Quasigroups and Related Systems 27 (2019), 181 — 200

Characterization of obstinate H,MV-ideals

Mahmood Bakhshi and Akefe Radfar

Abstract. One motivation to study obstinate ideals in any algebra of logic is that the induced
quotient algebra by these ideals is the two-element Boolean algebra. In this paper, we intro-
duce two types of obstinate ideals in H, MV-algebras; obstinate H, MV-ideals and obstinate weak
Hy,MV-ideals. Giving several theorems and examples we characterize these H,MV-ideals. For
example, we prove that an H,MV-ideal (if exists) must be maximal, and any H,MV-algebra
with odd number of elements does not contatin an obstinate H, MV-ideal. Also, we characterize
these H,MV-ideals in finite H, MV-algebras with at most six elements; we investigate that which
subsets can be an obstinate (weak) H,MV-ideal. In the sequel, we investigate the relationships
between obstinate (weak) H,MV-ideals, and Boolean and prime H,MV-ideals. Finally, we prove
that in a commutative H, MV-algebra, the quotient H, MV-algebra induced by an obstinate weak

H,MV-ideal must be a two-elements Boolean algebra.

1. Introduction

In 1958, Chang [8] introduced the concept of an MV-algebra as an algebraic proof
of completeness theorem for Ng-valued Lukasiewicz propositional calculus, see also
[9]. Many mathematicians have worked on MV-algebras and obtained significant
results. Mundici [21] proved that MV-algebras and Abelian ¢-groups with strong
unit are categorically equivalent. He also proved that MV-algebras and bounded
commutative BCK-algebras are categorically equivalent (see [20]). The ideal theory
have an important role in studying algebras of logics such as MV-algebras because
they are correspond to the sets of provable formulas in the correspond logics. In
this respect various researches have published by many authors (see for example
[14, 15, 16, 17]).

The hyperstructure theory (called also multialgebras) was introduced in 1934
by Marty [19]. Around the 40’s, several authors worked on hypergroups, espe-
cially in France and in the United States, but also in Italy, Russia and Japan.
Hyperstructures have many applications to several sectors of both pure and ap-
plied sciences. A short review of the theory of hyperstructures appear in [10]. In
[11] a wealth of applications can be found, too. There are applications to the fol-
lowing subjects: geometry, hypergraphs, binary relations, lattices, fuzzy set and
rough sets, automata, cryptography, combinatorics, codes, artificial intelligence
and probabilities.
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Borzooei et al. [6, 18] applied the hyperstructures to BCK-algebras and in-
troduced the notion of a hyper BCK-algebra and a hyper K-algebra, which is a
hyperstructure weaker than hyper BCK-algebras. Recently, Ghorbani et al. [13]
applied the hyperstructures to MV-algebras and introduced the concept of hyper
MV-algebra and investigated some related results, see also [22]. Particularly, they
investigated the relationships between hyper MV-algebras and hyper K-algebras.
They proved that any hyper MV-algebra together with suitable (hyper) operations
is a hyper K-algebra, and any hyper K-algebra satisfying some conditions can be
viewed as a hyper MV-algebra.

In 1995, Vougiouklis introduced a generalization of hyperstructures so-called
H.,-structure (see [23, 24]). Indeed, H,-structures are a generalization of the well-
known algebraic hyperstructures (hypergroup, hyperring, hypermodule and so on).
Actually some axioms concerning the above hyperstructures such as the associa-
tive law, the distributive law and so on are replaced by their corresponding weak
axioms. Since then the study of H,-structure theory has been pursued in many
directions by Vougiouklis, Davvaz, Spartalis and others. To investigate the rela-
tionships between H,-structures such as H,-groups and suitable generalizations of
MV-algebras, the first author introduced H,MV-algebras and gave various results.
He introduced some types of ideals such as (fuzzy) H,MV-ideals and (fuzzy) weak
H,MV-ideals and their generalizations (see [1, 2, 3, 4, 5]).

2. Preliminaries

This section is devoted to give some definitions and results from the literature.
For more details we refer to the references.

Definition 2.1. An H,MV-algebra is a nonempty set H endowed with a binary
hyperoperation ‘@®’, a unary operation ‘*’ and a constant ‘0’ satisfying the following

conditions:
(H,MV1) z(yd2)N(zdy) dz # 0, (weak associativity)
(H,MV2) (z@y)N(y@zx) #0, (weak commutativity)
(H,MV3) (z*)* =z,
(H,MV4) (z*@y)*dyn(y* ®z)* &z #0,
(H,MV5) 0* € (z @ 0%) N (0* @ x),
(H,MV6) 0* € (x ® z*) N (z* ® x),
(H,MV7) 2 € (z30)N (0@ ),
(H,MV8) 0* € (z*dy)N(y®2*) and 0" € (v* ®z) N (x @ y*) imply x = v.

On any H,MV-algebra H, the binary relation ‘=<’ is defined as
r=y & 0Fer*Dynyd ™.

Proposition 2.2. In any H,MV-algebra H, the following hold: Yx,y € H and
VA, BCH,
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(1) A< A, 0= A=1, where 1 = 0,

(2) A = B implies B* < A*,

(3) (A7) =4,

(4) AN B # () implies that A < B,

(5) 20 (yoz)N(20Y) @2z #0, where Oy = (z* S y*)*,
6) oy nyoz) #0,

(M oe@onn(Oo),

) 0e(zoz")N(z" ©x),

9) zezol)n(1ox),

(10) 0 e (z AO)N(0AZ), where x Ay = (D y*) Oy,

(11) 2z <y and y < = imply x = y.
Definition 2.3. Let I be a nonempty subset of H,MV-algebra H satisfying
(Io) z<yandy €I imply z € I.

1 is called

(1) an H,MV-ideal if x @y C I, for all z,y € I,
(2) a weak H,MV-ideal it x ®y < I, for all z,y € I.

Obviously, any H,MV-ideal is a weak H,MV-ideal, but the converse is not true
in general (see [1], for more details).

The set of all H,MV-ideals of H,MV-algebra H is denoted by Id(H).

From Proposition 2.2(4) it follows that

Theorem 2.4. Fvery H,MV-ideal is a weak H,MV-ideal.

From (H,MVT) it follows that 0 € 0 @ 0, whence {0} is a weak H,MV-ideal,
in any H,MV-algebra H. Generally {0} is not an H,MV-ideal, while H is itself
an H,MV-ideal (and so a weak H,MV-ideal). Hence H is called trivial H,MV-
ideal, and {0} and H are called the trivial weak H,MV-ideals of H. Any (weak)
H,MV-ideal of H (except H itself) is called proper.

Definition 2.5. Let 6 be an equivalence relation in H,MV-algebra H.
e 0 is called a congruence if
(1) 20y and ufv imply that @ u Oy G v, where A0 B means that for all a € A

there exists b € B and for all b € B there exists a € A such that afb.
(2) z0y implies that x*0y*,
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e 0 is said to be regularif z* ®yNy ® x*6,{0*} and y* Dx Nz & y*0,{0*}
imply z0y, where Af, B means that there exist « € A and b € B such a6b.

e The congruence class 0/6 is called the congruence kernel of 6.

Throughout the paper, H will denotes an H,MV-algebra, unless otherwise
stated.

3. Main results

Definition 3.1. A proper H,MV-ideal I of H is called an obstinate H,MV-ideal
if it satisfies (OI), where

(O) (Vx,ye H\I) Oy Uy @zClandz*OyUyoa™ C I

Definition 3.2. A proper weak H,MV-ideal I of H is called an obstinate weak
H,MV-ideal if it satisfies (WOI), where

(WOI) (Va,y € H\I) zOy Uy " @r=Tandz"OyUyoz* <1

From the definition it immediately follows that every obstinate H,MV-ideal is
an obstinate weak H,MV-ideal, whereas the converse may not be true, in general.

Example 3.3. Consider the H,MV-algebra (H; ®,* ,0), where H = {0, a,b, 1} and
@ and * are defined as given in Table 1. It is not difficult to check that I = {0,a}
is an obstinate weak H,MV-ideal of H, while it is not an obstinate H,MV-ideal
because b,1 € H\ I but 1* ©bUb® 1* = {0,a,1} Z I.

@ 0 a b 1
{0,a,b} {a, b} {b} {0,a,b,1}
{a} {a} {1} {1}
{6} {1+ Aab,1}  {a,1}
{0,a,b,1} {0,b,1} {0,b,1} {a,b,1}
1 b a 0

Table 1: Cayley table of Example 3.3

Example 3.4. Consider the H,MV-algebra (H;®,*,0), where H = {0,a,b,1}
and @ and * are defined as given in Table 2.

@ 0 a b 1
{0} {a} {0t {1}
{a} {a} {1} {1}
{o} {1} {6} {1}
{1y {1} {1} {»1}
1 b a 0

Table 2: Cayley table of Example 3.4

¥ |—= o Q O

*¥|= o O

It is not difficult to check that I = {0, a} is an obstinate H,MV-ideal of H.
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Theorem 3.5. In an H,MV-algebra with at least three elements, the singleton {0}
can not be an obstinate H,MV-ideal.

Proof. Let H be an H,MV-algebra with |[H| > 3 and assume that {0} is an
obstinate H,MV-ideal of H, by contrary. Then for z € H \ {0,1} we have
z*©1Ulea* C {0}; ie, 2 ©1 = {0}, whence z 0 = {1}. This contra-
dicts (H,MVT). Thus {0} is not an obstinate H,MV-ideal. O

Theorem 3.6. Any obstinate H,MV-ideal I of H satisfies
ze€lorz"el (YxeH). (3.1)

Proof. Assume that [ is an obstinate H,MV-ideal of H and € H\ I. Since 1 ¢ I,
soz*ex*®1CI. O

Example 3.7. Consider the H,MV-algebra (H;®,*,0) in which H = {0,a,b,1}
and @ and * are defined as in Table 3. It is easily seen that {0,a} is an H,MV-ideal
of H satisfying (3.1), while it is not an obstinate H,MV-ideal because b, 1 ¢ {0, a},
but 1*©bUb® 1* = {0,b,1} € {0,a}. This example shows that the converse of
Theorem 3.6 is not true in general.

0 a b 1
{or  {a} {o} {1}
{a} {0,a} {0,0,1} {0,1}
{6} {01}  {ot {0,1}

{0,1} {a,1} {0,b,1} {0,1}

1 b a 0

Table 3: Cayley table of Example 3.7

*¥|—= o9 ofh

Theorem 3.8. An H,MV-algebra with 2n 4+ 1 elements, where n is a positive
integer, does not contain any obstinate H,MV-ideal.

Proof. Let H be an H,MV-algebra with 2n 4 1 elements, where n > 1 is a positive
integer, and let I be an obstinate H,MV-ideal of H (by contrary). Then there
exists x € H such that z* = x. On the other hand, by Theorem 3.6 we must have
z* =x € I. Hence 0* € z* ® x C I, which a contradiction. Therefore, H can not
contain any obstinate H,MV-ideal. O

Theorem 3.9. In an H,MV-algebra, every obstinate H,MV-ideal, if exists, is
mazximal.

Proof. Let I be an obstinate H,MV-ideal of H and J be an H,MV-ideal of H such
that properly contains I. Let a € J\ I. By Theorem 3.6, a* € I C J. Hence
l1€a®a* C J, whence J = H. Therefore I is a maximal H,MV-ideal of H. [

Theorem 3.10. (Extension Theorem) Let I and J be H,MV-ideals of H such
that I C J. If I is an obstinate H,MV-ideal, J is also an obstinate H,MV-ideal.
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Proof. Assume that z,y & J, for x,y € H. Then x,y ¢ [ and so z* O yUy o z* C
I C J. Similarly, y* ®©x Uz ® y* C J, proving J is an obstinate H,MV-ideal of
H. O

Example 3.11 shows that the converse of Theorem 3.9 does not hold in general.

Example 3.11. Consider the H,MV-algebra (H,®,*,0), where H = {0, a,b,¢c, 1}
and @ and * are defined as in Table 4. It is easy to verify that the only proper
H,MV-ideals of H are {0} and {0,a}. Hence {0, a} is a maximal H,MV-ideal of H,
while it is not obstinate because b,c € H \ {0,a} and b* ©cUc©b* = H Z {0,a}.

0 a b c 1
{0} {a} {o} {cb A1}
{a}  {0,a}  {b,1} {0,a,c} {1}
{or {61} {o,1} H {1}
{ct {0,a,¢} H\{1} {c1} {1}
{1y {1} {1} {1y {1}

1 b a c 0

Table 4: Cayley table of Example 3.11

¥|— o o8 O

Example 3.12. Consider the H,MV-algebra (H,®,*,0), where H = {0,a,b,1}
and @ and * are defined as in Table 5. Routine calculations show that {0,a} and
{0, a, b} are obstinate weak H,MV-ideals of H. This example shows that Theorem
3.9 does not hold for obstinate weak H,MV-ideals, in general.

b 0 a b 1

0 {0} {a} {a, b} H
a {a} {a,1} {a,b} H
b {06} {0,a,0}  H {1}
1 H {0,a,1} {0,a,1} {b,1}
* 1 a b 0

Table 5: Cayley table of Example 3.12

Theorem 3.13. Let H = {0,a,1} be an H,MV-algebra.
(i) If la®a| =1, H does not contain any obstinate weak H,MV-ideal.
(ii) If la®al > 1, {0,a} is the mazimal obstinate weak H,MV-ideal.

Proof. Let H = {0,a,1} be an H,MV-algebra with three elements.

(i) We observe that a* = a and since 0* € a* ®a = a @ a, hence a @ a = {0*}.
This implies that a ® a A {0,a}. Hence {0,a} can not be a weak H,MV-ideal and
so is not an obstinate weak H,MV-ideal.

(ii) We assume that |a @ a| > 1. Then

{0,1} Cadaor {a,1} Ca®a or both. (3.2)
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We prove that 7 = {0,a} is a maximal obstinate weak H,MV-ideal of H. From
(HyMV7) it follows that 00 < I, 0®a = I and a ®0 < I and from (3.2) it
follows that a @ a < I. Obviously, I satisfies (Ip). Thus [ is a weak H,MV-ideal of
H. Now, from 1 ¢ I and that 0 € 1* ©1U1®1* it follows that 1*©1U1®1* <X I.
Hence I is an obstinate weak H,MV-ideal. It is obvious that I is maximal. O

Remark 3.14. We mention that the intersection of two H,MV-ideals is again
an H,MV-ideal (see [1, Theorem 4.14]), while it is not true for obstinate H,MV-
ideals. To see this consider Example 3.4. It is easy to check that {0,a} and {0,b}
are obstinate H,MV-ideals of H, while their intersection, {0}, is not an obstinate
H,MV-ideal because a,b € H\ {0} but a ©b* Ub* ©® a = {a} Z {0}.

On the other hand, the union of two H,MV-ideals may not be an H,MV-ideal,
in general (see Example 3.7 in which {0,a} and {0,b} are H,MV-ideals of H but
the union, {0, a, b}, is not an H,MV-ideal because a & b = {0,b,1} Z {0,a,b}). If
this is true it is easily proved that the union of two obstinate H,MV-ideals is again
an obstinate H,MV-ideal. Indeed we have

Theorem 3.15. Assume that A is a nonempty family of obstinate H,MV-ideals of
H such that UA 1is closed with respect to ‘®’. If each member of A is an obstinate
H,MV-ideal, UA is again an obstinate H,MV-ideal of H.

Proof. The proof is routine. We only observe that if UA is closed with respect to
@, UA satisfies Definition 2.3(1). O

Corollary 3.16. If Id(H) is closed with respect to the union, then OId(H), the
set of all obstinate H,MV-ideals of H, is an upper semilattice with respect to set
inclusion as the partial ordering.

In the sequel, we give several characterizations of obstinate week H,MV-ideals.

Definition 3.17. We say that an H,MV-algebra H satisfies the condition (AP) if
for all n € N and for all x,y1,v2,...,y, € H we have

e2 (- (@0y) @) Dypand z X (- (11 Dy2) D Dyn) D

Remark 3.18. We observe that if H satisfies (AP), then x < x®y and z < ydx,
for all z,y € H and so x ®y < x and « ® y = y, by Proposition 2.2(2).

Example 3.19. Consider the H,MV-algebra (H; ®,*,0), where H = {0, a,1} and
@ and * are defined as given in Table 6.

@ 0 a 1

0 {0,a} {0,a} {1}
a {0,a} {0,a,1} {1}
1 {1} {a,1} {0,1}
* 1 a 0

Table 6: Cayley table of Example 3.19
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It is easy to verify that H satisfies (AP). This example shows that those H, MV-
algebras satisfying (AP) do exist.

Theorem 3.20. Every H,MV-algebra with three elements satisfies (AP).
Proof. Tt follows from (H,MV5)-(H,MV7) and Proposition 2.2(1). O

Definition 3.21. An element a € H is said to be a scalarif [x®al = |a® x| =1,
where the vertical lines means the cardinality.

Theorem 3.22. Let I be a nonempty subset of H.

(i) Assume that H satisfies (AP). If I is a proper weak H,MV-ideal satisfying
(3.1), then it is an obstinate weak H,MV-ideal.

(ii) If 0 is a scalar, every obstinate weak H,MV-ideal satisfies (3.1).

Proof. (i) We assume that H satisfies (AP) and I is a proper weak H,MV-ideal
of H satisfying (3.1). For xz,y € H \ I we have 2*,y* € I. On the other hand
xOy* 2 y* and y* ©z <X y*, whence x © y* Uy* ©® & < I. Similarly, it is proved
that 2* ©@ y Uy ® x* < I, completes the proof.

(ii) Assume that 0 is a scalar, I is an obstinate weak H,MV-ideal of H and
z€ H\I Sincel ¢gI,so{z*}=2*®1U1lO®z* < I, whence z* € I. O

The next corollary is immediately follows.

Corollary 3.23. In an H,MV-algebra satisfying (AP) and in which 0 is a scalar,
a proper weak H,MV-ideal is obstinate if and only if it satisfies (3.1).

Example 3.24. Consider the H,MV-algebra (H;®,* ,0) with H = {0,a,b,¢,d, 1}
and @ and * are defined as in Table 7.

® 0 a b c d 1

0 {0,a,c}  {a} {b} {c} {a} {1}
a {a} {0,a} H {0,a,¢} H\{1} H
b {b} H H\{1} {0,a,¢} H\{1} H
c {c} {0,a,¢} {0,a,c} H\{1} {1} H
d {d} H\{1} H\{1} {1} H\{1} H
1 H H H H H H
* 1 b a d c 0

Table 7: Cayley table of Example 3.24

Then H does not satisfy (AP) because b £ {0, a,c} = b® c. Moreover, {0, a,c}
is a weak H,MV-ideal satisfying (3.1), while it is not an obstinate weak H,MV-ideal
because b,d ¢ {0,a,c} but b* ©dUd © b* = {1,b,d} A {0,a,c}. This example
shows that the condition (AP) is necessary in Theorem 3.22(i).
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Example 3.25. Consider the H,MV-algebra (H; ®,* ,0) in which H = {0, a,b, ¢, 1}
and @ and * are defined as in Table 8. Routine calculations show that H satisfies
(AP). Moreover, {0,a} is an obstinate weak H,MV-ideal of H, which does not
satisfy (3.1) because ¢ = ¢* ¢ {0,a}. This example shows that the converse of
Theorem 3.22(i) may not be true in general.

@ 0 a b c 1
0 {0 {a) 0 o 7
a {a} {0,a,b,c} H {0,a,b,c} H
b {0,a,b,c} H {0,a,b,c} {0,a,b,c} H
¢ {0,a,b,c} {0,a,b,c} {0,a,b,c} {1} H
1 H H H {0,a,¢,1} {0,b,1}
* 1 b a c 0

Table 8: Cayley table of Example 3.25

Example 3.26. Consider the H,MV-algebra (H;®,*,0) in which H = {0,a,b,1}
and @ and * are defined as in Table 9. Obviously, 0 is not a scalar. Moreover,
{0,a} is an obstinate weak H,MV-ideal of H, which does not satisfy (3.1) because
b = b* ¢ {0,a}. This example shows that if 0 is not a scalar, Theorem 3.22(ii)
may not be true.

0 a b 1
O faF  {ab} H
{a}  {a1} {0} H

{0,b} {0,a,b} H {1}

H {0,a,1} {a,1} H

1 a b 0

Table 9: Cayley table of Example 3.26

*|—= o2 ol®d

Example 3.27. Consider the H,MV-algebra H given in Example 3.12. It is not
difficult to check that H satisfies (AP) and {0, b} is a weak H,MV-ideal of H, which
is not an obstinate weak H,MV-ideal because a,1 ¢ {0, b}, while a* ®1U1 G a* =
{a} # {0,b}. We observe that a,a* ¢ {0,b}. This example shows that the
condition (3.1) is necessary in Theorem 3.22(i).

Lemma 3.28. Fora € H\{0}, if H\{a,1} is a weak H,MV-ideal of H satisfying
(3.1), it is an obstinate weak H,MV-ideal, too.

Proof. Let I = H\ {a,1} (with a # 0) be a weak H,MV-ideal of H which satisfies
(3.1). Now, we prove that I satisfies (WOI), for z,y € {a,1}. If a = 1, from
0 € 1" ®1U1@® 1% the proof is complete. Assume that a # 1. Again from
0el*©lUlel*and that 0 € a* ®aUa®a* and 0 € 1* ©®aUa ® 1* it follows
that 1*©1U101* <X I,a*®aUa®a* <Tand 1* ®aUa ® 1* < I. Also, since
a*€a*®lUl®a*and a* €I, s0a*®1U1l®a* <1, completes the proof. [

Now, we give more general case than Lemma 3.28.
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Lemma 3.29. Letn > 2 be a positive integer and ai,a2,...,0,, 041 = 1 € H be
such that

(Fke{1,2,...,n,n+1}) aj, € a; ©®a;Ua; ©aj, Vi,j € {1,2,...,n,n+1}. (3.3)

If H\ {a1,a2,...,an,1} is a weak H,MV-ideal of H satisfying (3.1), it is an ob-
stinate weak H,MV-ideal, too.

Proof. Let I = H\ {a1,as,...,an,a,+1 = 1} be a weak H,MV-ideal of H. We
know that 0 € 1*®a;Ua; ©1* and 0 € a ®a;Ua; ®a;, whence 1* ©a;Ua; ©1* < T
and af ©@a;Ua; ©@af <1, forallie{1,2,...,n+1}. From (3.1) it follows that
af €I, forallie{1,2,...,n+ 1}, whence combining af € 1 ®a} Uaf ® 1 we get
1®afUaf®1 =< I. Moreover, from (3.3) and that a} € I for k € {1,2,...,n+1},
it follows that a; ® a; Ua; ® a] = I, completes the proof. O

Example 3.30. Consider the H,MV-algebra (H; ®,* ,0) in which H = {0, a,b,¢, 1}
and @ and * are defined as in Table 10.

®& 0 a b c 1

0 {0} {a} {0} {c} {1}

a {a} {0,a,b,c} H {0,a,b,c} H

b {bv} H {0,a,b,c} {0,a,b,c} H

¢ {c} {0,a,b,¢} {0,a,b,c} H H

1 {1} H H {0,a,1}  {0,a,b,1}
* 1 b a c 0

Table 10: Cayley table of Example 3.30

(i) It is obvious that H \ {b,1} = {0, a,c} is a weak H,MV-ideal of H satisfy-
ing (3.1). This example shows that those weak H,MV-ideals satisfying the
conditions of Lemma 3.28 do exist.

(i) Tt is not difficult to check that I = {0, a,b} is a weak H,MV-ideal of H but it
is not an obstinate weak H,MV-ideal because ¢,1 ¢ I, while c*©1U1 G c* =
{c} A I. Also, obviously {0, a,b} does not satisty (3.1). Hence the condition
(3.1) is necessary in Lemma 3.28.

(iii) Routine calculations show that J = {0,a} is a weak H,MV-ideal of H, which
is not an obstinate weak H,MV-ideal because ¢,1 ¢ J, while c*©1UlG®c* =
{c} A J. We observe that J satisfies (3.3) but does not satisty (3.1) because
¢ =c* ¢{0,a}. This example shows that the condition (3.1) is necessary in
Lemma 3.29.

Theorem 3.31. Let H be an H,MV-algebra with |H| < 6. Then every proper
weak H,MV-ideal of H satisfying (3.1) is an obstinate weak H,MV-ideal.

Proof. Assume that H is an H,MV-algebra with at most five elements. We consider
the following cases.
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Case 1: |H| =2o0r3. If H={0,1} or H = {0,a,1}, then the only possible
proper weak H,MV-ideals of H satisfying (3.1) are {0} and {0,a}, whence by
Lemma 3.28, they are obstinate weak H,MV-ideals.

Case 2: Assume that H = {0, a,b, 1} with four elements. If a* = a and b* = b,
the only possible proper weak H,MV-ideal of H satisfying (3.1) is {0, a, b}, whence
by Lemma 3.28, it follows that it is an obstinate weak H,MV-ideal. If a* = b
(whence b* = a), the only possible proper weak H,MV-ideals satisfying (3.1) are
{0,a} and {0,b}, whence by Lemma 3.28 it follows that they are obstinate weak
H,MV-ideals of H.

Case 3: Assume that H = {0,a,b,c, 1} with five elements. We first assume
that a* = a, b* = b and ¢* = ¢. Then the only possible proper weak H,MV-ideal
of H satisfying (3.1) is {0, a,b, c}, whence by Lemma 3.28 it follows that it is an
obstinate weak H,MV-ideal. Let a* = b, b* = a and ¢* = ¢. Then {0,a,c} and
{0,b,c} can be the only proper weak H,MV-ideals of H satisfying (3.1), whence
by Lemma 3.28 it follows that they are obstinate H,MV-ideals. O

Now, we give some conditions under which those weak H,MV-ideals mentioned
in Lemma 3.28 there exist.

Theorem 3.32. Let H be an H,MV-algebra. Then H\ {1} is a weak H,MV-ideal
if and only if
(Vo.ye H\{1}) za@y+ {1} (3.4

Proof. Assume that I = H \ {1} satisfies (3.4) and let © < y and y € I, for some
x,y € I. It is clear that « # 1, whence « € I. Now, let z,y € I. Since dy # {1},
so there exists a € x @y such that a # 1. This implies that a € I. Hence z @y < I,
proving [ is a weak H,MV-ideal of H.

The converse is obvious. 0

Corollary 3.33. In an H,MV-algebra H, H\{1} is an obstinate weak H,MV-ideal
if and only if x ®y # {1}, for all x,y € H\ {1}.

Proof. Assume that z ® y # {1}, for all z,y € H \ {1}. We must prove that
0©1Ul1®0 = I. But this follows from the fact that 0 € 00 1U1® 0. Considering
Theorem 3.32, we conclude that H \ {1} is an obstinate weak H,MV-ideal of H.
The converse follows from Theorem 3.32 and the fact that any obstinate weak
H,MV-ideal is a weak H,MV-ideal. O

Example 3.34. Consider the H,MV-algebra H given in Example 3.30. It is easy
to check that H \ {1} = {0,a,b,c} is a weak H,MV-ideal satisfying (3.4). This
example shows that those weak H,MV-ideals satisfying the conditions of Theorem
3.32 do exist.

Example 3.35. Consider the H,MV-algebra H given in Example 3.4. Then H \
{1} = {0,a, b} is not a weak H,MV-ideal because a ® b = {1} £ H \ {1}. This
example shows that the condition (3.4) is necessary in Theorem 3.32.
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Definition 3.36. An element a € H is called a coatom if there is not any element
be H\ {1} such that a < b.

Theorem 3.37. Let a € H be a coatom. Then H \ {a,1} is a weak H,MV-ideal
of H if and only if

(Vo,y € H\{a,1}) z®y < {a,1}. (3.5)

Proof. Assume that (3.5) holds and let I = H \ {a,1}. Also, let z <y and y € I,
for z,y € H. Since y ¢ {a,1} and @ and 1 are coatoms, then x ¢ {a, 1}, whence
x € I. Now, let x,y € I. By hypothesis, there exists z € @y such that z ¢ {a, 1},
whence z € I. Hence x ©y < I.

The converse follows from the fact that a and 1 are coatoms. O

Corollary 3.38. Assume that a € H is a coatom with a* # a. If H \ {a,1}
satisfies (3.1) and (3.5), then it is an obstinate weak H,MV-ideal of H.

Proof. 1t follows from Lemma 3.28 and Theorem 3.37. O
Example 3.39. Consider the H,MV-algebra H given in Example 3.11.

(i) Obviously, ¢ is a coatom with ¢* = ¢. Moreover, {0,a,b} is a weak H,MV-
ideal of H, which is not obstinate because ¢* @1 U1 ® ¢* = {c} £ {0,q,b}.
Hence the condition ‘a* # a, for all coatoms a’ is necessary in Corollary 3.38.

(ii) Obviously, b is also a coatom with b* = a # b. It is easily checked that
H\ {b,1} = {0,a,c} satisfies (3.1) and (3.5). Hence it is an obstinate weak
H,MV-ideal of H.

Theorem 3.40. Assume that aq,...,a, be coatoms of H. Then H\{a1,...,an,1}
is a weak H,MV-ideal of H if and only if

(Vz,y € H\ {a1,...,an,1}) &y Z{a,...,an, 1} (3.6)
Proof. 1t is similar to the proof of Theorem 3.37. O

Corollary 3.41. Let aq,...,a, be coatoms of H which satisfy the conditions of
Lemma 3.29. If H\ {a1,...,an, 1} satisfies (3.1) and (3.6), then it is an obstinate
weak H, MV-ideal.

Proof. 1t follows from Lemma 3.29 and Theorem 3.40. O

Example 3.42. Consider the H,MV-algebra H given in Example 3.25. It is easy
to check that a, b and c¢ are coatoms of H. Moreover, H \ {b,¢,1} = {0,a} is a
weak H,MV-ideal of H and (3.6) satisfied. This example shows that those weak
H,MV-ideals satisfying (3.6) do exist.
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4. Boolean, prime and obstinate weak H,MV-ideals

In this section, the notions of Boolean weak H,MV-ideals and prime weak H,MV-
ideals are introduced and the relationships between them and obstinate weak
H,MV-ideals are investigated.

Definition 4.1. Let I be a proper weak H,MV-ideal of H. I is called a
(i) prime weak H,MV-ideal if 2 Ay < I implies that x € T or y € I, for all
z,y € H,
(ii) Boolean weak H,MV-ideal if x Az* Ux* Az < I, for all z,y € H.

Example 4.2. Consider the H,MV-algebra (H;®,*,0) in which @& and * are
defined as in Table 11. It is not difficult to check that {0,a,b,c} is prime weak
H,MV-ideal of H but it is not a Boolean weak H,MV-ideal because a AbUbAa =

{1} £ {0,a,b,c}.

® 0 a b c 1
0 (0F {af O (a9 m
a {a} {c¢} H {0,a,bc} H
b {b} H {c} {0,a,b,c} H
¢ {c {0} {0} H H
1 {1} H H {0,a,¢1} {0,a,c,1}
* 1 b a c 0

Table 11: Cayley table of Example 4.2

Example 4.3. Consider the H,MV-algebra (H; ®,* ,0), where H = {0, a,b, 1} and
@ and * are defined as in Table 12. It is not difficult to check that I = {0,b} is a
Boolean weak H,MV-ideal of H, while it is not a prime weak H,MV-ideal because
aNa=H <Ibuta¢l.

0 a b 1
{0} {0,a} {0,a,b}  {0,a,b,1}
{0,a} {0,a}  {0,a,0,1} {0,a,b,1}
{0,a,b} {0,a,b,1} {0,a,b} {0,a,b,1}
{0,1} {a, 1} {b,1} {a,b,1}
1 b a 0

Table 12: Cayley table of Example 4.3
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Theorem 4.4. Let H be an H,MV-algebra with the property (AP) and assume
that 0 is a scalar. Then every obstinate weak H,MV-ideal of H is a Boolean weak
H,MV-ideal.

Proof. Let I be an obstinate weak H,MV-ideal of H. By Theorem 3.22(ii), we
have x € I or z* € I, for all x € H. On the other hand, since H satisfies (AP),
sox Ax* < z* and 2* Ax <X x, whence x Ax* Ux* Ax =< I. Hence [ is a Boolean
weak H,MV-ideal of H. O
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Example 4.5. Consider the H,MV-algebra H given in Example 4.2. Obviously,
0 is a scalar. Also, H does not satisfy (AP) because a A {c¢} = a ® a. It is not
difficult to check that {0, a,b} is an obstinate weak H,MV-ideal of H but it is not
a Boolean weak H,MV-ideal because a A b= {1} & {0,a,b}. This example shows
that the condition (AP) is necessary in Theorem 4.4.

Example 4.6. Consider the H,MV-algebra H given in Example 3.25. Obviously,
0 is not a scalar. Routine calculations show that H satisfies (AP). Moreover, {0,b}
is an obstinate weak H,MV-ideal of H but it is not a Boolean weak H,MV-ideal
because cAc = {c} £ {0,b}. This example shows that if 0 is not a scalar, Theorem
4.4 may not be true in general.

Example 4.7. Consider the H,MV-algebra H given in Example 3.30. Obviously, 0
is a scalar. Also, it is not difficult to check that H satisfies (AP). Moreover {0, a,b}
is a Boolean weak H,MV-ideal of H but it is not an obstinate weak H,MV-ideal
because ¢, 1 & {0, a,b}, while c*©@1U1 G ¢* = {c} £ {0, a,b}. This example shows
that the converse of Theorem 4.4 does not true in general.

Theorem 4.8. In an H,MV-algebra with the property (AP), every proper weak
H,MV-ideal which is both Boolean and prime is an obstinate weak H,MV-ideal.

Proof. Let H be an H,MV-algebra with the property (AP) and let I be a Boolean
weak H,MV-ideal and a prime weak H,MV-ideal of H. Then xt Ax*Uz* ANz < I,
for all x € H. This implies that z Ax* < T or z* Az X I, for all x € H. In any
case, we get « € I or z* € I. Now, by Theorem 3.22(i) the proof is complete. [J

Example 4.9. Consider the H,MV-algebra (H;®,*,0), where H = {0,a,b,1}
and @ and * are defined as given in Table 13. It is not difficult to check that
H satisfies (AP). Also, I = {0,a} is a prime weak H,MV-ideal of H, while it is
neither a Boolean weak H,MV-ideal nor an obstinate H,MV-ideal because b Ab* =
b* ANb={b} AT and b,1¢ I, while b* ©1U1® b* = {b} £ I, respectively. This
example shows that the condition ‘Boolean’ is necessary in Theorem 4.8.

0 a b 1
{0} {0,a,0}  {b} H
{a} H {a,b} H

{o  {a0} {1} {1}
{o,1} {0,1} {1} {ab1}
1 b 0

a

*|—= o2 od

Table 13: Cayley table of Example 4.9

Example 4.10. Consider the H,MV-algebra H given in Example 3.30. It is easily
seen that H satisfies (AP). Also, it is not difficult to check that {0, b} is a Boolean
weak H,MV-ideal, while it is neither an obstinate weak H,MV-ideal nor a prime
weak H,MV-ideal because ¢,1 ¢ {0,b} but ¢* ©1U1 G ¢* = {c¢} £ {0,b} and
aANc=H <{0,b}, while a,c ¢ {0,b}. This example shows that the condition
‘prime’ is necessary in Theorem 4.8.
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Example 4.11. Consider Example 3.3. Routine calculations show that H satisfies
(AP). Moreover, I = {0,a} is an obstinate weak H,MV-ideal of H but it is not a
prime weak H,MV-ideal because 1 A b= {0,a,b,1} < I, while b,1 & I. Also, it is
not a Boolean weak H,MV-ideal because b A b = {a,b} =< I, while b ¢ I. Hence
the converse of Theorem 4.8 is not true in general.

In H,MV-algebras with at most five elements we have more strong result:

Theorem 4.12. In any H,MV-algebra H with |H| < 6, every proper weak H,MV-
ideal which is both Boolean and prime is an obstinate weak H,MV-ideal.

Proof. 1t is obvious that every proper weak H,MV-ideal which is both Boolean
and prime satisfies (3.1). The remains follows from Theorem 3.31. O

Theorem 4.13. Let H = {0,a,1} be an H,MV-algebra satisfying
ac€a®a or 0€ada. (4.7)
Then {0,a} is a weak H,MV-ideal of H.

Proof. Let I = {0,a}. Obviously, (Ip) is satisfied. From 0 € 0 ® 0 and a €
a®0N0@a it follows that 00 <1, a® 0 =<1 and 0® a < I. Under condition
(4.7) it is obvious that a®a < I, as well. Hence I is a weak H,MV-ideal of H. O

Theorem 4.14. Let H = {0,a,1} be an H,MV-algebra satisfying (4.7). Then {0}
and {0,a} are Boolean weak H,MV-ideals of H.

Proof. We know that {0} is a weak H,MV-ideal, in any H,MV-algebra. From
Proposition 2.2(10), it follows that 1 A 1*U1* A1 < {0}. If a € a & a, then
0e(@*@a)*"C ((a®a)*®a)* =aAa, whence a* Aa = a Aa = {0}. Similarly, if
0€ada,then0 € (0*@a)* C ((a@a)*®a)* = aAa = a*Aa. Hence a*ANa < {0}.
Thus, {0} is a Boolean weak H,MV-ideal of H.

Now, from 0* € a* @ a = a® a it follows that a € 0® a C (a® a)* @ a, whence
a=a*€ ((a®a)*®a)* =a* Aa. Hence a* Aa < I. Therefore I is a Boolean
weak H,MV-ideal of H. O

Lemma 4.15. In an H,MV-algebra, every two distinct elements a,b with a* = a
and b* = b are incomparable.

Proof. Let a,b be two distinct elements of H. Then

a=xb & 0Fca”"PbNbB®a* =a®bNbBa=a®b*"Nb*Da & b=a,
which is a contradiction. O
Lemma 4.16. In any H,MV-algebra H, for every x € H the following hold:

(i) if z* ==z, thenx € x Az,
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(ii) ifecex®r or0€xdx, then 0 € x N ™,
(i) if z* € x D x, then x € x Az,
(iv) if 0" € x @ x, then x* € x A x*,

Proof. (i) Assume that * = z, for x € H. From 0* € 2* @z and z € 0 ® x it
follows that z =2* C (0@ z)* C ((z* P z)* Px)* =z Az

(ii) Assume that x € x@x. Then 0 € zOz* C (x @) ©x* = x Az*. Similarly,
if0cz®z,then0€c002* C(zdz)Oa* =z Az™.

(i) fae*cax@a,thenz e (@) C(xda) ®x) =z Az™

(iv) If0*€ex@a, thenz* € 0*©z* C (x Pa) ©x* =z Ax*. O

Theorem 4.17. Let H = {0,a,b,1} be an H,MV-algebra.

(i) If a* = a and b* = b, {0,a} and {0,b} can not be simultaneously a prime
weak H,MV-ideal and an obstinate weak H,MV-ideal.

(ii) Let a* =b. Then {0,a} and {0,b}) are weak H,MV-ideals of H if and only
if they are Boolean weak H,MV-ideals of H.

(iii) {0,a,b} is a weak H,MV-ideal of H if and only if it is a Boolean weak H,MV-
ideal.

Proof. (i) By contrary, we assume that I = {0, a} is a prime weak H,MV-ideal and
an obstinate weak H,MV-ideal of H. From b,1 ¢ I it follows that (b&0)*U(0b)* =
b*©1Uleb* <X I, whence (b@0)* < T or (0@b)* < I. Considering Lemma 4.15,
it follows that a € b0 or 0* € bd 0 ora € 0P b or 0* € 0 b. From the two
first cases it follows that b A b < I and from the two second cases it follows that
b A1 =< 1. This contradicts the hypothesis that I is a prime weak H,MV-ideal of
H.

Similarly, it is proved that {0,b} can not be simultaneously a Boolean weak
H,MV-ideal and an obstinate weak H,MV-ideal.

(ii) Assume that a* = b (whence b* = a) and I = {0,a} is a weak H,MV-ideal
of H. From 0 € 0A1U1AO it follows that 0A1U1A0 < I. It remains that to show
that aAbUbAa =X I. Since a € I and [ is a weak H,MV-ideal, so a®a < I, whence
Ocadaoracada,orbea®aandb =< a. In the first two cases it follows that
0 € a Ab, whence a Ab =< I. In the last case, we have 0* € b* P a = a P a and so
0€(a®a) C ((a®a)*®a)* =aANb. Hence aANb =< I, proving I is a Boolean
weak H,MV-ideal of H.

Similar argument shows that if {0, b} is a weak H,MV-ideal, it is also a Boolean
weak H,MV-ideal.

The converse is obvious.

(iii) Assume thatl = {0,a,b} is a weak H,MV-ideal of H. Obviously, 0 A 0* U
0" AN0=1"A1U1A1* <I. Now, if a* = a and b* = b, from Lemma 4.16(i) it
follows that a € aAa*Ua* Aa and b € bAbL* Ub* Ab, whence aANa*Ua*Na <1
and bAD* Ub* Ab = I. Otherwise, since I is a weak H,MV-ideal, so we must have
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a®a=<1Tand b b < I, whence {0,a,b} C a ® a and similarly {0,a,b} CbP .
Ifa* =b € a®a, then a € a A a, by Lemma 4.16(iii), otherwise 0 € a A a*, by
Lemma 4.16(ii). In any case a A a* < I. Similarly, we can show that b A b* < I.
Hence I is a Boolean H,MV-ideal.

The converse is obvious. O

Example 4.18. Consider the H,MV-algebra H given in Example 3.26. Obviously,
H satisfies the conditions of Theorem 4.17(i). Also, it is easily checked that {0,a}
is an obstinate weak H,MV-ideal of H, which is not a prime weak H,MV-ideal
because b A b= H < {0,a}, while b ¢ {0,a}.

Example 4.19. Consider the H,MV-algebra H given in Example 4.9. Then a* = a
and b* = b and {0,a} is a prime weak H,MV-ideal, while it is not an obstinate
weak H,MV-ideal. This example shows that those H,MV-algebras satisfying the
conditions of Theorem 4.17 do exist.

Example 4.20. Consider the H,MV-algebra H given in Example 3.3. Obviously,
{0,a} and {0,b} are weak H,MV-ideals of H and so by Theorem 4.17 are Boolean
weak H,MV-ideals of H.

Example 4.21. Consider the H,MV-algebra H given in Example 3.7. Then
{0,a,b} is a weak H,MV-ideal of H and so by Theorem 4.17, it is a Boolean
weak H,MV-ideal of H.

Example 4.22. As Example 4.9 shows {0,a} is a weak H,MV-ideal of H, while
it is not a Boolean weak H,MV-ideal. We observe that a* # a does not hold in H.
So, this condition is necessary in Theorem 4.17(ii).

In connection with quotient H,MV-algebras induced by obstinate weak H,MV-
ideals we have the following result. Before, we state it we observe that an H,MV-
algebra H is said to be commutative if t Dy =y ® x, for all z,y € H.

Theorem 4.23. Assume that H is commutative and let I be an obstinate weak
H,MV-ideal of H. If there exists a regular congruence 6 in H such that 0/6 = I,
then

(i) H/O is the two-elements Boolean algebra,

)
(if) I is an H,MV-ideal,
(i) z* # x, for all x € H,
(iv) |H| is an even positive integer.
Proof. Let I be an obstinate weak H,MV-ideal of H and 6 be a regular congruence
in H such that 0/6 = I.

(i) Let x,y € H be such that 2/6,y/0 # 0/6. Then x,y ¢ I, whence z* ©y =
yOzr* 2 Tand y* Oz = zOy* < I. This implies that (zHy*)* = z* ©yNI # ) and
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(yozr*)* =y* ©@xNI # 0. Hence there exist a € z @ y* and b € y ® z* such that
a*,b* € I =0/0, whence a,b € 0*/6. This means that z®y*6{0*} and yDx*6{0*}.
Since 6 is regular, so x8y; i.e., /6 = y /6. Therefore, H/6 = {0/6,0*/6}.

(ii) We observe that in an H,MV-algebra 0* ¢ 0 @ 0, otherwise we must have
0* < 0, which is impossible. Hence in H/6 we have I&I = 0/08%0/0 = {0/6}. This
implies that for every xz,y € I, x & y C I, which implies that I is an H,MV-ideal.

(iii) Assume that z* = z, for some x € H. Considering (i) we have xz € 0/6
or x € 0*/6. In the first case we have x = 2*00*, whence 000*, which is a
contradiction. Similarly, if z € 0*/0 we get 000*, which is a contradiction.

(iv) Considering (iii), the proof is obvious. O

Remark 4.24. We notice that Theorem 4.23 does not state that an obstinate
weak H,MV-ideal which is the kernel of a congruence is an obstinate H,MV-ideal.
It just states that, as a weak H,MV-ideal, it must be an H,MV-ideal. To see this
consider the H,MV-algebra given in Table 14. It is not difficult to check that H
is a commutative H,MV-algebra in which I = {0,a} is an H,MV-ideal (and so a
weak H,MV-ideal) of H which is an obstinate weak H,MV-ideal, while it is not an
obstinate H,MV-ideal because 1 ¢ I but 1* ® 1 = {0,b} Z I. It is not difficult to
verify that the relation § = Ay U{(0,a), (a,0), (b,1),(1,b)} is a regular congruence
in H such that 0/6 = I.

0 a b 1
{0y e} {o}  A{a,1}
{at {0} {1} {1}
for {1} Aa 1} H

{a,1} {b,1} H {0,a,1}

1 a b 0

Table 14: A commutative H,MV-algebra
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5. Conclusions

We introduced a new type of H,MV-ideals (obstinate H,MV-ideals and obstinate
weak H,MV-ideals) and gave a deep characterization of them. We proved that in
any H,MV-algebra with odd number of elements there does not exist any obsti-
nate H,MV-ideal. Especially, in an H,MV-algebra with at least three elements, the
singleton {0} is not an obstinate weak H,MV-ideal. Moreover, obstinate H,MV-
ideals are maximal (if exist). Next, we studied the properties of obstinate weak
H,MV-ideals. We proved that every proper weak H,MV-ideal satisfying suitable
conditions is an obstinate weak H,MV-ideal. In the sequel, we introduced the no-
tions of prime weak H,MV-ideals and Boolean weak H,MV-ideals and gave some
basic properties. Furthermore, we investigated the relationships between obstinate
weak H,MV-ideals, prime weak H,MV-ideals and Boolean weak H,MV-ideals. We
proved that every proper weak H,MV-ideal which is both Boolean and prime is an
obstinate weak H,MV-ideal, under suitable conditions, but the converse may not be
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true. We also characterized obstinate weak H,MV-ideals and the relationships be-
tween prime weak H,MV-ideals and Boolean weak H,MV-ideals in H,MV-algebras
with at most five elements and investigated what subsets can be a suitable candi-
date to be an obstinate weak H,MV-ideal, Boolean weak H,MV-ideal or a prime
weak H,MV-ideal.
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