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On the number of autotopies

of an n-ary quasigroup of order 4

Evgeny V. Gorkunov, Denis S. Krotov and Vladimir N. Potapov

Abstract. An algebraic system consisting of a �nite set Σ of cardinality k and an n-ary op-

eration f invertible in each argument is called an n-ary quasigroup of order k. An autotopy of

an n-ary quasigroup (Σ, f) is a collection (θ0, θ1, . . . , θn) of n + 1 permutations of Σ such that

f(θ1(x1), . . . , θn(xn)) ≡ θ0(f(x1, . . . , xn)). We show that every n-ary quasigroup of order 4 has

at least 2[n/2]+2 and not more than 6 · 4n autotopies. We characterize the n-ary quasigroups of

order 4 with 2(n+3)/2, 2 · 4n, and 6 · 4n autotopies.

1. Introduction

Let Σ be the set of k elements 0, 1, . . . , k − 1. The Cartesian degree Σn consists
of all tuples of length n formed by elements of Σ. An algebraic system with the
support Σ and an n-ary operation f : Σn → Σ invertible in each argument is called
an n-ary quasigroup of order k (sometimes, for brevity, an n-quasigroup or simply
a quasigroup). The corresponding operation f is also called a quasigroup.

An isotopy of the set Σn+1 is a tuple θ = (θ0, θ1, . . . , θn) of permutations from
the symmetric group Sk acting on Σ. The isotopy action on Σn+1 is given by the
rule

θ : x 7→ θ(x) = (θ0(x0), . . . , θn(xn)) for x = (x0, . . . , xn) ∈ Σn+1.

To denote isotopies and permutations that constitute them, we will use the Greek
alphabet, and when writing their action on elements of Σ we sometimes omit
parentheses.

Two sets M1,M2 ⊆ Σn+1 are called isotopic if here exists an isotopy θ such
that θ(M1) = M2. Two quasigroups f and g are called isotopic if for some isotopy
θ = (θ0, θ1, . . . , θn) it holds

g(x1, . . . , xn) = θ−10 f(θ1x1, . . . , θnxn). (1)
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If f = g, then any isotopy θ for which (1) holds is called an autotopy of the
quasigroup f . The autotopy group Atp(f) of a quasigroup f is the group consisting
of all autotopies of f (the group operation is the composition).

A 2-quasigroup f with neutral element e such that f(e, a) = f(a, e) = a for
any a ∈ Σ is called a loop. If a loop f satis�es the associative axiom f(x, f(y, z)) ≡
f(f(x, y), z), then we have a group. It is known (see, for example, [1]), that all
2-quasigroups of order 4 are isotopic to either the group Z2 ×Z2 or the group Z4.
So, quasigroups generalize groups, which illustrates their algebraic nature.

At the same time, the concept of a quasigroup admits a purely combinato-
rial interpretation. By line in Σn+1, we mean a subset of n elements that are
mutually distinct exactly at one coordinate. For a quasigroup f : Σn → Σ, the
set M(f) = {(x0, x1, . . . , xn) ∈ Σn+1 | x0 = f(x)} will be called the code of the
quasigroup f . The term �code� is borrowed from the theory of error correcting
codes, in the framework of which the set M(f) is an MDS-code with distance 2
(an equivalent concept, also well known in combinatorics, is the Latin hypercube).
The quasigroup code is characterized as a subset Σn+1 of cardinality kn intersect-
ing each line in exactly one element. This view allows us to see a quasigroup from
its combinatorial side. We note that the codes of isotopic quasigroups are isotopic,
namely, it follows from (1) that M(g) = θ−1(M(f)).

In this paper, we investigate autotopies of quasigroups of order 4. We estab-
lish tight upper and lower bounds on the order of the autotopy group of such a
quasigroup. In a way, it is natural that the richest group of autotopies turned out
to be for the quasigroups called linear with a structure close to group. Also we
characterize the quasigroups with minimum and pre-maximum (that is, next to
the maximum) orders of the autotopy group.

The concept of an autotopy is a generalization of a more partial notion of �au-
tomorphism� and re�ects in some sense the �regularity� or �symmetry� of a quasi-
group as a combinatorial object. The study of the transformations of the space
mapping the object onto itself is a classic, but at the same time a di�cult task,
considered in many areas of mathematics. The complexity of such problems is
illustrated by Frucht's theorem [2] stating that each �nite group is isomorphic to
the group of automorphisms of some graph, and also a similar result concerning
perfect codes in coding theory [6].

In coding theory, the group of automorphisms of a code is generated by the
isometries of the metric space that sitabilize the code. There we �nd another
example of the phenomenon that an object with group properties has the richest
group of automorphisms. In papers [5, 8, 9] it is shown that the binary Hamming
code, which is a linear perfect code, has the largest automorphism group among
the binary 1-perfect codes, and its order at least twice exceeds the order of the
automorphism group of any other binary 1-perfect code of the same length.

The paper is organized as follows. Section 2 provides basic de�nitions and
statements. In Section 3, a representation of quasigroups necessary for further
proof of the fundamental results is given. Auxiliary statements on the autotopies
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of quasigroups are collected in Section 4. A tight lower bound on the number of
autotopies of a quasigroup of order 4 is proved in Section 5. In Section 5.2, we
discuss the quasigroups with the smallest order of the autotopy group. Finally, in
Section 6 an upper bound on the order of the autotopy group of a quasigroup of
order 4 is derived and it is proved that this bound is attained only by the linear
quasigroups. We also establish the maximum order of the autotopy group of
a nonlinear quasigroup of order 4 and prove that it is attained only by isotopically
transitive quasigroups, which were described in [4].

2. Notations and basic facts

For x = (x1, . . . , xn) ∈ Σn and a ∈ Σ, we put xai = (x1, . . . , xi−1, a, xi+1, . . . , xn).
The inverse of an n-quasigroup f in the i-th argument is denoted by f 〈i〉; that is,
for any x ∈ Σn and a ∈ Σ, the equations f 〈i〉(xai ) = xi and f(x) = a are equivalent.
Obviously, the inversion of an n-quasigroup in any argument is an n-quasigroup.
By the 0-th argument of an n-quasigroup f , we mean the value of the function
f(x1, . . . , xn), which, formally not being an argument of the operation f itself, is
associated with the i-th argument of the inverse f 〈i〉.

In this paper, we study the autotopies of quasigroups of order 4; so, below we
assume Σ = {0, 1, 2, 3}. A quasigroup f of order 4 is said to be semilinear if there
are aj , bj ∈ Σ, aj 6= bj , j = 0, 1, . . . , n, for which

f({a1, b1} × . . .× {an, bn}) = {a0, b0}. (2)

In this case, we also say that the quasigroup f is {aj , bj}-semilinear in the j-th
argument, for j = 0, 1, . . . , n. Note that if in the identity (2) any two of the
sets {aj , bj} are replaced by their complements in Σ, then the identity remains
true. Thus, in every argument, a semilinear quasigroup is {0, 1}-, {0, 2}- or {0, 3}-
semilinear. If f is {a, b}-semilinear in each of its arguments, then we call it simply
{a, b}-semilinear.

A quasigroup f is linear if in each of its arguments it is {a, b}-semilinear for
any a, b ∈ Σ.

Each 2-quasigroup is isotopic to one of the two quasigroups ⊕, +4 with the
value tables

⊕ 0 2 1 3
0 0 2 1 3
2 2 0 3 1
1 1 3 0 2
3 3 1 2 0

,

+4 0 2 1 3
0 0 2 1 3
2 2 0 3 1
1 1 3 2 0
3 3 1 0 2

. (3)

The quasigroups (Σ,⊕) and (Σ,+4) are the groups Z2 × Z2 and Z4, respectively.

Remark 2.1. In the value tables (3), the elements 0, 2, 1, 3 are not ordered
lexicographically, in the usual sense. With the given ordering, it is easier to observe
the semilinear structure of the given group. In the future, similarly, the table of
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values of a {0, 2}-semilinear n-quasigroup is convenient to be thought as an n-dim-
ensional 4× . . .× 4 array which is divided into n-dimensional 2× . . .× 2 subarrays
�lled with two values 0, 2 or 1, 3.

The quasigroup ⊕ iterated n− 1 times will be denoted by ln; that is,

ln(x1, . . . , xn) = x1 ⊕ . . .⊕ xn.

Lemma 2.2. (cf. [7])

(i) All linear n-quasigroups are isotopic to ln.

(ii) If an n-quasigroup is simultaneously {0, 1}- and {0, 2}-semilinear in some
argument, then it is linear.

Lemma 2.3. If an n-quasigroup f is {a, b}-semilinear in the i-th argument for
some i ∈ {0, . . . , n} and θ = (θ0, . . . , θn) is an isotopy, then the n-quasigroup θ(f)
is {θ−1i (a), θ−1i (b)}-semilinear in the i-th argument.

An n-ary quasigroup f is said to be reducible if for some integer m, 2 6 m < n,
and permutation σ ∈ Sn, there exists a representation f in the form of a repetition-
free composition such that

f(x1, . . . , xn) = h(g(xσ(1), . . . , xσ(m)), xσ(m+1), . . . , xσ(n)) (4)

(repetition-free means that each variable occurs only once in the right side). With-
out loss of generality, we can assume that the quasigroup g is irreducible.

In [3], a description of quasigroups of order 4 is obtained in terms of semilin-
earity and reducibility.

Theorem 2.4. Every n-ary quasigroup of order 4 is reducible or semilinear.

3. The representation of quasigroups

According to Theorem 2.4, a non-semilinear quasigroup can be represented as
a repeatition-free composition of two or more semilinear quasigroups (some of the
composed quasigroups can coincide with each other or be linear). A representation
of a quasigroup f in the form of a repeatition-free composition of quasigroups of
arity greater than 1 will be called a decomposition of f . Note that a quasigroup
may have several decompositions. In the simplest case, the quasigroup represents
its own trivial decomposition.

In the following, we will use a graphical representation of a decomposition of
a quasigroup in the form of a labeled tree. The inner vertices of this tree (the
degree of which is not less than 3) will be called nodes and denoted by characters
u, v, w, with or without indices; and the leaves (vertices of degree 1) will be
denoted by symbols of variables x1, x2, . . . , y, z, etc. The edge incident to a leaf
of the tree is called a leaf edge. The remaining edges are called inner.
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Firstly, we de�ne recursively the root tree T (S) of a decomposition S (the
notion of the root decomposition tree is introduced as an auxiliary term to de�ne
the decomposition tree and will not be used after that de�nition).

1) A variable xi is associated with the tree consisting of one vertex of degree
0, being the root and labelled by the variable xi itself.

2) Let a decomposition S be of the form S = h(S1, . . . , Sn). If the decom-
positions and/or variables S1, . . . , Sn correspond to the root trees T1, . . . , Tn,
respectively, then we build the tree T (S) as follows. De�ne a new vertex u as the
root of the tree and assign the label h to it. Consistently connect vertex u with the
roots of the trees T1, . . . , Tn. The root of the tree Tj , j ∈ {1, . . . , n}, is considered
as the j-th neighbor of u. On the other hand, the vertex u is considered as the
0-th neighbor of the root of the tree Tj .

By a decomposition tree (without �root�), we call the tree obtained by con-
necting the leaf x0 as the 0-th neighbor to the root of the tree T (S). The tree
of the decomposition S is denoted by T0(S). The leaf x0 corresponds to the 0-th
argument, i.e., to the value of the quasigroup represented by the decomposition S.

The tree T0(S) of a decomposition S for a quasigroup f can be treated as the
decomposition tree for the code M(f). It is important to understand that only
the enumeration of the leaves and of the neighbors of every vertex de�nes which
arguments are independent for the quasigroup f and for every element of the
decomposition. Changing this enumeration, we can get the decomposition tree for
the inverse of f in any argument. Namely, to get a decomposition for f<i>, it is
su�cient to take the following. Find the path P from x0 to xi. Then for each inner
node u ∈ P , swap the labels of its two neighbors laying in this path and replace
the label of u by the corresponding inverse. Finally, swap the labels xi and x0.
The order de�ned on the neighbors of every node uniquely determines the order
of the arguments of the quasigroups in the decomposition and of the represented
quasigroup. It is worth to note that as the autotopy groups of a quasigroup and
its inverses are isomorphic, from the point of view of the questions considered in
the current research, it is not necessary to remember all the time which of the
arguments is the 0-th one; so, the 0-th argument will not be emphasized in the
most of considerations.

For a decomposition and its tree, de�ne the operation of merging. Assume that
a decomposition S contains the fragment

f1(S1, . . . , Si−1, f2(Si, . . . , Si+n2−1), Si+n2
, . . . , Sn1+n2−1), (5)

where S1, . . . , Sn1+n2−1 are some decompositions and the n1-quasigroup f1 and
n2-quasigroup f2 satisfy the identity

g(x1, . . . , xn1+n2−1) ≡ f1(x1, . . . , xi−1, f2(xi, . . . , xi+n2−1), xi+n2 , . . . , xn1+n2−1)
(6)

for some (n1 + n2 − 1)-quasigroup g. The result of merging f1 and f2 in S is

de�ned as the decomposition S̃ obtained from S by replacing the fragment (5) by
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g(S1, . . . , Sn). Note that we consider a concrete occurrence of (5) in S (in general
a fragment can occur more than one time).

Respectively, in the decomposition tree T0(S), the adjacent nodes u and v
labeled by f1 and f2 are merged as follows. This pair of nodes is replaced by a new
node w labeled by g, whose neighbors are the neighbors of the removed nodes u
and v (except u and v themselves). The neighbors of w are assigned the numbers
0, . . . , n1 +n2− 1 consequently in the following order. At �rst, the neighbors of u
with the numbers 0, . . . , i−1 are assigned (in the same order); next, the neighbors
of v with the numbers 1, . . . , n2 are assigned; then, the remaining neighbors of u
with the numbers i+ 1, . . . , n1 are assigned. The result of the described merging
is the decomposition tree T0(S̃). Trivially, we have the following fact.

Lemma 3.1. Being applied to a decomposition, merging does not alter the quasi-
group represented by the decomposition.

We call a decomposition (and its tree) semilinear if all involved quasigroups
are semilinear.

In a decomposition tree, consider two neighbor nodes u, v with labels f1, f2,
respectively. Assume that u is the 0-th neighbor of v and v is the i-th neighbor
of u. We call the nodes u and v coherent if for some a, b ∈ Σ the quasigroup f1
is {a, b}-semilinear in the i-th argument and f2 is {a, b}-semilinear in the 0-th
argument.

Lemma 3.2. Merging two coherent nodes in a semilinear tree results in a semi-
linear tree.

Proof. Let quasigroups f1 and f2 of arity n1 and n2, respectively, correspond to
coherent nodes in a decomposition tree, and (6) holds for some (n1 + n2 − 1)-ary
quasigroup g. To prove the lemma, it su�ces to verify that the quasigroup g is
semilinear, which is straightforward from (6) and the de�nition of a semilinear
quasigroup.

We call a semilinear decomposition (and its tree) proper if there are no pairs
of coherent nodes in the decomposition tree.

Lemma 3.3. Every quasigroup of order 4 has a proper decomposition.

Proof. By Theorem 2.4, every n-ary quasigroup of order 4 has a semilinear de-
composition. Since there are no more than n− 1 nodes in the decomposition tree,
successively merging pairs of coherent nodes, we obtain a required decomposition
in at most n− 2 steps.

Remark 3.4. In general, a proper decomposition is not unique and depends on the
order of merging. The simplest example of a decomposition that can be merged in
two ways is f(g(h(x1, x2), x3), x4), where f and g are {0, 1}-semilinear quasigroups,
g and h are {0, 2}-semilinear quasigroups, and f and h are not linear in contrast
to g. A proper decomposition of a nonlinear quasigroup does not involve any linear
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quasigroups because a node labeled by a linear quasigroup is coherent with each
of its neighbors.

Let S be some decomposition, and let its tree T0(S) have the edge set E. An
isotopy of the decomposition is a collection θ = (θe)e∈E of permutations of Σ,
acting on S as follows. If a node of T0(S) has a label fi and ej , j = 0, 1, . . . , ni,
is the j-th edge incident to this node, then fi is replaced by f ′i , where f

′
i is the

quasigroup de�ned by

f ′i(x1, . . . , xni) = θ−1e0 fi(θe1x1, . . . , θeni
xni). (7)

As a result, we get the tree of some decomposition, denoted by θ(S) and called
isotopic to S. The following is straightforward.

Lemma 3.5. Isotopic decompositions represent isotopic quasigroups. More pre-
cisely, if θ is an isotopy connecting decompositions of quasigroups f and f ′, then

x0 = f ′(x1, . . . , xn) = θ−1e0 f(θe1(x1), . . . , θen(xn)),

where ej is the edge incident to the leaf xj, j = 0, 1, . . . , n.

An autotopy of the decomposition S is an isotopy θ such that θ(S) = S. The
support of an autotopy is the set of edges corresponding to non-identity permu-
tations. We call a proper decomposition (and its tree) reduced if every involved
quasigroup is {0, 1}- or {0, 2}-semilinear.

Lemma 3.6. For every quasigroup of order 4, there is an isotopic quasigroup with
a reduced decomposition.

Proof. Consider an n-quasigroup f and construct an isotopic quasigroup with
a reduced decomposition. We start with a proper decomposition S of f , which
exists by Lemma 3.3. Since the decomposition tree T0(S) is a bipartite graph, its
vertices are divided into two independent parts; the vertices of one part are called
even, those of the other part are odd.

Let us �nd an isotopy θ such that the odd nodes of θ(S) are {0, 1}-semilinear,
while the even nodes are {0, 2}-semilinear. To do this, we de�ne the permutation θe
for every edge e in the tree T0(S).

Consider two cases. Firstly, let e connect two nodes, an odd one with a label g
and an even one labeled by h. Suppose that g is the i-th neighbor of h, which
in turn is the 0-th neighbor of g. Note that if g is {0, a}-semilinear in the 0-
th argument and h is {0, b}-semilinear in the i-th one, then a 6= b because the
decomposition S is proper. In this case, we put θe(0) = 0, θe(1) = a, θe(2) = b,
θe(3) ∈ {1, 2, 3} \ {a, b}.

Now we turn to the other case, where e connects a node labeled by g and its
i-th neighbor, a variable x. Suppose g is {0, a}-semilinear in the i-th argument.
Then we set θe = (1a) if the node is in the odd part of T0(S), and θe = (2a) if the
node is in the even part.
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Consider the action of the constructed isotopy on the decomposition S. A node
of the decomposition tree T0(S) labeled by fi will get the label f

′
i (see (7)) in the

tree T0(θ(S)). Suppose fi is {0, a}-semilinear in the j-th argument. Then, by
Lemma 2.3, the quasigroup f ′i is {0, 1}-semilinear in the j-th argument if fi is an
odd node, or {0, 2}-semilinear in the j-th argument if fi is an even node.

Thus, the decomposition θ(S) is proper by the de�nition. By Lemma 3.5, the
quasigroup represented by θ(S) is isotopic to the original quasigroup f .

4. Autotopies of quasigroups

Let π = (π0, . . . , πm) and τ = (τ0, . . . , τn−m+1) be isotopies. If π0 = τ1, then
we de�ne

π⊗̇τ = (τ0, π1, . . . , πm, τ2, . . . , τn−m+1).

Let us consider the n-ary quasigroup f obtained as the composition of an
m-quasigroup g and an (n−m+ 1)-quasigroup h:

f(x1, . . . , xn) = h(g(x1, . . . , xm), xm+1, . . . , xn).

We de�ne the action of the operation ⊗̇ on the autotopy groups of g and h as
follows:

Atp(g)⊗̇Atp(h) = {π⊗̇τ | π = (π0, . . . , πm) ∈ Atp(g),

τ = (τ0, . . . , τn−m+1) ∈ Atp(h), π0 = τ1}.

We restrict ourselves by considering quasigroups of order 4 only; however, the next
lemma holds for any other order as well.

Lemma 4.1. If f is an n-quasigroup represented as the composition

f(x1, . . . , xn) = h(g(x1, . . . , xm), xm+1, . . . , xn),

then
Atp(f) = Atp(g)⊗̇Atp(h).

Proof. Obviously, Atp(g)⊗̇Atp(h) 6 Atp(f). To prove the reverse, consider an
autotopy θ = (τ0, π1, . . . , πm, τ2, . . . , τn−m+1) ∈ Atp(f). Let us show that there
exists a permutation π0 = τ1 ∈ S4 such that π = (π0, . . . , πm) ∈ Atp(g), τ =
(τ0, . . . , τn−m+1) ∈ Atp(h), and θ = π⊗̇τ .

Note that if such a permutation π0 exists, then it is uniquely de�ned by the
permutations π1, . . . , πm, because for every tuple in Σn the quasigroup g possesses
only one value. Moreover, if we put π0 = τ1, then π ∈ Atp(g) if and only if
τ ∈ Atp(h). Indeed, the relation π ∈ Atp(g), by the de�nition, means that the
equations

x0 = h(g(x1, . . . , xm), xm+1, . . . , xn) and

x0 = h(π0g(π−11 x1, . . . , π
−1
m xm), xm+1, . . . , xn)
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are equivalent. Applying the autotopy θ ∈ Atp(f), for any tuple (x1, . . . , xn) in Σn

we get

x0 = h(g(x1, . . . , xm), xm+1, . . . , xn) =

= τ−10 h(π0g(x1, . . . , xm), τ2xm+1, . . . , τn−m+1xn).

The last equality implies that for any (t, xm+1, . . . , xn) ∈ Σn−m+1 it holds

h(t, xm+1, . . . , xn) = τ−10 h(π0t, τ2xm+1, . . . , τn−m+1xn).

That is, for τ1 = π0 we have τ ∈ Atp(h).
So, it remains to show that there exists a permutation π0 ∈ S4 such that

π ∈ Atp(g). Taking into account that θ ∈ Atp(f), we can write that for every
(x1, . . . , xm) ∈ Σm it holds

x0 = h(g(x), 0, . . . , 0) = τ−10 h(g(π1x1, . . . , πmxm), τ2(0), . . . , τn−m+1(0)). (8)

Trivially, the 1-quasigroups

q1(s) = h(s, 0, . . . , 0), q2(t) = τ−10 h(t, τ2(0), . . . , τn−m+1(0))

are permutations of Σ. So, (8) can be rewritten as follows:

g(x) = q−11 (q2(g(π1x1, . . . , πmxm))).

De�ning π0(·) = q−12 (q1(·)), we have (π0, . . . , πm) ∈ Atp(g).

Lemma 4.1 and the results of the previous section allows us to make the fol-
lowing observation. Studying the autotopy group of a quasigroup of order 4, we
can assume it to be represented as a repetition-free composition of quasigroups,
where each of the quasigroups is {0, a}-semilinear for some a ∈ Σ, but not linear.

In the remaining part of this section, we prove three lemmas on minimum
autotopy groups of semilinear quasigroups. In the description of autotopies, it is
convenient to use the following notation.

For a nonlinear {0, a}-semilinear quasigroup f (and the corresponding nodes
of decomposition trees), a ∈ Σ \ {0}, the permutation (0a)(bc), where {b, c} = Σ \
{0, a}, is called the native involution, and the permutations (0b)(ca) and (0c)(ab)
are called the foreign involutions. Each of the transpositions (0a) and (bc) forming
the native involution (0a)(bc) is called a native transposition of the semilinear
quasigroup (node). The two cyclic permutations (0bac) and (0cab) whose square
is the native involution (0a)(bc) are called the native cycles of the semilinear
quasigroup (node).

Lemma 4.2. The following isotopies belong to the autotopy group of a {0, a}-
semilinear n-ary quasigroup f , a ∈ Σ \ {0}.
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(i) An isotopy consisting of two native involutions and n− 1 identity permuta-
tions, in an arbitrary order.

(ii) An isotopy consisting of n+ 1 native transpositions all of which di�er from
(0a) in the case f({0, a}n) = {0, a}, and exactly one of which equals (0a) in
the case f({0, a}n) = Σ\{0, a}.

Proof. Without loss of generality we assume a = 1. The identity (2) holds for
any {ai, bi} from {{0, 1}, {2, 3}}, i = 1, . . . , n (the pair {a0, b0} is uniquely de�ned
from the other pairs and also coincides with {0, 1} or {2, 3}).

(i) Applying the native involution (01)(23) in one of the arguments changes
the values of the quasigroup in all points, but at the same time leaves the sets
{a1, b1}×. . .×{an, bn} with the above restrictions in place. It follows from (2) that
the values of the quasigroup also change in accordance with the native involution.
When applying the native involution in some other argument, we again obtain the
original quasigroup.

(ii) Let f({0, 1}n) = {0, 1}. Consider an arbitrary tuple (x1, . . . , xn) of values
of the arguments and the value x0 of the quasigroup on this tuple. Among x0, x1,
. . . , xn, an even number of values belong to {2, 3}. Thus, applying successively the
transposition (23) to each of the arguments, we change the value of the quasigroup
an even number of times, and the changes do not take the value in a partial
point beyond the pair {0, 1} or the pair {2, 3}. As a result, we get that after
applying all transpositions, the value of the quasigroup has not changed. The case
f({0, 1}n) = {2, 3} is treated similarly.

Lemma 4.3. Assume that an {a, b}-semilinear binary quasigroup q of order 4 is
not linear. Let ξ be the corresponding native involution. The autotopy group of q
consists of the following transformations.

(i) The autotopies (Id, ξ, ξ), (ξ, Id, ξ), (ξ, ξ, Id), and the identity autotopy.

(ii) The autotopies (τ0, τ1, τ1), (τ1, τ0, τ1), (τ1, τ1, τ0), (τ0, τ0, τ0), where τ0, τ1 are
the two distinct native transpositions; the choice of τ0 is unique for q.

(iii) The autotopies (ξ′, ϕ1, ϕ2), (ϕ1, ξ
′′, ϕ2), (ϕ1, ϕ2, ξ

′′′), where the pair ϕ1, ϕ2

is an arbitrary pair of native cycles, for which the permutations ξ′, ξ′′, ξ′′′ ∈
{Id, ξ} are uniquely de�ned.r

(iv) The autotopies (τ ′, ψ1, ψ2), (ψ1, τ
′′, ψ2), (ψ1, ψ2, τ

′′′), where the pair ψ1, ψ2

is an arbitrary pair of foreign involutions, for which the native transpositions
τ ′, τ ′′, τ ′′′ are uniquely de�ned.

Proof. It can be directly checked that each of the presented isotopies is an autotopy
of q. To do this, it is su�cient to consider the {0, 2}-semilinear quasigroup +4

(see Example 4.4 below) because all quasigroups satisfying the hypothesis of the
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lemma are isotopic to +4. It is easy to see that the set of presented autotopies is
closed under the composition; that is, this set forms a group.

The completeness is checked numerically. There are 4 autotopies of each of
the types (i), (ii) and 12 autotopies of each of the types (iii), (iv); totally we have
32 autotopies. On the other hand, we can bound the number of autotopies from
the upper side. It follows from the nonlinearity of +4 and Lemma 2.3 that for an
arbitrary autotopy (ψ0, ψ1, ψ2) each of the permutations ψ0, ψ1, ψ2 maps {0, 2}
to {0, 2} or {1, 3}. There are 8 ways to choose ψ1 meeting this condition, and
8 ways for ψ2; by the de�nition of a quasigroup, ψ0 is determined uniquely from
ψ1 and ψ2. Moreover, it is easy to check that there is no autotopy with ψ1 = Id
and ψ2 = (01). It follows that the order of the autotopy group is less than 64.
Hence, this group coincides with the group from the autotopies (i)�(iv).

Example 4.4. Consider the binary quasigroup +4 de�ned in (3). The permuta-
tion (02)(13) is the native involution for q; the permutations (02) and (13) are the
native transpositions for q, and (0123), (0321) are the native cycles. The auto-
topy group of q is generated by the following (strictly speaking, redundant) set of
autotopies:

(i) ((02)(13), (02)(13), Id), ((02)(13), Id, (02)(13)), (Id, (02)(13), (02)(13));
(ii) ((13), (13), (13));
(iii) (Id, (0123), (0321));
(iv) ((13), (03)(12), (01)(23)), ((02), (01)(23), (01)(23)), ((02), (03)(12), (03)(12)).

Thus, we know the group of autotopies of the unique, up to isotopy, nonlinear
binary quasigroup. In addition, we need examples of semilinear 3- and 4-ary
quasigroups with the minimal group of autotopies. We de�ne the n-ary quasigroup
l•n by the identity

l•n(x) =

{
ln(x)⊕ 2, if x ∈ {0, 2}n,
ln(x), if x 6∈ {0, 2}n.

Lemma 4.5. If n > 3 then the autotopy group of l•n is generated by the autotopies
enumerated in Lemma 4.2 and has the order 2n+1.

We prove Lemma 4.5 for any n. However, we note that only the cases n = 3
and n = 4 are used in the further discussion. For these cases, the statement of
Lemma 4.5 can be checked directly.

Proof. Obviously, the autotopies in Lemma 4.2 have order 2, commute and are
linearly independent; whence the order of the group generated by them follows.

The codeM(ln) of the quasigroup ln is a 2n-dimensional a�ne subspace of the
vector space over the �eld GF(2) of two elements with the addition ⊕ and trivial
multiplication by 0 and 1.

The code M(l•n) of l•n di�ers from the a�ne subspace M(ln) in the 2n vertices
of the set Bn, where Bn = M(l•n)\M(ln) = {(l•n(x), x) | x ∈ {0, 2}n}. Moreover,
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M(ln) is a unique closest (in the sense above) to M(l•n) a�ne subspace, because
any other a�ne subspace of the same dimension di�ers from M(ln) in at least
22n−1 > 4 · 2n vertices. Under the action of an autotopy of l•n, the code M(l•n) is
mapped to itself (by the de�nition), while M(ln) is mapped to an a�ne subspace
(indeed, it is easy to see that any permutation of Σ is an a�ne transformation
over GF(2)), which is also closest to M(l•n). It follows that an autotopy of l•n is
necessarily an autotopy of ln. Moreover, it also follows that under the action of
such an autotopy the set Bn (the di�erence between the codes of l•n and ln) is
mapped to itself. In particular, every permutation of that autotopy stabilizes the
set {0, 2}, i.e. is one of Id, (02), (13), (02)(23). As it follows from the description
of the autotopy group of ln in Section 6, all such autotopies are combinations of
the autotopies listed in Lemma 4.2.

5. A lower bound and quasigroups attaining it

5.1. The estimation

In this section, we consider an arbitrary quasigroup of order 4 and prove a sharp
lower bound for the order of its autotopy group. In particular, the autotopy group
of a semilinear quasigroup is rather large. For a reducible quasigroup f , we show
that the nodes of its decomposition tree T0(f) can be grouped into subsets, which
we call bunches. Each bunch in T0(f) consists of nodes of the same parity, i.e.
it does not contain any adjacent nodes of the tree T0(f). A current subgroup of
the autotopy group Atp(f) corresponds to each bunch, and the subgroups corre-
sponding to di�erent bunches are independent.

We now introduce additional notation and de�nitions concerning the repre-
sentation of quasigroups in a form of a decomposition tree. Let f be an n-ary
quasigroup of order 4 with a reduced decomposition S and the decomposition tree
T = T0(S).

• Let N = n + 1 denote the number of leaves in the tree T , and let V be the
number of nodes in T .

• A bald node is an inner vertex u of the tree T without leaves among the
neighbors of u. Let E equal the number of bald nodes in T .

• A bridge node, or simply bridge, is a vertex u of degree 3 in the tree T that
is adjacent to exactly one leaf. The leaf adjacent to the bridge u is called a bridge
leaf. Let B equal the number of bridges in T .

• A fork is a vertex u of degree 3 in the tree T that is adjacent to exactly two
leaves. Let F equal the number of forks in T .

• By G(T ), we denote the graph with the set of nodes of the tree T taken as
the vertex set. Two vertices are adjacent in the graph G(T ) if the corresponding
nodes are adjacent to the same bridge in T . It is easy to see that G(T ) is a forest.

• A bunch is a connected component of G(T ). Let Γ equal the number of
bunches in T .
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• For a bunch G in G(T ), a leaf x of the tree T belongs to the leaf set of G if x
is adjacent to some node of T included in G. A bunch of the graph G(T ) is called
bald if its leaf set is empty. Let L equal the number of bald bunches in T .

It is worth to note that a bridge providing a corresponding edge in a bunch G
does not belong to G as its vertex. The bridge being a node is contained in another
bunch which di�ers from G. In addition, all bridges providing the edges of the
bunch G belong to one of two parts of the bipartite graph T while the nodes of G
pertain to the other part of T .

For example, consider the decomposition tree designed in Figure 1. There are
one bald node ι, �ve bridges γ, δ, ζ, η, θ, and one fork β. The nodes form seven
bunches, namely {α, β, ε, η, ι}, {γ}, {δ}, {ζ, θ}, {κ}, {λ}, {µ}.

ε
ζ

η
θ

ι

κ

λ
µ

γ

α

δβ

Figure 1: A decomposition tree

Since the number V of nodes in a tree T equals the number of vertices in the
forest G(T ), the number B of bridges in T equals the number of edges in G(T ),
and the number Γ of bunches in T equals the number of connected components
of G(T ), it follows that

Γ = V −B. (9)

It is evident that the number Γ −L of non-bald bunches is less than or equal to
the number V −E of non-bald nodes. Therefore, the relations Γ−L = V −B−L 6
V − E hold and from that we get a bound for the number of bald bunches

L > E −B. (10)

For two di�erent leaves x and y in the leaf set of a bunch G in the graph G(T ),
we de�ne an isotopy ψx,y of the decomposition S in the following way. For any
edge of the chain P connecting leaves x and y in the tree T we take the involution
ξ = ξ(G) native to the nodes of the bunch G. Each bridge node in the chain P
does not belong to G, but is adjacent to two nodes of the bunch G and one leaf
z of the tree T . If a bridge v is labeled by f , then for the leaf edge of v we take
a native transposition τ = τ(z) of the bridge v such that the three permutations
ξ, ξ, τ in an appropriate order form an autotopy of the binary quasigroup f . Such
a transposition exists by Lemma 4.3(iv). Finally, we take the identity permutation
for the remaining edges of the tree T .
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Lemma 5.1. For any two leaves x and y from the leaf set of a bunch in G(T ),
the isotopy ψx,y is an autotopy of the decomposition S.

Proof. Consider a bunch G and any two leaves x and y from the leaf set of G. The
nodes of the chain P connecting x and y in the tree T can be partitioned into two
parts. The �rst part consists of the nodes of the bunch G. If u ∈ P is a node of G,
then by construction the isotopy ψx,y contains the involution ξ = ξ(G) native to u
for each of the two edges incident to u in the chain P and identity permutations
for all other edges incident to u in the tree T . By Lemma 4.2, such a collection of
permutations forms an autotopy of the quasigroup prescribed to the vertex u.

The second part of nodes in the chain P consists of bridges, which do not
belong to the bunch G, but provide the edges of G. Let v be such a bridge in
the tree T and z be the only leaf of v. By construction, the isotopy ψx,y contains
two foreign to v involutions ξ(G) and a native to v transposition τ(z) that form
an autotopy of the quasigroup prescribed to the vertex v.

For each of the nodes not in the chain P , the isotopy ψx,y induces the identity
autotopy. From these arguments, we conclude that for each node in the tree T ,
the isotopy ψx,y yields an autotopy of the quasigroup prescribed to this node.
Consistently, ψx,y is an autotopy of the decomposition S.

Let us note that a bald bunch, as well as a bunch with only one leaf, do not
grant any autotopies of the kind ψx,y.

Lemma 5.2. If a bunch G contains k > 1 leaves in its leaf set, then there exist at
least 2k−1 autotopies of the decomposition S acting in the following way: on the
edges incident to leaves of G, they act with identity permutations or involutions
native to the nodes of G; on the edges that are incident to the leaves of the bridges
connecting the nodes of G, they act with identity permutations or transpositions
native to the bridges.

Proof. Let {x, y1, . . . , yk−1} be the leaf set of the bunch G. Autotopies ψx,yi ,
i = 1, . . . , k − 1, of order 2 each commute with each other and are independent
from each other since for each i only one of them, namely ψx,yi obtains a non-
identity permutation for the edge incident to the leaf yi. Therefore, these k − 1
autotopies yield 2k−1 autotopies corresponding to the bunch G.

In further, the autotopies of the decomposition S described in Lemma 5.2 are
called the autotopies induced by the bunch G. All them are of order 2.

If a bunch contains a fork, we can point out autotopies of order 4, which
contribute additionally to the size of the autotopy group of the corresponding
quasigroup.

Lemma 5.3. For each fork in a decomposition tree, one can �nd two autotopies
of the decomposition acting on the leaf edges of the fork with its native cycles and
on all other edges with identity permutations.
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Proof. Consider a fork u in a decomposition S and let ξ be the native involution
of u. Without loss of generality, we assume that the node adjacent to the fork u
is its 0-th neighbor, while the leaves x and y of u are the 1-st and 2-nd neighbors
respectively. For each pair ϕ1, ϕ2 of cycles native to u, by Lemma 4.3 there exists
exactly one permutation ξ′ ∈ {Id, ξ} such that the triple ϕ = (ξ′, ϕ1, ϕ2) forms an
autotopy of the quasigroup f prescribed to the fork u.

If ξ′ = Id then ϕ and ϕ−1 are required autotopies of f , which can be �nished up
to autotopies of the decomposition S by use of identity permutations. If ξ′ = ξ,
then one can take the isotopy (ξ′, ϕ1, ϕ2)(ξ, ξ, Id) = (Id, ϕ1ξ, ϕ2) instead of ϕ.
By Lemma 4.3, the former is also an autotopy of the quasigroup f with its native
cycles ϕ1ξ and ϕ2.

Lemma 5.4. For any decomposition, its non-identity autotopies induced by dif-
ferent bunches of the decomposition tree are independent and commute with each
other.

Proof. Consider a decomposition S with the tree T and two autotopies of S. If
the supports of the autotopies intersect in the empty set, then they are trivially
independent and commute with each other. At the same time, the supports of
autotopies induced by di�erent bunches of G(T ) can intersect only in edges of
bridge nodes. Indeed, according to Lemma 5.3, the support of the autotopy cor-
responding to a fork does not exceed the set of leaf edges of the fork. As while
as the support of an autotopy ψx,y induced by a bunch G can contain only edges
incident to the nodes of G. If there are more than one node in G, then some of
the edges in the support of ψx,y are also inner edges of bridges connecting nodes
of G.

Thereby, it is su�cient to prove the lemma for autotopies induced by di�erent
bunches with supports intersecting in edges incident to bridge nodes. An arbitrary
autotopy induced by a bunch G acts on edges in its support in the following way:

• on edges incident to nodes of G, it acts with involutions native to nodes of
the bunch G;

• on leaf edges incident to bridges connecting nodes of G, it acts with trans-
positions native to the bridges.

Assume that a bridge v with a leaf z connects two nodes of the bunch G; and let v
be contained in another bunch G′. By Lemma 4.3(iv), all autotopies induced by G
contain exactly one of the two transpositions native to v, namely τ = τ(z). The
transposition τ cannot generate the involution native to the bridge v. Thus, the
autotopies induced by the bunch G and the autotopies induced by the bunch G′

are independent.
Consider autotopies θ = ψx,y and θ′ = ψx

′,y′ induced by the bunches G and G′

respectively. Let the supports of these two autotopies contain edges incident to a
bridge v in their intersection. Autotopies θ and θ′ act on inner edges of v with
involutions ξ = ξ(G) and ξ′ = ξ′(G′) native to G and G′ respectively. Since
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involutions (01)(23), (02)(31) and (03)(12) commute with each other, we have
ξξ′ = ξ′ξ.

The autotopy θ acts on the leaf edge of the bridge v with the transposition τ ,
while the autotopy θ′ acts on this edge with some involution η′ (or the iden-
tity permutation, which is considered trivially). Both τ and η′ are native to v.
It is obvious that, for example, the involution (01)(23) and the transpositions
(01) and (23) forming it commute. The same is true for the involutions (02)(31)
and (03)(12). Therefore, we get τη′ = η′τ .

From the reasoning above it is follows that the autotopies θ and θ′ commute
on every edge that is contained in the intersection of their supports. This proves
commutativity of autotopies of the decomposition S induced by di�erent bunches
in its tree.

Theorem 5.5. For an arbitrary n-ary quasigroup f of order 4, the following
inequality holds:

|Atp(f)| > 2[n/2]+2. (11)

If n > 5, then this bound is sharp.

Proof. Let the quasigroup f have a reduced decomposition S with the tree T .
For each bunch G with k > 1 leaves, by Lemma 5.2 one can construct 2k−1

autotopies of f which act on variables corresponding to leaves of the bunch G
with permutations of order 2. Taking into account all bunches of the graph G(T )
except the bald ones, by use of Lemma 5.4 we get 2N−(Γ−L) autotopies of f .

In addition, for any fork v in the tree T , by Lemma 5.3 there are 2 autotopies
of f which act on variables corresponding to the leaves adjacent to v with cycles
native to the fork v. This contributes the factor 2F to the number of constructed
here autotopies of f . In this way, using (9) we obtain

|Atp(f)| > 2N−(Γ−L)+F = 2N−V+B+L+F . (12)

Suppose that in the decomposition tree T there are t edges and Vs vertices
of degree s, s = 0, 1, 2, . . .. By de�nition of a quasigroup decomposition and
accordingly to notation stabilized above, it can be written V1 = N , V2 = 0. Thus,

N +
∑
s>3

sVs = 2t = 2(N + V − 1).

It follows that

N + 2V − 2 =
∑
s>3

sVs = 4
∑
s>3

Vs +
∑
s>5

(s− 4)Vi − V3 > 4V − V3. (13)

Consequently, the inequality N > 2V − V3 + 2 holds.
In accordance with the number of adjacent leaves, the nodes of degree 3 in

the tree T are partitioned into forks, bridge nodes, and bald nodes (there are no
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vertices of degree 3 with three adjacent leaves since n > 2). Trivially, the number
of bald nodes of degree 3 is not greater than the total number of bald nodes in T .
Taking into account (10), we get

V3 6 F +B + E 6 F + 2B + L, (14)

which allows to rewrite the estimate for N in more detail:

N > 2V − V3 + 2 > 2V − F − 2B − L+ 2.

Hence,

−V +B > −1

2
(N + F + L) + 1.

Applying this inequality to (12), we derive

|Atp(f)| > 2(N+F+L)/2+1 > 2N/2+1 = 2(n+3)/2 (15)

Let us note that the second inequality in (15) is strict if and only if the decom-
position tree contains a fork or bald node. Since |Atp(f)| is an integer and the
number of autotopies generated by those described in Lemmas 5.2 and 5.3 is a
power of 2, we have

|Atp(f)| > 2bn/2c+2. (16)

Further, let us show that the bound (16) is attainable. Consider the quasi-
groups l•3 and l•4 in Lemma 4.5, which we denote here by f and h correspondingly,
and the quasigroup x0 = g(x1, x2, x3) = τf(τx1, τx2, τx3) with τ = (12), which is
isotopic to the ternary quasigroup f .

The quasigroups f and g are {0, 2}- and {0, 1}-semilinear, respectively. Their
autotopy groups are isomorphic to each other, namely one of them is conjugate
with the other by the transposition τ . The permutation (01)(23) is a native invo-
lution for g, as (01) and (23) are native transpositions of g.

Note that only the identity permutation Id can be met in autotopies of both f
and g. The same is true for h and g. Therefore, if f and g (or h and g, respectively)
are adjacent in a decomposition tree of some quasigroup q, then by Lemma 4.1
their autotopies can concatenate to an autotopy of the decomposition of q only by
the identity permutation.

Reasoning in this way, it is easy to see that for odd n > 5 the quasigroup qn
of arity n with a decomposition tree of kind

f
g . . . f

g
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has the autotopy group of order 2(n−1)/2+2. For even n > 6, the quasigroup qn of
arity n with a decomposition tree of kind

h g
f . . . g

f

has the autotopy group of order 2n/2+2. In both cases, the equality is attained
in (16) for the quasigroups designed.

Remark 5.6. For n = 3 and n = 4, the bound pointed out in Theorem 5.5 is
not sharp. The quasigroup qn described in the proof degenerates into a semilin-
ear quasigroup, which has autotopies consisting of its native transpositions (see
Lemma 4.5(ii)). Such autotopies are not taken into account in the estimation of
Theorem 5.5.

The quasigroup qn also delivers the minimum for order of autotopy group in
the case n ∈ {3, 4}. However, in this case the minimum is two times greater than
the minimum number in Theorem 5.5. At the same time, any decomposition tree
of a reducible quasigroup of arity n ∈ {3, 4} contains a fork. If there are two forks,
then the di�erence can be seen from inequalities in (15). If there is one fork, then
by Lemma 4.3(iv) the quasigroup qn has autotopies with non-identity involution
acting on the inner edge of the fork, which are not considered in the proof of
Theorem 5.5.

5.2. Quasigroups with autotopy groups of minimum order

Besides the examples of quasigroups described in the proof of Theorem 5.5, there
are many other such quasigroups for which the equality is attained in the lower
bound given by the theorem. In this section, we characterize quasigroups with this
property for n odd. In our reasoning we examine the cases in which all non-strict
inequalities occurring in the proof of the theorem turn into equalities. In case
of even n, we have not got such an opportunity since we explicitly use the ceil
function.

For odd n, the number in the right part of (11) equals 2bn/2c+2 = 2
n−1
2 +2 =

2
n+3
2 . Based on the proof of Theorem 5.5, for odd n one can derive properties of

reduced decompositions with exactly 2
n+3
2 autotopies. The tree of such a decom-

position does not contain:

(I) any vertices of degree greater than 4 (this follows from the equality in (13)),

(II) any forks (the equality in (15)),

(III) any bald bunches (the equality in (15)),

(IV) greater than one non-bald vertex in each bunch (the equality in (10)),
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(V) any bald vertices of degree greater than 3 (the equality in (14)).

Conditions (III)�(V) imply that in a decomposition with exactly 2
n+3
2 autotopies

(III�V) each bunch contains exactly one non-bald node, which can be a bridge or
node of degree 4, and possibly some bald nodes of degree 3 as well.

Let us take a reduced decomposition that satis�es the conditions (I)�(V) and
label each of its nodes of degree 4 with a ternary quasigroup isotopic to l•3. This
decomposition has only the autotopies considered in the proof of Theorem 5.5, and
the corresponding quasigroup meets the bound 2

n+3
2 for the order of the autotopy

group. On the other side, the following statement takes place.

Lemma 5.7. Let S be a reduced decomposition of an n-quasigroup f of order 4

with |Atp(f)| = 2
n+3
2 . Each node of degree 4 in the decomposition S has a ternary

quasigroup isotopic to the quasigroup l•3 as its label.

Proof. There exist exactly �ve ternary quasigroups up to isotopy, variable permu-
tation, and inversion [10]. One of them is linear and another one is non-semilinear.
The remaining three quasigroups are semilinear, but not linear. These three are
the quasigroups l•3,

g(x1, x2, x3) = x1 ⊕ (x2 +4 x3), and h(x1, x2, x3) = x1 +4 x2 +4 x3.

The quasigroup g admits the autotopy ϕ = ((01)(23), (01)(23), Id, Id) with two
involutions foreign to g. The quasigroup h has got the autotopy

((01)(23), (01)(23), (01)(23), (01)(23)),

consisting of four foreign involutions.
Suppose that the tree T of a decomposition S has a node α labeled with g (the

case of h can be handled similarly). We will show that under the assumptions

made one can obtain |Atp(f)| > 2
n+3
2 . With this aim, for the decomposition S we

construct a special autotopy consisting of permutations in the transformation ϕ.
It helps us to get the inequality.

Consider the 0-th neighbor of the node α. If it is a leaf, then we prescribe the
permutation (01)(23) to the leaf edge. If the neighbor is a node, it belongs to some
bunch G. According to (III), the bunch G is not bald and contains at least one
leaf x. Assume that a chain P connects the leaf x with the node α in the tree T .
Prescribe the permutation (01)(23) to each edge of P . If there is any bridge node
in the chain P , which connects two nodes of the bunch G, we prescribe a native
transposition to the leaf edge of the bridge accordingly to Lemma 4.3(iv). Next,
we do the same construction for the 1-st neighbor of the node α and prescribe the
identity permutation to the remaining edges in the tree T .

Finally, we obtain an autotopy θ of the decomposition S because for each node v
in T the permutations acting on the edges incident to v form an autotopy of the
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quasigroup corresponding to v. In addition, the autotopy θ does not contribute
to the number given as a lower bound in Theorem 5.5. Indeed, in the proof
of the theorem we consider only those autotopies of the decomposition which
act on every edge incident to a node of degree 4 with an involution native to
the node. In contrast, the autotopy θ acts on two edges incident to α with the
involution (01)(23), which is not native to g. Consequently, θ increases the order

of the autotopy group of f ; so, |Atp(f)| > 2
n+3
2 .

If the quasigroups h is prescribed to the node α, then one can construct an
additional autotopy of f in the same way. The only di�erence is that in this case
all neighbors of the node α should be considered.

A decomposition tree satisfying conditions (I)�(V) can be constructed using
the following procedure.

Construction T.

Step 1. Take an arbitrary tree T1 with exactly (n−1)/2 vertices, which we call
nodes. The degree of each node should not exceed 3.

Step 2. Connect 4 − i new leaves to each node of degree i ∈ {1, 2, 3} in the
tree T1. Degree of each node in the resulting tree T2 equals 4.

Step 3. Select some (maybe none, maybe all) nodes adjacent to exactly one
leaf. Replace each selected node s by two new nodes us and vs of degree 3 adjacent
to each other. Four neighbors of v can be distributed among the neighborhoods
of us and vs in any of three possible ways. Denote the tree obtained at this step
by T3.

Step 4. Divide the nodes of T3 into two independent parts V1 and V2, which is
possible because any tree is a bipartite graph.

Step 5. To each node in the part Vi, i = 1, 2, assign a {0, i}-semilinear quasi-
group isotopic to +4 or l•3

Step 6. Finally, choose a leaf to represent the value of the quasigroup, index
the neighbors of each node in an appropriate way and get a decomposition tree T
of some quasigroup f .

Moreover, it turns out that, for every quasigroup f which meets the bound on
the order of its autotopy group, one can build a quasigroup isotopic to f using
Construction T.

Theorem 5.8. Every n-ary quasigroup f with the autotopy group of order 2
n+3
2

is isotopic to some quasigroup with a decomposition tree obtained with Construc-
tion T.

Proof. Let T be a decomposition tree built using the construction. Nodes of
degree 3 are combined in pairs �bald node � bridge node� input at Step 3. In each
pair, the bald node is included into some bunch, while the bridge node corresponds
to an edge of that bunch. Since a bunch is a tree and the number of vertices in
a tree is one more than the number of edges, every bunch contains exactly one
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non-bald node. By construction, it is a bridge node or node of degree 4. Therefore,
the tree T satis�es conditions (I)�(V).

On the other hand, consider a quasigroups f that meets the bound 2
n+3
2 on

the order of the autotopy group. Let T be the tree of a decomposition of f . From
condition (III�V), it follows that in any bunch the numbers of bald nodes and
edges coincide. Consequently, there is a one-to-one correspondence between the
bridges and the bald nodes, all of which have degree 3. In addition, we can require
that a bridge is adjacent to its corresponding bald node. Shrinking the pairs of
corresponding nodes of degree 3 (an operation reverse to Step 3), we get a tree
whose all nodes are non-bald and of degree 4. Any such a tree can be obtained
at Step 2. By Lemmas 3.5 and 5.7, the node labeling of the decomposition tree T
conforms to the labeling at Step 5.

6. An upper bound

In this section, we prove that the maximum order of the autotopy group of an
n-ary quasigroup of order 4 equals 6 · 2n, and only the linear quasigroup, which is
unique up to isotopy, reaches the upper bound. We also determine the quasigroups
that have the maximum order of autotopy groups among the nonlinear quasigroups
and point out this order as well.

Here we use Orbit�Stabilizer Theorem. In our case, this theorem says that the
order of the autotopy group of a code M equals the size of the stabilizer of any
element x ∈M multiplied by size of the orbit of x under the action of the autotopy
group. Let us start with several auxiliary statements concerning autotopies of a
n-ary quasigroups that stabilize a certain element in the quasigroup code. For
simplicity, that element is usually considered to be the all-zero tuple (0, . . . , 0).
The next lemma takes place for a quasigroup of any order k.

Lemma 6.1. Let f be an n-quasigroup and f(0, . . . , 0) = 0. Then an arbitrary
autotopy (θ0, . . . , θn) ∈ Atp(f) stabilizing the all-zero tuple is uniquely determined
by any single of its permutations θi, i ∈ {0, . . . , n}. In particular, if for some
i ∈ {0, . . . , n} the permutation θi is identity, then all the others are also identity.

Proof. Without loss of generality, given the permutation θ0, we express the per-
mutations θ1, . . . , θn in terms of it.

Assume that (θ0, . . . , θn) is an autotopy of f such that θi0 = 0, i = 0, 1, . . . , n.
By the

By the autotopy de�nition, we get

θ−10 f(θ1x1, 0, . . . , 0) = f(x1, 0, . . . , 0) for any x1 ∈ Σ,

which is equivalent to

θ1x1 = f<1>(θ0f(x1, 0, . . . , 0), 0, . . . , 0) for any x1 ∈ Σ.
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One can see that the permutation θ1 is entirely determined by the quasigroup f
and permutation θ0. In the same manner, we can express any of θ0, . . . , θn through
any other one.

Finally, by the argumentation above it is evident that, for example, θ0 = Id
imply θi = Id for any i ∈ {1, . . . , n}.

Corollary 6.2. If an autotopy θ = (θ0, . . . , θn) of an n-quasigroup f stabilizes a
tuple (a0, . . . , an) from M(f), then all of the permutations θi, i = 0, . . . , n, have
the same order.

Proof. By the hypothesis, (a0, . . . , an) ∈ M(f); that is a0 = f(a1, . . . , an). Con-
sider the quasigroup g de�ned as

g(x1, . . . , xn) = τ0f(τ1x1, . . . , τ1xn),

where τ = (τ0, . . . , τn) is an isotopy consisting of the transpositions τi = (0 ai),
i = 0, . . . , n. It is easy to verify that g(0, . . . , 0) = 0 and the isotopy

δ = τθτ = (τ0θ0τ0, . . . , τnθnτn),

conjugate to θ, is an autotopy of g stabilizing the all-zero tuple.

By Lemma 6.1, for any integer r, all permutations from the autotopy δr are
identity if there is at least one identity permutation among them. Consequently,
all permutations δi, i = 0, . . . , n, have the same order.

It remains to note that the permutations δi, θi are of the same order because
δri = τθri τ , i = 0, . . . , n.

Lemma 6.3. Let f be an n-quasigroup of order 4 such that f(0, . . . , 0) = 0. If f
has an autotopy θ of order 2 that stabilizes the all-zero tuple, then f is semilinear.

Proof. By Corollary 6.2, each of the permutations θi, i = 0, . . . , n, has order 2.
Since θi(0) = 0 for each i = 0, . . . , n, we have θi ∈ {(12), (13), (23)}. Without loss
of generality, assume that θ0 = . . . = θn = (23) (otherwise, consider a quasigroup
isotopic to f that has the autotopy consisting of permutations (23)).

For every (x1, . . . , xn) from {0, 1}n and for x0 = f(x1, . . . , xn), we have

x0 = f(x1, . . . , xn) = θ−10 f(θ1x1, . . . , θnxn) = θ0f(x1, . . . , xn) = θ0x0.

Since θ0 = (23), the value of x0 can only be 0 or 1. Therefore, the quasigroup f
maps {0, 1}n to {0, 1}. So, f is semilinear by the de�nition.

Lemma 6.4. Let f be an n-quasigroup of order 4 such that f(0, . . . , 0) = 0. If f
has an autotopy θ of order 3 that stabilizes some tuple (a0, . . . , an) ∈M(f), then f
is linear.
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Proof. By Corollary 6.2, each of the permutations θi, i = 0, . . . , n, has order 3.
(i) If f is {0, 1}-, {0, 2}-, or {0, 3}-semilinear in every variable, then it is {a, b}-

semilinear for any a 6= b ∈ Σ and, consequently, linear. Hence, the lemma is true
for semilinear quasigroups.

(ii) Assume f is not semilinear. Consider a proper decomposition S of f
and the corresponding tree T . The autotopy δ of S induced by θ has the same
order 3. Therefore, δ consists of 3-cycles or identity permutations. Each of those
permutations stabilizes some element in Σ.

Consider an arbitrary non-bald node v labeled by a quasigroup g. The au-
totopy of g induced by δ satis�es the hypothesis of Corollary 6.2; so, each of its
permutations has order 3. Since S is a proper decomposition, g is semilinear,
and from item (i) of this proof we conclude that it is linear. This contradicts the
de�nition of a proper decomposition.

Theorem 6.5. (i) The maximum order for an autotopy group of an n-ary quasi-
group of order 4 equals 6 · 4n; only the linear quasigroups reach this maximum.
(ii) The maximum order for an autotopy group of a nonlinear n-ary quasigroup of
order 4 equals 2 · 4n; only the semilinear quasigroups whose autotopy group acts
transitively on their codes reach this maximum.

Proof. Consider an arbitrary n-ary quasigroup f of order 4. Without loss of gen-
erality, we assume that f(0, . . . , 0) = 0.

By Orbit�Stabilizer Theorem, the order of Atp(M(f)) equals the size of its
stabilizer subgroup with respect to (0, . . . , 0) ∈M(f) multiplied by the size of the
orbit of (0, . . . , 0) under the action of Atp(M(f)).

For the all-zero tuple, the size of its orbit does not exceed the cardinality
of M(f), i.e., 4n (the equality takes place if and only if the orbit coincides with
the code; in other words if the action of the autotopy group is transitive on the
code.)

Next, consider the size of the stabilizer with respect to the all-zero tuple. For a
non-semilinear quasigroup, it equals 1 by Lemmas 6.3 and 6.4. As for a semilinear
quasigroup that is not linear, the size of the stabilizer is 2 (at least 2 by Lemma 4.5;
at most 2 by Lemmas 6.1 and 6.4). So, (ii) is proved.

Since any linear quasigroup is isotopic to the quasigroup ln(x1, . . . , xn) = x1⊕
. . .⊕ xn, it remains to �nd |Atp(ln)|. For an arbitrary tuple (a0, . . . , an) ∈M(ln),
the mapping (x0, . . . , xn) 7→ (x0 ⊕ a0, . . . , xn ⊕ an) maps (0, . . . , 0) to (a0, . . . , an)
and induces an autotopy of ln. Hence, the size of the orbit of (0, . . . , 0) equals 4n.

The size of the stabilizer with respect to (0, . . . , 0) is at most 3! by Lemma 6.1.
On the other hand, for each of 3! permutations θ∗ of Σ such that θ∗(0) = 0, we have
ab autotopy θ = (θ∗, . . . , θ∗) (this can be checked by induction on the arity n).
Therefore, the size of the stabilizer equals 6, and the order of the autotopy group
of any linear n-ary quasigroup of order 4 is 6 · 4n.

In conclusion, we should note that the semilinear n-ary quasigroups with tran-
sitive autotopy groups were characterized in [4], where a correspondence between
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such quasigroups and Boolean polynomials of degree at most 2 was established.
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