inverse
property quasigroup, while only commuttative groups fall into the category of even-
inverse property quasigroups. Furthermore, we already know from the theory of
matched pairs (of groups) that the matched pair group is commutative if and only
if the mutual actions are trivial.

The following is an analogue of [41, Prop. 6.2.15].

Proposition 3.12. Let (R, δ) be an m1-inverse loop with the permutation JR :
R → R so that JR(δ) = δ, and that Jh1

R ∈ Aut(R), and (S, δ) is an m2-inverse

loop with JS : S → S such that JS(δ) = δ, and that Jh2

S ∈ Aut(S). Let also m ∈ Z
be a solution of

m ≡ m1 (modh1),
m ≡ m2 (modh2).

and (Q, δ) be an m-inverse loop so that (R, δ) is an m1-inverse subloop of (Q, δ),
and (S, δ) is an m2-inverse subloop of (Q, δ);

(R, δ) ↪−→ (Q, δ)←−↩ (S, δ),

that the multiplication in Q yields an isomorphism

Θ : R× S → Q, (r, s) 7→ rs, (3.26)

under which the multiplications are compatible as

(rs)q = r(sq), q(rs) = (qr)s, (3.27)

and the inversions as

JQ(rs) = JS(s)JR(r), JQ(sr) = JR(r)JS(s) (3.28)

for any r ∈ R, any s ∈ S, and any q ∈ Q. Then, (R,S) is a matched pair of

m-inverse loops, and Q ∼= R ./ S as quasigroups.
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Proof. Let us begin with the mappings

φ : S ×R→ R, ψ : S ×R→ S (3.29)

given by
φ(s, r) := (π1 ◦Θ−1)(sr), ψ(s, r) := (π2 ◦Θ−1)(sr),

where π1 : R× S → R, π2 : R× S → S are the projections onto the �rst and the
second component respectively. It then follows at once that

sr = Θ
(
φ(s, r), ψ(s, r)

)
= Θ((δ, s)(r, δ)), (3.30)

that is, the isomorphism (3.26) respect the multiplications in Q and R ./ S.

It remains to show that the mappings (3.29) have the properties (3.14)−(3.18).

The �rst one, (3.14), follows from the consideration of r = δ and s = δ in
(3.30), respectively.

Next, in view of (3.28) the property qJQ(q) = δ implies (rs)JQ(rs) = δ for
any r ∈ R and any s ∈ S, which in turn implies (3.15) and (3.18).

On the other hand, (3.27), and JmQ (qq′)Jm+1
Q (q) = JmQ (q′) for any q, q′ ∈ Q

yields, along the lines of (3.25),[(
φ(JmS (ψ(s, r′)s′), JmR (rφ(s, r′)))φ(ψ(JmS (ψ(s, r′)s′), JmR (rφ(s, r′))), Jm+1

R (r)),

ψ(ψ(JmS (ψ(s, r′)s′), JmR (rφ(s, r′))), Jm+1
R (r))

)]
(δ, Jm+1

S (s)) =(
φ(JmS (s′), JmR (r′)), ψ(JmS (s′), JmR (r′))

)
.

In particular, for s = δ then we see that[(
φ(JmS (s′),JmR(rr′))φ(ψ(JmS (s′),JmR(rr′)),Jm+1

R (r)), ψ(ψ(JmS (s′),JmR(rr′)),Jm+1
R (r))

)]
=
(
φ(JmS (s′), JmR (r′)), ψ(JmS (s′), JmR (r′))

)
,

which is equivalent to (3.16) and (3.17).

Finally, having obtained (3.14)− (3.18), the condition (3.22) follows from the
ninth equality of (3.25) in the odd case, while it is a result of the seventh equality
of (3.24) in the even case.

Let us illustrate with an example.

Example 3.13. Given a matched pair of groups (G,H), and two abelian groups
V and W , let

Λ:(G./H)×(G./H)→ V×W, Λ
(

(x, y), (x′, y′)
)

:=
(
ϕ(x, x′), χ(y, y′)

)
, (3.31)
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for such ϕ : G×G→ V and χ : H ×H →W that

ϕ(x, x′) = ϕ(x, y . x′) (3.32)

and

χ(y, y′) = ϕ(y / x, y′) (3.33)

for any x, x′ ∈ G, and any y, y′ ∈ H. Then let (G ./ H) ×Λ (V × W ) be the
(2` + 1)-invertible loop of Example 2.5. As such, (3.31) satis�es (2.3), and we
obtain ϕ(1, x) = 0 = ϕ(x, 1), χ(1, y) = 0 = χ(y, 1) for any (x, y) ∈ G×H.

Similarly, imposing (2.11) onto (3.31),

Λ
(

(x, y), (x, y)−1
)

= Λ
(

(x, y), (y−1 . x−1, y−1 / x−1)
)

= 0

we obtain ϕ(x, y−1 . x−1) = 0, χ(y, y−1 / x−1) = 0 for any (x, y) ∈ G×H.

In particular, for y = 1 ∈ H we obtain ϕ(x, x−1) = 0, for any x ∈ G, and
setting x = 1 ∈ G we arrive at χ(y, y−1) = 0, for any y ∈ H.

Finally, since (3.31) is bound to satisfy (2.12), that is,

Λ
(

(x′, y′)−1(x, y)−1, (x, y)
)

= Λ
(

(x, y), (x′, y′)
)
,

for any (x, y), (x′, y′) ∈ G×H, or equivalently

Λ
(

(x′, y′)(x, y), (x, y)−1
)

= Λ
(

(x, y)−1, (x′, y′)−1
)
,

we have

Λ
(

(x′(y′ . x), (y′ / x)y), (y−1 . x−1, y−1 / x−1)
)

=

Λ
(

(y−1 . x−1, y−1 / x−1), (y′−1 . x′−1, y′−1 / x′−1)
)
,

that is,

ϕ(x′(y′ . x), y−1 . x−1) = ϕ(y−1 . x−1, y′−1 . x′−1)

and

χ((y′ / x)y, y−1 / x−1) = χ(y−1 / x−1, y′−1 / x′−1)

for any x, x′ ∈ G, and any y, y′ ∈ H. Now y = y′ = 1 ∈ H (resp. x = x′ = 1 ∈ G)
leads to ϕ(x′x, x−1) = ϕ(x−1, x′−1) (resp. χ(y′y, y−1) = χ(y−1, y′−1)). As a
result, we have the (2`1 + 1)-invertible loop G ×ϕ V , and the (2`2 + 1)-invertible
loop H ×χW , for any `1, `2 ∈ Z, in such a way that

G×ϕ V → (G ./ H)×Λ (V ×W ), (x, v) 7→
(

(x, 1), (v, 0)
)
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and
H ×χW → (G ./ H)×Λ (V ×W ), (y, w) 7→

(
(1, y), (0, w)

)
are quasigroup homomorphisms.

Moreover, the multiplication in (G ./ H)×Λ (V ×W ) yields the isomorphism

Θ : (G×ϕ V )× (H ×χW )→ (G ./ H)×Λ (V ×W ),(
(x, v), (y, w)

)
7→
(

(x, y), (v, w)
)
.

Let us �nally show that (3.27) and (3.28) are satis�ed. As for the former,
we simply observe for any (x, v) ∈ G ×ϕ V , any (y, w) ∈ H ×χ W , and any
((x′, y′), (v′, w′)) ∈ (G ./ H)×Λ (V ×W ),[

(x, v)(y, w)
](

(x′, y′), (v′, w′)
)

=[(
(x, 1), (v, 0)

)(
(1, y), (0, w)

)](
(x′, y′), (v′, w′)

)
=(

(x, y), (v, w)
)(

(x′, y′), (v′, w′)
)

=(
(x(y . x′), (y / x′)y′), (ϕ(x, x′) + v + v′, χ(y, y′) + w + w′)

)
=(

(x(y . x′), (y / x′)y′), (ϕ(x, y . x′) + v + v′, χ(y, y′) + w + w′)
)

=(
(x, 1), (v, 0)

)(
(y . x′, (y . x′)y′), (v′, χ(y, y′) + w + w′)

)
=(

(x, 1), (v, 0)
)[(

(1, y), (0, w)
)(

(x′, y′), (v′, w′)
)]

=

(x, v)
[
(y, w)

(
(x′, y′), (v′, w′)

)]
,

where we used (3.32) in the fourth equality. Similarly, (3.33) yields(
(x, y), (v, w)

)[
(x′, v′)(y′, w′)

]
=
[(

(x, y), (v, w)
)

(x′, v′)
]
(y′, w′).

Accordingly, (3.27) holds. As for (3.28), we do note that

J
(

(x, v)(y, w)
)

= J
(

(x, y), (v, w)
)

=
(

(x, y)−1, (−v,−w)
)

=(
(y−1 . x−1, y−1 / x−1), (v, w)

)
=
(

(1, y−1), (0,−w)
)(

(x−1, 1), (−v, 0)
)

=

(y−1,−w)(x−1,−v) = JH×χW (y, w)JG×ϕV (x, v),

and that

J
(

(y, w)(x, v)
)

= J
(

(y . x, y / x), (v, w)
)

=
(

(y . x, y / x)−1, (−v,−w)
)

=(
(x−1, y−1), (−v,−w)

)
=
(

(x−1, 1), (−v, 0)
)(

(1, y−1), (0,−w)
)

=

(x−1,−v)(y−1,−w) = JG×ϕV (x, v)JH×χW (y, w).
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We may now say that the hypotheses of Proposition 3.12 hold with R := G×ϕ V ,
S := H×χW , Q := (G ./ H)×Λ(V ×W ), m := 2`+1, m1 := 2`1+1, m2 := 2`2+1,
for any `, `1, `2 ∈ Z, and h1 = 2 = h2, that (G ×ϕ V,H ×χ W ) is a matched pair
of (2`+ 1)-invertible loops, and that

(G ./ H)×Λ (V ×W ) ∼= (G×ϕ V ) ./ (H ×χW ).

Indeed, the mutual actions

φ : (H ×χW )× (G×ϕ V )→ (G×ϕ V ),
(

(y, w), (x, v)
)
7→ (y . x, v)

and

ψ : (H ×χW )× (G×ϕ V )→ (H ×χW ),
(

(y, w), (x, v)
)
7→ (y / x,w)

which �t (in view of (3.32) and (3.33)) into(
(x, v); (y, w)

)(
(x′, v′); (y′, w′)

)
=
(

(x, y), (v, w)
)(

(x′, y′), (v′, w′)
)

=(
(x, v)φ

(
(y, w), (x′, v′)

)
;ψ
(

(y, w), (x′, v′)
)

(y′, w′)
)

satisfy the compatibilities (3.14) − (3.18), as well as (3.22), merely from the
matched pair compatibilities for groups.

4. Linearizations

Following the terminology and the point of view of [34, 35], we shall consider the
Hopf analogues of the m-inverse property loops, under the name m-invertible Hopf

quasigroup.

4.1. m-invertible Hopf quasigroups

Along the lines of [35, Def. 4.1], see also [34, Def. 2.1], we now introduce what we
call an m-inverse property Hopf quasigroup.

De�nition 4.1. Let H be a k-linear space equipped with the linear maps

µ : H⊗H → H, η : k → H, ∆ : H → H⊗H, ε : H → k, and S : H → H.

Then, the six-tuple (H, µ, η,∆, ε, S) is called an m-inverse property Hopf quasi-

group if

(i) (H, µ, η) is a unital, not-necessarily associative algebra,
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(ii) (H,∆, ε) is a coassociative and counital coalgebra,

(iii) ∆ : H → H⊗H and ε : H → k are multiplicative,

(iv) S : H → H is the unique coalgebra anti-automorphism satisfying

h
<1>

S(h
<2>

) = ε(h)δ = S(h
<1>

)h
<2>

, (4.1)

so that
Sm(h

<2>
g)Sm+1(h

<1>
) = ε(h)Sm(g) (4.2)

holds for any h, g ∈ H.
Example 4.2. Let (Q, δ, J) be an m-inverse property loop. Then the linear space
kQ is a m-inverse property Hopf quasigroup via

(i) the multiplication µ : kQ ⊗ kQ → kQ, µ(q, q′) := qq′, de�ned as a linear
extension of the multiplication on Q, the unit η : k → kQ, η(α) := αδ,

(ii) the comultiplication ∆ : kQ→ kQ⊗kQ, ∆(q) := q⊗q as the linear extension
of the diagonal map, the counit ε : kQ→ k, ε(q) = 1,

(iii) and the antipode S : kQ→ kQ, S(q) := J(q).

The following adaptation of [33, Rk. 2.2] will be instrumental in the construc-
tion of the products of Hopf quasigroups.

Remark 4.3. Let (H, µ, η,∆, ε, S) be anm-inverse property Hopf quasigroup such
that Sr ∈ Aut(H), i.e. Sr(hg) = Sr(h)Sr(g), and ∆(Sr(h)) = Sr(h

<1>
)⊗Sr(h

<2>
),

for any h ∈ H. Then, (H, µ, η,∆, ε, S) be an (m + ur)-inverse property Hopf
quasigroup for any u ∈ Z.

Indeed,

Sm+ur(h<2>g)Sm+1+ur(h<1>) = Sm(Sur(h<2>)Sur(g))Sm+1(Sur(h<1>)) =

Sm(Sur(h)
<2>

Sur(g))Sm+1(Sur(h)
<1>

) = Sm(Sur(g)) = Sm+ur(g).

4.2. Matched pairs of m-inverse property Hopf quasigroups

For convenience, let us begin with the tensor product Hopf quasigroups. More
precisely, the following result is the Hopf counterpart of [33, Thm. 5.1], that is,
Theorem 3.1 above.

Theorem 4.4. Let (H1, µ1, η1,∆1, ε1, S1) be an m1-inverse Hopf quasigroup so

that Sh1
1 ∈ Aut(H1), and (H2, µ2, η2,∆2, ε2, S2) be an m2-inverse Hopf quasigroup

such that Sh2
2 ∈ Aut(H2). Then H1 ⊗ H2 is an m-inverse quasigroup with the

tensor product structure maps, for any m ∈ Z that satis�es

m ≡ m1 (modh1),

m ≡ m2 (modh2).
(4.3)
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Proof. It follows at once that

(i) (H1 ⊗H2, µ⊗, η⊗) is a (not necessarily associative) unital algebra via

µ⊗ := (µ1 ⊗ µ2) ◦ (Id⊗τ ⊗ Id) : (H1 ⊗H2)⊗ (H1 ⊗H2)→ H1 ⊗H2,

µ⊗

(
(h⊗ h′)⊗ (g ⊗ g′)

)
:= µ1(h⊗ g)⊗ µ2(h′ ⊗ g′)

and η⊗ := η1 ⊗ η2 : k → H1 ⊗H2, η⊗(α) := αη1(1)⊗ η2(1),

(ii) (H1⊗H2, (Id⊗τ⊗Id)◦(∆1⊗∆2), ε1⊗ε2) is a coassociative counital coalgebra,
such that

(iii) the coalgebra structure maps

∆⊗ := (Id⊗τ ⊗ Id) ◦ (∆1 ⊗∆2) : H1 ⊗H2 → (H1 ⊗H2)⊗ (H1 ⊗H2),

∆⊗(h⊗ h′) = (h
<1>
⊗ h′

<1>
)⊗ (h

<2>
⊗ h′

<2>
)

and ε⊗ := ε1⊗ε2 : H1⊗H2 → k, ε⊗(h⊗h′) = ε1(h)ε2(h′) are multiplicative.

(iv) Finally, in view of Remark 4.3 above, for any solution m ∈ Z of (4.3)

(S1 ⊗ S2)m((h
<2>
⊗ h′

<2>
)(g ⊗ g′))(S1 ⊗ S2)m+1(h

<1>
⊗ h′

<1>
) =

Sm1 (h<2>g)Sm+1
1 (h<1>)⊗ Sm2 (h′<2>g

′)Sm+1
2 (h′<1>) =

Sm1 (g)⊗ Sm2 (g′) = (S1 ⊗ S2)m(g ⊗ g′).

As for the matched pair construction, Proposition 3.9 upgrades to the following
proposition. However, we shall �rst need a technical lemma.

Lemma 4.5. Let (H1, µ1, η1,∆1, ε1, S1) be an m1-inverse Hopf quasigroup, and

(H2, µ2, η2,∆2, ε2, S2) be an m2-inverse Hopf quasigroup. Moreover, let there be

two maps φ : H2 ⊗H1 → H1 and ψ : H2 ⊗H1 → H2 satisfying

φ(S(h′<1>), φ(h′<2> , h)) = ε2(h′)h = φ(h′<1> , φ(S(h′<2>), h)), (4.4)

ψ(ψ(h′, S(h<1>)), h<2>) = ε1(h)h′ = ψ(ψ(h′, h<1>), S(h<2>)) (4.5)

∆1(φ(h′, h)) = φ(h′<1> , h<1>)⊗ φ(h′<2> , h<2>), ε1(φ(h′, h)) = ε1(h)ε2(h′),
(4.6)

∆2(ψ(h′, h)) = ψ(h′
<1>

, h
<1>

)⊗ ψ(h′
<2>

, h
<2>

), ε2(ψ(h′, h)) = ε1(h)ε2(h′),
(4.7)

φ(h′
<1>

, S(h
<2>

))
[
φ(ψ(h′

<2>
, S(h

<1>
)), h

<3>
)
]

= ε1(h)ε2(h′) =

φ(h′
<1>

, h
<1>

)
[
φ(ψ(h′

<2>
, h

<2>
), S(h

<3>
))
]
, (4.8)[

ψ(S(h′
<1>

), φ(h′
<2>

, h
<1>

))
]
ψ(h′

<3>
, h

<2>
) = ε1(h)ε2(h′) = (4.9)[

ψ(h′
<1>

, φ(S(h′
<3>

), h
<1>

))
]
ψ(S(h′

<2>
), h

<2>
),

ψ(h′
<1>

, h
<1>

)⊗ φ(h′
<2>

, h
<2>

) = ψ(h′
<2>

, h
<2>

)⊗ φ(h′
<1>

, h
<1>

) (4.10)
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for any h, g ∈ H1, any h
′, g′ ∈ H2. Then the mapping

S./ : H1 ⊗H2 → H1 ⊗H2,

S./(h⊗ h′) := (δ1 ⊗ S2(h′))(S1(h)⊗ δ2) =(
φ
(
S2(h′<2>), S1(h<2>)

)
⊗ ψ

(
S2(h′<1>), S1(h<1>)

))
,

(4.11)

satis�es

S./((δ1, h
′)(h, δ2)) = (S1(h), S2(h′))

for any h ∈ H1, and any h′ ∈ H2.

Proof. For any h ∈ H1, and any h′ ∈ H2 we have

S./((δ1, h
′)(h, δ2)) = S./(φ(h′<1> , h<1>), ψ(h′<2> , h<2>)) =

S./(φ(h′<2>,h<2>), ψ(h′<1>,h<1>))=
(
δ1, S2

(
ψ(h′<1>,h<1>)

))(
S1

(
φ(h′<2> , h<2>)

)
, δ2

)
=(

φ
(
S2(ψ(h′<1> , h<1>))<1> , S1(φ(h′<2> , h<2>))<1>

)
,

ψ
(
S2(ψ(h′<1> , h<1>))<2> , S1(φ(h′<2> , h<2>))<2>

))
=(

φ
(
S2(ψ(h′<1> , h<1>))<2> , S1(φ(h′<2> , h<2>))<2>

)
,

ψ
(
S2(ψ(h′<1> , h<1>))<1> , S1(φ(h′<2> , h<2>))<1>

))
=(

φ
(
S2(ψ(h′<1><1> , h<1><1>)), S1(φ(h′<2><1> , h<2><1>))

)
,

ψ
(
S2(ψ(h′<1><2> , h<1><2>)), S1(φ(h′<2><2> , h<2><2>))

))
=(

φ
(
S2(ψ(h′<1> , h<1>)), S1(φ(h′<3> , h<3>))

)
,

ψ
(
S2(ψ(h′<2> , h<2>)), S1(φ(h′<4> , h<4>))

))
=(

φ
(
S2(ψ(h′<1> , h<1>)), S1(φ(h′<2><2> , h<2><2>))

)
,

ψ
(
S2(ψ(h′<2><1> , h<2><1>)), S1(φ(h′<3> , h<3>))

))
=(

φ
(
S2(ψ(h′<1> , h<1>)), S1(φ(h′<2><1> , h<2><1>))

)
,

ψ
(
S2(ψ(h′<2><2> , h<2><2>)), S1(φ(h′<3> , h<3>))

))
=(

φ
(
S2(ψ(h′<1> , h<1>)), S1(φ(h′<2> , h<2>))

)
,

ψ
(
S2(ψ(h′<3> , h<3>)), S1(φ(h′<4> , h<4>))

))
=
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(
φ
(
S2(ψ(h′

<1>
, h

<1>
)), [φ(ψ(h′

<2>
, h

<2><1>
), S1(h

<2><2>
))]
)
,

ψ
(
S2(ψ(h′

<3>
, h

<3>
)), S1(φ(h′

<4>
, h

<4>
))
))

=(
S1(h

<1>
), ψ
(
S2(ψ(h′

<1>
, h

<2>
)), S1(φ(h′

<2>
, h

<2>
))
))

=(
S1(h<1>

),ψ
(
ψ(S2(h′

<1><1>
),φ(h′

<1><2>
, h

<2>
)), S1(φ(h′

<2>
, h

<2>
))
))

=
(
S1(h),S2(h′)

)
,

where on the second, �fth, and ninth equations we used (4.10), on the sixth equa-
tion we used (4.6) and (4.7), on the eleventh equation we used the fact that

S1(φ(h′, h)) = φ(ψ(h′, h<1>), S1(h<2>)),

which follows from (4.8), and on the twelfth equation we used (4.4). Finally, on
the thirteenth equation we used

S2(ψ(h′, h)) = ψ(S2(h′
<1>

), φ(h′
<2>

, h)),

which is a consequence of (4.9), and on the fourteenth we used (4.5).

We are now ready for the main result.

Proposition 4.6. Let (H1, µ1, η1,∆1, ε1, S1) be an m1-inverse Hopf quasigroups

such that S1(δ1) = δ1, and that Sh1
1 ∈ Aut(H1), and (H2, µ2, η2,∆2, ε2, S2) be

an m2-inverse Hopf quasigroup such that S2(δ2) = δ2, and that Sh2
2 ∈ Aut(H2).

Furthermore, let there be two maps φ : H2 ⊗ H1 → H1 and ψ : H2 ⊗ H1 → H2

satisfying

φ(δ2, h) = h, φ(h′, δ1) = δ1, ψ(δ2, h) = δ2, ψ(h′, δ1) = h′, (4.12)

φ(S(h′<1>), φ(h′<2> , h)) = ε2(h′)h = φ(h′<1> , φ(S(h′<2>), h)), (4.13)

ψ(ψ(h′, Sm1 (h<2>g)), Sm+1
1 (h<1>)) = ψ(h′, Sm1 (g)), (4.14)

ψ(ψ(h′, S(h
<1>

)), h
<2>

) = ε1(h)h′ = ψ(ψ(h′, h
<1>

), S(h
<2>

)) (4.15)

∆1(φ(h′, h))=φ(h′
<1>

, h
<1>

)⊗ φ(h′
<2>

, h
<2>

), ε1(φ(h′, h))=ε1(h)ε2(h′), (4.16)

∆2(ψ(h′, h))=ψ(h′
<1>

, h
<1>

)⊗ ψ(h′
<2>

, h
<2>

), ε2(ψ(h′, h))=ε1(h)ε2(h′), (4.17)

φ(h′, Sm1 (g)) ={
φ(h′

<1>
, Sm1 (h

<3>
g
<2>

))φ(ψ(h′
<2>

, Sm1 (h
<2>

g
<1>

)), Sm+1
1 (h

<1>
)) if m = 2`+ 1,

φ(h′
<1>

, Sm1 (h
<2>

g
<1>

))φ(ψ(h′
<2>

, Sm1 (h
<3>

g
<2>

)), Sm+1
1 (h

<1>
)) if m = 2`,

(4.18)

φ(h′
<1>

, S(h
<2>

))
[
φ(ψ(h′

<2>
, S(h

<1>
)), h

<3>
)
]

= ε1(h)ε2(h′) =

φ(h′
<1>

, h
<1>

)
[
φ(ψ(h′

<2>
, h

<2>
), S(h

<3>
))
]
, (4.19)[

ψ(S(h′
<1>

), φ(h′
<2>

, h
<1>

))
]
ψ(h′

<3>
, h

<2>
) = ε1(h)ε2(h′) =[

ψ(h′
<1>

, φ(S(h′
<3>

), h
<1>

))
]
ψ(S(h′

<2>
), h

<2>
), (4.20)
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ψ(h′<1> , h<1>)⊗ φ(h′<2> , h<2>) = ψ(h′<2> , h<2>)⊗ φ(h′<1> , h<1>) (4.21)

for any h, g ∈ H1, any h
′, g′ ∈ H2, and any m ∈ Z that satis�es

m ≡ m1 (modh1),

m ≡ m2 (modh2).
(4.22)

Then
(
H1 ./ H2 := H1 ⊗H2, µ./, η⊗,∆⊗, ε⊗, S./

)
is an m-invertible Hopf quasi-

group with the multiplication

µ./((h⊗h′)⊗(g⊗g′))=:(h⊗h′)(g⊗g′) :=
(
hφ(h′

<1>
, g
<1>

), ψ(h′
<2>

, g
<2>

)g′
)
, (4.23)

and the antipode

S./ : H1 ./ H2 → H1 ./ H2,

S./(h⊗ h′) := (δ1 ⊗ S2(h′))(S1(h)⊗ δ2) =(
φ
(
S2(h′

<2>
), S1(h

<2>
)
)
⊗ ψ

(
S2(h′

<1>
), S1(h

<1>
)
))
,

(4.24)

if and only if

φ(h′, h) = h,

ψ(h′, h) = h′,

}
if m = 2`,

φ(Sm2 (ψ(h′
<2>

, g
<2>

)g′), Sm1 (φ(h′
<1>

, g
<1>

))) =

ε2(h′)φ(Sm2 (g′), Sm1 (g)),

ψ(Sm2 (ψ(h′
<3>

, g
<2>

)g′), Sm1 (φ(h′
<2>

, g
<1>

)))Sm+1
2 (h′

<1>
)=

ε2(h′)ψ(Sm2 (g′), Sm1 (g)),

 if m = 2`+ 1,

(4.25)

for any h, g ∈ H1, and any h′, g′ ∈ H2.

Proof. Let us �rst assume that the conditions (4.25) are met. We shall begin with
the observation that

(h
<1>

, h′
<1>

)S./(h<2>
, h′

<2>
)=
[
(h
<1>

, δ2)(δ1, h
′
<1>

)
][

(δ1, S2(h′
<2>

))(S1(h
<2>

), δ2)
]
=[

(h<1> , δ2)(δ1, h
′
<1>)

](
φ(S2(h′<3>), S1(h<3>)), ψ(S2(h′<2>), S1(h<2>))

)
=

(h<1> , δ2)
[
(δ1, h

′
<1>)

(
φ(S2(h′<3>), S1(h<3>)), ψ(S2(h′<2>), S1(h<2>))

)]
=

(h<1> , δ2)
(
φ(h′<1><1> , φ(S2(h′<3>), S1(h<3>))<1>),

ψ(h′<1><2> , φ(S2(h′<3>), S1(h<3>))<2>)ψ(S2(h′<2>), S1(h<2>))
)

=

(h<1> , δ2)
(
φ(h′<1> , φ(S2(h′<5>), S1(h<4>))),

ψ(h′<2> , φ(S2(h′<4>), S1(h<3>)))ψ(S2(h′<3>), S1(h<2>))
)

=
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(h
<1>

, δ2)
(
φ(h′

<1>
, φ(S2(h′

<4>
), S1(h

<3>
))), ψ(h′

<2>
S2(h′

<3>
), S1(h

<2>
))
)

=

(h
<1>

, δ2)
(
φ(h′

<1>
, φ(S2(h′

<2>
), S1(h

<2>
))), δ2

)
=

(h
<1>

, δ2)(S1(h
<2>

), ε2(h′)δ2) = (h
<1>

S1(h
<2>

), δ2) = (ε1(h)δ1, ε2(h′)δ2),

where on the �fth equality we used (4.16) and (4.17), on the sixth equality (4.20),
and on the eighth equality we use (4.13). Similarly,

S./(h<1>
, h′

<1>
)(h

<2>
, h′

<2>
)=
[
(δ1, S2(h′

<1>
))(S1(h

<1>
), δ2)

][
(h
<2>

,δ2)(δ1, h
′
<2>

)
]
=(

φ(S2(h′<2>), S1(h<2>)), ψ(S2(h′<1>), S1(h<1>))
)[

(h<3> , δ2)(δ1, h
′
<3>)

]
=[(

φ(S2(h′<2>), S1(h<2>)), ψ(S2(h′<1>), S1(h<1>))
)

(h<3> , δ2)
]
(δ1, h

′
<3>) =(

φ(S2(h′<2>), S1(h<2>))φ(ψ(S2(h′<1>), S1(h<1>))<1> , h<3><1>),

ψ(ψ(S2(h′<1>), S1(h<1>))<2> , h<3><2>)
)

(δ1, h
′
<3>) =(

φ(S2(h′<2>), S1(h<2>))φ(ψ(S2(h′<1><2>), S1(h<1><2>)), h<3><1>),

ψ(ψ(S2(h′<1><1>), S1(h<1><1>)), h<3><2>)
)

(δ1, h
′
<3>) =(

φ(S2(h′<3>), S1(h<3>))φ(ψ(S2(h′<2>), S1(h<2>)), h<4>),

ψ(ψ(S2(h′<1>), S1(h<1>)), h<5>)
)

(δ1, h
′
<4>) =(

φ
(
S2(h′<2>), S1(h<2>)h<3>

)
, ψ
(
ψ(S2(h′<1>), S1(h<1>)), h<4>

))
(δ1, h

′
<3>) =(

δ1, ψ
(
ψ(S2(h′<1>), S1(h<1>)), h<2>

))
(δ1, h

′
<2>)=

(
ε1(h)δ1, S2(h′<1>)

)
(δ1, h

′
<2>)=

(ε1(h)δ1, S2(h′
<1>

)h′
<2>

) = (ε1(h)δ1, ε2(h′)δ2),

using (4.19) on the seventh equality, and (4.15) on the tenth. Furthermore, (4.24)
is unique with the property (4.1). Indeed, if T : H1 ⊗ H2 → H1 ⊗ H2, say
T (h, h′) = (T1(h, h′), T2(h, h′)), is a coalgebra anti-automorphism so that

(h
<1>

, h′
<1>

)T (h
<2>

, h′
<2>

)=(ε1(h)δ1, ε2(h′)δ2)=T (h
<1>

, h′
<1>

)(h
<2>

, h′
<2>

), (4.26)

then on one hand (from the �rst equality of (4.26))

(ε1(h)δ1, ε2(h′)δ2) = (h
<1>

, h′
<1>

)T (h
<2>

, h′
<2>

) =

(h
<1>

, h′
<1>

)
(
T1(h

<2>
, h′

<2>
), T2(h

<2>
, h′

<2>
)
)

=(
h
<1>

φ
(
h′
<1><1>

,T1(h
<2>

, h′
<2>

)
<1>

)
, ψ
(
h′
<1><2>

,T1(h
<2>

, h′
<2>

)
<2>

)
T2(h

<2>
, h′

<2>
)
)
,

(4.27)

while on the other hand (this time from the second equality of (4.26)),
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(ε1(h)δ1, ε2(h′)δ2) = T (h<1> , h
′
<1>)(h<2> , h

′
<2>) =(

T1(h
<1>

, h′
<1>

), T2(h
<1>

, h′
<1>

)
)

(h
<2>

, h′
<2>

) =(
T1(h

<1>
, h′
<1>

)φ
(
T2(h

<1>
, h′
<1>

)
<1>

, h
<2><1>

)
, ψ
(
T2(h

<1>
, h′
<1>

)
<2>

, h
<2><2>

)
h′
<2>

)
.

(4.28)

Application of Id⊗ε2 : H1 ⊗H2 → H1 to (4.27) yields

h<1>φ
(
h′<1> , T1(h<2> , h

′
<2>)

)
= ε1(h)ε2(h′)δ1,

which, in turn, leads to

φ
(
h′<1> , T1(h, h′<2>)

)
= ε2(h′)S1(h).

But then,

T1(h, h′) = φ
(
S2(h′<1>), φ

(
h′<2> , T1(h, h′<3>)

))
= φ

(
S2(h′), S1(h)

)
. (4.29)

Similarly, applying ε1 ⊗ Id : H1 ⊗H2 → H2 to (4.28) we derive

T2(h, h′) = ψ
(
S2(h′), S1(h)

)
. (4.30)

Now, from (4.29) and (4.30) we conclude T = S./.

We next proceed to show that (4.24) satis�es (4.2). In case of m = 2`+ 1, we
have

Sm./
(
(h
<2>

, h′
<2>

)(g, g′)
)
Sm+1
./ (h

<1>
, h′

<1>
) =

Sm./
(
h<2>φ(h′<2> , g<1>), ψ(h′<3> , g<2>)g′

)
Sm+1
./ (h<1> , h

′
<1>) =[(

δ1, S
m
2 (ψ(h′<3> , g<2>)g′)

)(
Sm1 (h<2>φ(h′<2> , g<1>)), δ2

)](
Sm+1

1 (h<1>), Sm+1
2 (h′<1>)

)
=(

φ
(
Sm2 (ψ(h′<3> , g<2>)g′)<1> , S

m
1 (h<2>φ(h′<2> , g<1>))<1>

)
,

ψ
(
Sm2 (ψ(h′<3>, g<2>)g′)<2>,S

m
1 (h<2>φ(h′<2>, g<1>))<2>

))(
Sm+1

1 (h<1>), Sm+1
2 (h′<1>)

)
=(

φ
(
Sm2 (ψ(h′<3> , g<2>)g′)<1> , S

m
1 (h<2>φ(h′<2> , g<1>))<1>

)
×

φ
(
ψ
(
Sm2 (ψ(h′<3> , g<2>)g′)<2><1> , S

m
1 (h<3>φ(h′<2> , g<1>))<2><1> , S

m+1
1 (h<1>)<1>

))
,

ψ
(
ψ
(
Sm2 (ψ(h′<3>,g<2>)g′)<2><2>,S

m
1 (h<2>φ(h′<2>,g<1>))<2><2>,S

m+1
1 (h<1>)<2>

))
Sm+1

2 (h′<1>)
)

=
(
φ
(
Sm2 (ψ(h′<3> , g<2>)g′)<1> ,

[
Sm1 (h<2>φ(h′<2> , g<1>))<1>S

m+1
1 (h<1>)<1>

])
,

ψ
(
Sm2 (ψ(h′<3>, g<2>)g′)<2>,

[
Sm1 (h<2>φ(h′<2>, g<1>))<2>S

m+1
1 (h<1>)<2>

])
Sm+1

2 (h′<1>)
)

=(
ε1(h)φ

(
Sm2 (g′)<1> , S

m
1 (g)<1>

)
, ε2(h′)ψ

(
Sm2 (g′)<2> , S

m
1 (g)<2>

))
=

(δ1, ε2(h′)Sm2 (g′))(ε1(h)Sm1 (g), δ2) = ε1(h)ε2(h′)Sm./(g, g
′), (4.31)
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where on the second and the eighth equalities we used Lemma 4.5, on the �fth
equality we used (4.18) and (4.14), and on the sixth equality we used (4.25). If,
on the other hand, m = 2`

Sm./
(
(h
<2>

, h′
<2>

)(g, g′)
)
Sm+1
./ (h

<1>
, h′
<1>

) =

Sm./
(
h
<2>

φ(h′
<2>

, g
<1>

), ψ(h′
<3>

, g
<2>

)g′
)
Sm+1
./ (h

<1>
, h′
<1>

) =(
Sm1 (h

<2>
φ(h′

<2>
, g
<1>

)), Sm2 (ψ(h′
<3>

, g
<2>

)g′)
)[(

δ1, S
m+1
2 (h′

<1>
)
)(
Sm+1

1 (h
<1>

), δ2
)]

=(
Sm1 (h

<2>
φ(h′

<2>
, g
<1>

)), Sm2 (ψ(h′
<3>

, g
<2>

)g′)
)
×(

φ
(
Sm+1

2 (h′
<1>

)
<1>

, Sm+1
1 (h

<1>
)
<1>

)
, ψ
(
Sm+1

2 (h′
<1>

)
<2>

, Sm+1
1 (h

<1>
)
<2>

))
=(

Sm1 (h
<2>

φ(h′
<2>

, g
<1>

))×[
φ
(
Sm2 (ψ(h′

<3>
, g
<2>

)g′)
<1>

, φ
(
Sm+1

2 (h′
<1>

)
<1><1>

, Sm+1
1 (h

<1>
)
<1><1>

))]
,[

ψ
(
Sm2 (ψ(h′

<3>
, g
<2>

)g′)
<2>

, φ
(
Sm+1

2 (h′
<1>

)
<1><2>

, Sm+1
1 (h

<1>
)
<1><2>

))]
×

ψ
(
Sm+1

2 (h′
<1>

)
<2>

, Sm+1
1 (h

<1>
)
<2>

))
=(

ε1(h)Sm1 (g), ε2(h′)Sm2 (g′)
)
, (4.32)

where on the second equality we used Lemma 4.5, and on the �fth equality we
used (4.25).

Conversely, let H1 and H2 be subject to the hypothesis of the theorem. Then,
in the case of m = 2`+ 1, the application of Id⊗ε2 : H1 ⊗H2 → H1 to the sixth
equality(

φ
(
Sm2 (ψ(h′

<3>
, g
<2>

)g′)
<1>

, Sm1 (φ(h′
<2>

, g
<1>

))
<1>

)
,

ψ
(
Sm2 (ψ(h′

<3>
, g
<2>

)g′)
<2>

, Sm1 (φ(h′
<2>

, g
<1>

))
<2>

)
Sm+1

2 (h′
<1>

)
)

=(
φ
(
Sm2 (g′)

<1>
, Sm1 (g)

<1>

)
, ε2(h′)ψ

(
Sm2 (g′)

<2>
, Sm1 (g)

<2>

))
of (4.31) yields

φ
(
Sm2 (ψ(h′

<2>
, g
<2>

)g′), Sm1 (φ(h′
<1>

, g
<1>

))
)

= φ
(
Sm2 (g′), Sm1 (g)

)
ε2(h′)

for any g ∈ H1, and any g′, h′∈ H2.

Similarly, the application of ε1⊗ Id : H1⊗H2 → H2 on the other hand (to the
sixth equality of (4.31)) this times yields

ψ
(
Sm2 (ψ(h′<3> , g<2>)g′), Sm1 (φ(h′<2> , g<1>))

)
Sm+1

2 (h′<1>) = ε2(h′)ψ
(
Sm2 (g′), Sm1 (g)

)
.



Matched pairs of m-invertible Hopf quasigroups 131

Next, if m = 2`, then we apply Id⊗ε2 : H1 ⊗H2 → H1 to the �fth equality(
Sm1 (h<2>φ(h′<2> , g<1>))×[

φ
(
Sm2 (ψ(h′<3> , g<2>)g′)<1> , φ

(
Sm+1

2 (h′<1>)<1><1> , S
m+1
1 (h<1>)<1><1>

))]
,[

ψ
(
Sm2 (ψ(h′<3> , g<2>)g′)<2> , φ

(
Sm+1

2 (h′<1>)<1><2> , S
m+1
1 (h<1>)<1><2>

))]
×

ψ
(
Sm+1

2 (h′<1>)<2> , S
m+1
1 (h<1>)<2>

))
=
(
ε1(h)Sm1 (g), ε2(h′)Sm2 (g′)

)
of (4.32) to get

Sm1 (h
<2>

φ(h′
<2>

, g
<1>

))
[
φ
(
Sm2 (ψ(h′

<3>
, g
<2>

)g′), φ
(
Sm+1

2 (h′
<1>

), Sm+1
1 (h

<1>
)
))]

=

ε1(h)Sm1 (g)ε2(h′)ε2(g′)

for any g, h ∈ H1, and any g′, h′∈ H2. In particular, for h = 1 and g′ = 1 we
arrive at

Sm1 (φ(h′, g)) = ε2(h′)Sm1 (g),

from which we conclude that

φ(h′, g) = ε2(h′)g. (4.33)

Similarly, the application of ε1 ⊗ Id : H1 ⊗ H2 → H2 to the �fth equality of
(4.32) yields[

ψ
(
Sm2 (ψ(h′<3> , g<2>)g′), φ

(
Sm+1

2 (h′<1>)<1> , S
m+1
1 (h<1>)<1>

))]
×

ψ
(
Sm+1

2 (h′<1>)<2> , S
m+1
1 (h<1>)<2>

))
=

ε1(h)ε1(g)ε2(h′)Sm2 (g′).

Now, invoking (4.33), and setting g = 1 and h′= 1, we obtain (in view of (4.12))

ψ
(
Sm2 (g′), Sm+1

1 (h)
)

= ε1(h)Sm2 (g′),

from which the the triviality of the left action follows.

De�nition 4.7. Let (H1, µ1, η1,∆1, ε1, S1) be anm1-inverse Hopf quasigroup such
that S1(δ1) = δ1, and that Sh1

1 ∈ Aut(H1), and (H2, µ2, η2,∆2, ε2, S2) be an m2-
inverse Hopf quasigroup such that S2(δ2) = δ2, and that Sh2

2 ∈ Aut(H2). Let also
m ∈ Z be a solution of

m ≡ m1 (modh1),
m ≡ m2 (modh2).

Then, (H1,H2) is called a matched pair of m-inverse property Hopf quasigroups if
the Hopf quasigroups (H1, µ1, η1,∆1, ε1, S1) and (H2, µ2, η2,∆2, ε2, S2) satisfy the
conditions (4.12)− (4.21).
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A remark is in order.

Remark 4.8. Given an m1-inverse property quasigroup Q1, an m2-inverse prop-
erty quasigroup Q2, and a solution m ∈ Z of

m ≡ m1 (modh1),
m ≡ m2 (modh2).

Let
(

(Q1, J1, δ1), (Q2, J2, δ2)
)
be a matched pair ofm-inverse property quasigroups

such that J1(q)q = δ1 for any q ∈ Q1 and J2(q′)q′ = δ2 for any q′ ∈ Q2. Then
(kQ1, kQ2) is a matched pair of m-inverse property Hopf quasigroups.

The following result is the universal property of the matched pair construction for
m-inverse property Hopf quasigroups, that is, the analogue of [41, Thm. 7.2.3].

Proposition 4.9. Let (H1, µ1, η1,∆1, ε1, S1) be an m1-inverse Hopf quasigroups

such that S1(δ1) = δ1, and that Sh1
1 ∈ Aut(H1), and (H2, µ2, η2,∆2, ε2, S2) be an

m2-inverse Hopf quasigroup such that S2(δ2) = δ2, and that Sh2
2 ∈ Aut(H2). Let

also m ∈ Z be a solution of

m ≡ m1 (modh1),
m ≡ m2 (modh2).

and G be an m-inverse Hopf quasigroup so that H1 and H2 are m-inverse Hopf

quasi-subgroups of G;
H1 ↪−→ G ←−↩ H2,

such that the multiplication on G yields an isomorphism

Θ : H1 ⊗H2 → G, h⊗ h′7→ hh′, (4.34)

of vector spaces, under which the multiplications are compatible as

(hh′)g = h(h′g), g(hh′) = (gh)h′,

for any h ∈ H1, any h
′∈ H2, and any g ∈ G, while the antipodes are compatible as

S(hh′) = S2(h′)S1(h), S(h′h) = S1(h)S2(h′) (4.35)

for any h ∈ H1, any h
′∈ H2, and any g ∈ G. Then, (H1,H2) is a matched pair of

m-inverse Hopf quasigroups, and G ∼= H1 ./ H2 as Hopf quasigroups.

Proof. Let us begin with the mappings

φ : H2 ⊗H1 → H1, ψ : H2 ⊗H1 → H2 (4.36)

given by

φ(h′, h) := ((Id⊗ε2) ◦Θ−1)(h′h), ψ(h′, h) := ((ε1 ⊗ Id) ◦Θ−1)(h′h),
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through
h′h = Θ

(
φ(h′<1> , h<1>), ψ(h′<2> , h<2>)

)
. (4.37)

It then follows at once that the isomorphism (4.34) respect the multiplications in
G and H1 ./ H2.

It remains to show that the mappings (4.36) have the properties (4.12)−(4.21).

The �rst one, (4.12), follows from the consideration of h = δ1 and h′= δ2 in
(4.37), respectively.

Next, the linear map Ψ : H2 ⊗H1 → H1 ⊗H2 given by

Ψ(h′⊗ h) := Θ−1(h′h) = φ(h′
<1>

, h
<1>

)⊗ ψ(h′
<2>

, h
<2>

)

being a coalgebra homomorphism, we have

∆⊗ ◦Ψ = (Ψ⊗Ψ) ◦∆⊗,
(
(ε1 ⊗ ε2) ◦Ψ

)
(h⊗ h′) = ε1(h)ε2(h′),

for any h ∈ H1, and any h′∈ H2. Applying on an arbitrary h′⊗ h ∈ H2 ⊗H1, we
arrive at[
φ(h′

<1>
, h

<1>
)
<1>
⊗ ψ(h′

<2>
, h

<2>
)
<1>

]
⊗
[
φ(h′

<1>
, h

<1>
)
<2>
⊗ ψ(h′

<2>
, h

<2>
)
<2>

]
=(

φ(h′
<1><1>

, h
<1><1>

)⊗ ψ(h′
<1><2>

, h
<1><2>

)
)
⊗(

φ(h′
<2><1>

, h
<2><1>

)⊗ ψ(h′
<2><2>

, h
<2><2>

)
)
.

Now, Id⊗ε2⊗ Id⊗ε2 yields (4.16), and ε1⊗ Id⊗ε1⊗ Id results in (4.17). Further-
more, ε1 ⊗ Id⊗ Id⊗ε2 leads to (4.21).

On the other hand, in view of (4.35) the property g<1>S(g<2>) = ε(g)δ implies
(h<1>h

′
<1>)S(h<2>h

′
<2>) = ε1(h)ε2(h′)δ for any h ∈ H1 and any h′∈ H2, which in

turn implies(
h
<1>

φ(h′
<1>

, φ(S2(h′
<5>

), S1(h
<4>

))),

ψ(h′
<2>

, φ(S2(h′
<4>

), S1(h
<3>

)))ψ(S2(h′
<3>

), S1(h
<2>

))
)

=

(h<1>S1(h<2>), δ2) = (ε1(h)δ1, ε2(h′)δ2).

We then obtain the second equality of (4.13) by applying Id⊗ε2, as well as the
second equality of (4.20) via ε1 ⊗ Id. Similarly, S(g<1>)g<2> = ε(g)δ yields(
φ(S2(h′<3>), S1(h<3>))φ(ψ(S2(h′<2>), S1(h<2>)), h<4>),

φ(ψ(S2(h′<1>), S1(h<1>)), h<5>)h′<4>

)
=

(ε1(h)δ1, S2(h′
<1>

)h′
<2>

) = (ε1(h)δ1, ε2(h′)δ2),
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which in turn implies the �rst equality of (4.19) by Id⊗ε2, and the �rst equality
of (4.15) by ε1 ⊗ Id.

On the next step, JmQ(qq′)Jm+1
Q(q) = JmQ(q′) for any q, q′ ∈ Q provides,

along the lines of (4.31),(
φ
(
Sm2 (ψ(h′

<3>
, g
<2>

)g′)
<1>

, Sm1 (h
<2>

φ(h′
<2>

, g
<1>

))
<1>

)
×

φ
(
ψ
(
Sm2 (ψ(h′

<3>
, g
<2>

)g′)
<2><1>

, Sm1 (h
<3>

φ(h′
<2>

, g
<1>

))
<2><1>

, Sm+1
1 (h

<1>
)
<1>

))
,

ψ
(
ψ
(
Sm2 (ψ(h′

<3>
,g
<2>

)g′)
<2><2>

,Sm1 (h
<2>

φ(h′
<2>

,g
<1>

))
<2><2>

,Sm+1
1 (h

<1>
)
<2>

))
Sm+1

2 (h′
<1>

)
)

=
(
ε1(h)φ

(
Sm2 (g′)

<1>
, Sm1 (g)

<1>

)
, ε2(h′)ψ

(
Sm2 (g′)

<2>
, Sm1 (g)

<2>

))
=

(δ1, ε2(h′)Sm2 (g′))(ε1(h)Sm1 (g), δ2) = ε1(h)ε2(h′)Sm./(g, g
′).

In particular, for h′= δ2 we see that(
φ
(
Sm2 (g′)<1> , S

m
1 (h<2>g<1>)<1>

)
φ
(
ψ
(
Sm2 (g′)<2><1> , S

m
1 (h<3>g<1>)<2><1> ,

Sm+1
1 (h<1>)<1>

))
, ψ
(
ψ
(
Sm2 (g′)<2><2> , S

m
1 (h<2>g<1>)<2><2> , S

m+1
1 (h<1>)<2>

)))
=(

ε1(h)φ
(
Sm2 (g′)<1> , S

m
1 (g)<1>

)
, ψ
(
Sm2 (g′)<2> , S

m
1 (g)<2>

))
,

which implies (4.18) by Id⊗ε2, and (4.14) by ε1 ⊗ Id. Let us also remark that
(4.18) implies the second equality of (4.19), and that (4.14) implies the second
equation of (4.15).

Equipped with these now, (4.35) gives

S./((δ1, h
′)(h, δ2)) =(

φ
(
S2(ψ(h′

<1>
, h

<1>
)), S1(φ(h′

<2>
, h

<2>
))
)
, ψ
(
S2(ψ(h′

<3>
, h

<3>
)), S1(φ(h′

<4>
, h

<4>
))
))

=
(
φ
(
S2(ψ(h′

<1>
, h

<1>
)), [φ(ψ(h′

<2>
, h

<2><1>
), S1(h

<2><2>
))]
)
,

ψ
(
S2(ψ(h′

<3>
, h

<3>
)), S1(φ(h′

<4>
, h

<4>
))
))

=(
S1(h), S2(h′)

)
.

Then, the application of Id⊗ε2 yields

φ
(
S2(ψ(h′

<1>
, h

<1>
)), [φ(ψ(h′

<2>
, h

<2>
), S1(h

<3>
))]
)

= ε2(h′)S1(h),

in particular,

φ
(
S2(ψ(ψ(h′, S1(h

<1>
))
<1>

, h
<2><1>

)), [φ(ψ(ψ(h′, S1(h
<1>

))
<2>

, h
<2><2>

),

S1(h
<2><3>

))]
)

= ε2(ψ(h′, S1(h
<1>

)))S1(h
<2>

),
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that is,

φ
(
S2(h′<1>), φ(h′<2> , S1(h))

)
= ε2(h′)S1(h),

the �rst equality of (4.13). Similarly, the application of ε1 ⊗ Id onto

S./((δ1,h
′)(h,δ2))=

(
S1(h<1>

),ψ
(
S2(ψ(h′

<1>
, h

<2>
)), S1(φ(h′

<2>
, h

<2>
))
))

=
(
S1(h), S2(h

′)
)
,

implies

ψ
(
S2(ψ(h′<1> , h<2>)), S1(φ(h′<2> , h<2>))

))
= ε1(h)S2(h′).

Hence, we see that

ψ
(
ψ
(
S2(ψ(h′

<1><1>
, h

<1><2>
)), S1(φ(h′

<1><2>
, h

<1><2>
))
)
, φ(h′

<2>
, h

<2>
)
)

=

ε1(h
<1>

)ψ
(
S2(h′

<1>
), φ(h′

<2>
, h

<2>
)
)
,

that is,

S2(ψ(h′, h)) = ψ
(
S2(h′<1>), φ(h′<2> , h)

)
.

But then,[
ψ(S(h′<1>),φ(h′<2>,h<1>))

]
ψ(h′<3>,h<2>)=S2(ψ(h′<1>, h<1>))ψ(h′<2>,h<2>)=ε1(h)ε2(h′),

the �rst equality of (4.20) is satis�ed.

Finally, having obtained (4.12) − (4.21), it is possible to derive (4.25) from
(4.31) in the case m = 2`+ 1, and from (4.32) in the case m = 2`.
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