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Characterization of obstinate HvMV-ideals

Mahmood Bakhshi and Akefe Radfar

Abstract. One motivation to study obstinate ideals in any algebra of logic is that the induced

quotient algebra by these ideals is the two-element Boolean algebra. In this paper, we intro-

duce two types of obstinate ideals in HvMV-algebras; obstinate HvMV-ideals and obstinate weak

HvMV-ideals. Giving several theorems and examples we characterize these HvMV-ideals. For

example, we prove that an HvMV-ideal (if exists) must be maximal, and any HvMV-algebra

with odd number of elements does not contatin an obstinate HvMV-ideal. Also, we characterize

these HvMV-ideals in �nite HvMV-algebras with at most six elements; we investigate that which

subsets can be an obstinate (weak) HvMV-ideal. In the sequel, we investigate the relationships

between obstinate (weak) HvMV-ideals, and Boolean and prime HvMV-ideals. Finally, we prove

that in a commutative HvMV-algebra, the quotient HvMV-algebra induced by an obstinate weak

HvMV-ideal must be a two-elements Boolean algebra.

1. Introduction

In 1958, Chang [8] introduced the concept of an MV-algebra as an algebraic proof
of completeness theorem for ℵ0-valued �ukasiewicz propositional calculus, see also
[9]. Many mathematicians have worked on MV-algebras and obtained signi�cant
results. Mundici [21] proved that MV-algebras and Abelian `-groups with strong
unit are categorically equivalent. He also proved that MV-algebras and bounded
commutative BCK-algebras are categorically equivalent (see [20]). The ideal theory
have an important role in studying algebras of logics such as MV-algebras because
they are correspond to the sets of provable formulas in the correspond logics. In
this respect various researches have published by many authors (see for example
[14, 15, 16, 17]).

The hyperstructure theory (called also multialgebras) was introduced in 1934
by Marty [19]. Around the 40's, several authors worked on hypergroups, espe-
cially in France and in the United States, but also in Italy, Russia and Japan.
Hyperstructures have many applications to several sectors of both pure and ap-
plied sciences. A short review of the theory of hyperstructures appear in [10]. In
[11] a wealth of applications can be found, too. There are applications to the fol-
lowing subjects: geometry, hypergraphs, binary relations, lattices, fuzzy set and
rough sets, automata, cryptography, combinatorics, codes, arti�cial intelligence
and probabilities.
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Borzooei et al. [6, 18] applied the hyperstructures to BCK-algebras and in-
troduced the notion of a hyper BCK-algebra and a hyper K-algebra, which is a
hyperstructure weaker than hyper BCK-algebras. Recently, Ghorbani et al. [13]
applied the hyperstructures to MV-algebras and introduced the concept of hyper
MV-algebra and investigated some related results, see also [22]. Particularly, they
investigated the relationships between hyper MV-algebras and hyper K-algebras.
They proved that any hyper MV-algebra together with suitable (hyper) operations
is a hyper K-algebra, and any hyper K-algebra satisfying some conditions can be
viewed as a hyper MV-algebra.

In 1995, Vougiouklis introduced a generalization of hyperstructures so-called
Hv-structure (see [23, 24]). Indeed, Hv-structures are a generalization of the well-
known algebraic hyperstructures (hypergroup, hyperring, hypermodule and so on).
Actually some axioms concerning the above hyperstructures such as the associa-
tive law, the distributive law and so on are replaced by their corresponding weak
axioms. Since then the study of Hv-structure theory has been pursued in many
directions by Vougiouklis, Davvaz, Spartalis and others. To investigate the rela-
tionships between Hv-structures such as Hv-groups and suitable generalizations of
MV-algebras, the �rst author introduced HvMV-algebras and gave various results.
He introduced some types of ideals such as (fuzzy) HvMV-ideals and (fuzzy) weak
HvMV-ideals and their generalizations (see [1, 2, 3, 4, 5]).

2. Preliminaries

This section is devoted to give some de�nitions and results from the literature.
For more details we refer to the references.

De�nition 2.1. An HvMV-algebra is a nonempty set H endowed with a binary
hyperoperation `⊕', a unary operation `∗' and a constant `0' satisfying the following
conditions:

(HvMV1) x⊕ (y ⊕ z) ∩ (x⊕ y)⊕ z 6= ∅, (weak associativity)
(HvMV2) (x⊕ y) ∩ (y ⊕ x) 6= ∅, (weak commutativity)
(HvMV3) (x∗)∗ = x,
(HvMV4) (x∗ ⊕ y)∗ ⊕ y ∩ (y∗ ⊕ x)∗ ⊕ x 6= ∅,
(HvMV5) 0∗ ∈ (x⊕ 0∗) ∩ (0∗ ⊕ x),
(HvMV6) 0∗ ∈ (x⊕ x∗) ∩ (x∗ ⊕ x),
(HvMV7) x ∈ (x⊕ 0) ∩ (0⊕ x),
(HvMV8) 0∗ ∈ (x∗ ⊕ y) ∩ (y ⊕ x∗) and 0∗ ∈ (y∗ ⊕ x) ∩ (x⊕ y∗) imply x = y.

On any HvMV-algebra H, the binary relation `�' is de�ned as

x � y ⇔ 0∗ ∈ x∗ ⊕ y ∩ y ⊕ x∗.

Proposition 2.2. In any HvMV-algebra H, the following hold: ∀x, y ∈ H and
∀A,B ⊆ H,
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(1) A � A, 0 � A � 1, where 1 = 0∗,

(2) A � B implies B∗ � A∗,

(3) (A∗)∗ = A,

(4) A ∩B 6= ∅ implies that A � B,

(5) x� (y � z) ∩ (x� y)� z 6= ∅, where x� y = (x∗ ⊕ y∗)∗,

(6) (x� y) ∩ (y � x) 6= ∅,

(7) 0 ∈ (x� 0) ∩ (0� x),

(8) 0 ∈ (x� x∗) ∩ (x∗ � x),

(9) x ∈ (x� 1) ∩ (1� x),

(10) 0 ∈ (x ∧ 0) ∩ (0 ∧ x), where x ∧ y = (x⊕ y∗)� y,

(11) x � y and y � x imply x = y.

De�nition 2.3. Let I be a nonempty subset of HvMV-algebra H satisfying
(I0) x � y and y ∈ I imply x ∈ I.

I is called

(1) an HvMV-ideal if x⊕ y ⊆ I, for all x, y ∈ I,

(2) a weak HvMV-ideal if x⊕ y � I, for all x, y ∈ I.

Obviously, any HvMV-ideal is a weak HvMV-ideal, but the converse is not true
in general (see [1], for more details).

The set of all HvMV-ideals of HvMV-algebra H is denoted by Id(H).
From Proposition 2.2(4) it follows that

Theorem 2.4. Every HvMV-ideal is a weak HvMV-ideal.

From (HvMV7) it follows that 0 ∈ 0 ⊕ 0, whence {0} is a weak HvMV-ideal,
in any HvMV-algebra H. Generally {0} is not an HvMV-ideal, while H is itself
an HvMV-ideal (and so a weak HvMV-ideal). Hence H is called trivial HvMV-
ideal, and {0} and H are called the trivial weak HvMV-ideals of H. Any (weak)
HvMV-ideal of H (except H itself) is called proper.

De�nition 2.5. Let θ be an equivalence relation in HvMV-algebra H.

• θ is called a congruence if

(1) xθy and uθv imply that x⊕u θy⊕v, where AθB means that for all a ∈A
there exists b ∈ B and for all b ∈ B there exists a ∈ A such that aθb.

(2) xθy implies that x∗θy∗,
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• θ is said to be regular if x∗ ⊕ y ∩ y ⊕ x∗θw{0∗} and y∗ ⊕ x ∩ x ⊕ y∗θw{0∗}
imply xθy, where AθwB means that there exist a ∈ A and b ∈ B such aθb.

• The congruence class 0/θ is called the congruence kernel of θ.

Throughout the paper, H will denotes an HvMV-algebra, unless otherwise
stated.

3. Main results

De�nition 3.1. A proper HvMV-ideal I of H is called an obstinate HvMV-ideal
if it satis�es (OI), where

(OI) (∀x, y ∈ H \ I) x� y∗ ∪ y∗ � x ⊆ I and x∗ � y ∪ y � x∗ ⊆ I

De�nition 3.2. A proper weak HvMV-ideal I of H is called an obstinate weak
HvMV-ideal if it satis�es (WOI), where

(WOI) (∀x, y ∈ H \ I) x� y∗ ∪ y∗ � x � I and x∗ � y ∪ y � x∗ � I

From the de�nition it immediately follows that every obstinate HvMV-ideal is
an obstinate weak HvMV-ideal, whereas the converse may not be true, in general.

Example 3.3. Consider the HvMV-algebra 〈H;⊕,∗ , 0〉, whereH = {0, a, b, 1} and
⊕ and ∗ are de�ned as given in Table 1. It is not di�cult to check that I = {0, a}
is an obstinate weak HvMV-ideal of H, while it is not an obstinate HvMV-ideal
because b, 1 ∈ H \ I but 1∗ � b ∪ b� 1∗ = {0, a, 1} 6⊆ I.

⊕ 0 a b 1

0 {0, a, b} {a, b} {b} {0, a, b, 1}
a {a} {a} {1} {1}
b {b} {1} {a, b, 1} {a, 1}
1 {0, a, b, 1} {0, b, 1} {0, b, 1} {a, b, 1}
∗ 1 b a 0

Table 1: Cayley table of Example 3.3

Example 3.4. Consider the HvMV-algebra 〈H;⊕,∗ , 0〉, where H = {0, a, b, 1}
and ⊕ and ∗ are de�ned as given in Table 2.

⊕ 0 a b 1

0 {0} {a} {b} {1}
a {a} {a} {1} {1}
b {b} {1} {b} {1}
1 {1} {1} {1} {b, 1}
∗ 1 b a 0

Table 2: Cayley table of Example 3.4

It is not di�cult to check that I = {0, a} is an obstinate HvMV-ideal of H.
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Theorem 3.5. In an HvMV-algebra with at least three elements, the singleton {0}
can not be an obstinate HvMV-ideal.

Proof. Let H be an HvMV-algebra with |H| > 3 and assume that {0} is an
obstinate HvMV-ideal of H, by contrary. Then for x ∈ H \ {0, 1} we have
x∗ � 1 ∪ 1 � x∗ ⊆ {0}; i.e., x∗ � 1 = {0}, whence x ⊕ 0 = {1}. This contra-
dicts (HvMV7). Thus {0} is not an obstinate HvMV-ideal.

Theorem 3.6. Any obstinate HvMV-ideal I of H satis�es

x ∈ I or x∗ ∈ I (∀x ∈ H). (3.1)

Proof. Assume that I is an obstinate HvMV-ideal of H and x ∈ H \I. Since 1 6∈ I,
so x∗ ∈ x∗ � 1 ⊆ I.

Example 3.7. Consider the HvMV-algebra 〈H;⊕,∗ , 0〉 in which H = {0, a, b, 1}
and ⊕ and ∗ are de�ned as in Table 3. It is easily seen that {0, a} is an HvMV-ideal
of H satisfying (3.1), while it is not an obstinate HvMV-ideal because b, 1 6∈ {0, a},
but 1∗ � b ∪ b � 1∗ = {0, b, 1} 6⊆ {0, a}. This example shows that the converse of
Theorem 3.6 is not true in general.

⊕ 0 a b 1

0 {0} {a} {b} {1}
a {a} {0, a} {0, b, 1} {0, 1}
b {b} {0, 1} {b} {0, 1}
1 {0, 1} {a, 1} {0, b, 1} {0, 1}
∗ 1 b a 0

Table 3: Cayley table of Example 3.7

Theorem 3.8. An HvMV-algebra with 2n + 1 elements, where n is a positive
integer, does not contain any obstinate HvMV-ideal.

Proof. Let H be an HvMV-algebra with 2n+1 elements, where n > 1 is a positive
integer, and let I be an obstinate HvMV-ideal of H (by contrary). Then there
exists x ∈ H such that x∗ = x. On the other hand, by Theorem 3.6 we must have
x∗ = x ∈ I. Hence 0∗ ∈ x∗ ⊕ x ⊆ I, which a contradiction. Therefore, H can not
contain any obstinate HvMV-ideal.

Theorem 3.9. In an HvMV-algebra, every obstinate HvMV-ideal, if exists, is
maximal.

Proof. Let I be an obstinate HvMV-ideal of H and J be an HvMV-ideal of H such
that properly contains I. Let a ∈ J \ I. By Theorem 3.6, a∗ ∈ I ⊂ J . Hence
1 ∈ a⊕ a∗ ⊆ J , whence J = H. Therefore I is a maximal HvMV-ideal of H.

Theorem 3.10. (Extension Theorem) Let I and J be HvMV-ideals of H such
that I ⊆ J . If I is an obstinate HvMV-ideal, J is also an obstinate HvMV-ideal.
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Proof. Assume that x, y 6∈ J , for x, y ∈ H. Then x, y 6∈ I and so x∗� y ∪ y�x∗ ⊆
I ⊆ J . Similarly, y∗ � x ∪ x � y∗ ⊆ J , proving J is an obstinate HvMV-ideal of
H.

Example 3.11 shows that the converse of Theorem 3.9 does not hold in general.

Example 3.11. Consider the HvMV-algebra 〈H,⊕,∗ , 0〉, where H = {0, a, b, c, 1}
and ⊕ and ∗ are de�ned as in Table 4. It is easy to verify that the only proper
HvMV-ideals of H are {0} and {0, a}. Hence {0, a} is a maximal HvMV-ideal of H,
while it is not obstinate because b, c ∈ H \ {0, a} and b∗� c∪ c� b∗ = H 6⊆ {0, a}.

⊕ 0 a b c 1

0 {0} {a} {b} {c} {1}
a {a} {0, a} {b, 1} {0, a, c} {1}
b {b} {b, 1} {b, 1} H {1}
c {c} {0, a, c} H \ {1} {c, 1} {1}
1 {1} {1} {1} {1} {1}
∗ 1 b a c 0

Table 4: Cayley table of Example 3.11

Example 3.12. Consider the HvMV-algebra 〈H,⊕,∗ , 0〉, where H = {0, a, b, 1}
and ⊕ and ∗ are de�ned as in Table 5. Routine calculations show that {0, a} and
{0, a, b} are obstinate weak HvMV-ideals of H. This example shows that Theorem
3.9 does not hold for obstinate weak HvMV-ideals, in general.

⊕ 0 a b 1

0 {0} {a} {a, b} H
a {a} {a, 1} {a, b} H
b {0, b} {0, a, b} H {1}
1 H {0, a, 1} {0, a, 1} {b, 1}
∗ 1 a b 0

Table 5: Cayley table of Example 3.12

Theorem 3.13. Let H = {0, a, 1} be an HvMV-algebra.

(i) If |a⊕ a| = 1, H does not contain any obstinate weak HvMV-ideal.

(ii) If |a⊕ a| > 1, {0, a} is the maximal obstinate weak HvMV-ideal.

Proof. Let H = {0, a, 1} be an HvMV-algebra with three elements.
(i) We observe that a∗ = a and since 0∗ ∈ a∗ ⊕ a = a⊕ a, hence a⊕ a = {0∗}.

This implies that a⊕ a 6� {0, a}. Hence {0, a} can not be a weak HvMV-ideal and
so is not an obstinate weak HvMV-ideal.

(ii) We assume that |a⊕ a| > 1. Then

{0, 1} ⊆ a⊕ a or {a, 1} ⊆ a⊕ a or both. (3.2)
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We prove that I = {0, a} is a maximal obstinate weak HvMV-ideal of H. From
(HvMV7) it follows that 0 ⊕ 0 � I, 0 ⊕ a � I and a ⊕ 0 � I and from (3.2) it
follows that a⊕a � I. Obviously, I satis�es (I0). Thus I is a weak HvMV-ideal of
H. Now, from 1 6∈ I and that 0 ∈ 1∗�1∪1�1∗ it follows that 1∗�1∪1�1∗ � I.
Hence I is an obstinate weak HvMV-ideal. It is obvious that I is maximal.

Remark 3.14. We mention that the intersection of two HvMV-ideals is again
an HvMV-ideal (see [1, Theorem 4.14]), while it is not true for obstinate HvMV-
ideals. To see this consider Example 3.4. It is easy to check that {0, a} and {0, b}
are obstinate HvMV-ideals of H, while their intersection, {0}, is not an obstinate
HvMV-ideal because a, b ∈ H \ {0} but a� b∗ ∪ b∗ � a = {a} 6⊆ {0}.

On the other hand, the union of two HvMV-ideals may not be an HvMV-ideal,
in general (see Example 3.7 in which {0, a} and {0, b} are HvMV-ideals of H but
the union, {0, a, b}, is not an HvMV-ideal because a⊕ b = {0, b, 1} 6⊆ {0, a, b}). If
this is true it is easily proved that the union of two obstinate HvMV-ideals is again
an obstinate HvMV-ideal. Indeed we have

Theorem 3.15. Assume that A is a nonempty family of obstinate HvMV-ideals of
H such that ∪A is closed with respect to `⊕'. If each member of A is an obstinate
HvMV-ideal, ∪A is again an obstinate HvMV-ideal of H.

Proof. The proof is routine. We only observe that if ∪A is closed with respect to
⊕, ∪A satis�es De�nition 2.3(1).

Corollary 3.16. If Id(H) is closed with respect to the union, then OId(H), the
set of all obstinate HvMV-ideals of H, is an upper semilattice with respect to set
inclusion as the partial ordering.

In the sequel, we give several characterizations of obstinate week HvMV-ideals.

De�nition 3.17. We say that an HvMV-algebra H satis�es the condition (AP) if
for all n ∈ N and for all x, y1, y2, . . . , yn ∈ H we have

x � (· · · (x⊕ y1)⊕ · · · )⊕ yn and x � (· · · (y1 ⊕ y2)⊕ · · · ⊕ yn)⊕ x

Remark 3.18. We observe that if H satis�es (AP), then x � x⊕y and x � y⊕x,
for all x, y ∈ H and so x� y � x and x� y � y, by Proposition 2.2(2).

Example 3.19. Consider the HvMV-algebra 〈H;⊕,∗ , 0〉, where H = {0, a, 1} and
⊕ and ∗ are de�ned as given in Table 6.

⊕ 0 a 1

0 {0, a} {0, a} {1}
a {0, a} {0, a, 1} {1}
1 {1} {a, 1} {0, 1}
∗ 1 a 0

Table 6: Cayley table of Example 3.19
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It is easy to verify that H satis�es (AP). This example shows that those HvMV-
algebras satisfying (AP) do exist.

Theorem 3.20. Every HvMV-algebra with three elements satis�es (AP ).

Proof. It follows from (HvMV5)-(HvMV7) and Proposition 2.2(1).

De�nition 3.21. An element a ∈ H is said to be a scalar if |x⊕ a| = |a⊕ x| = 1,
where the vertical lines means the cardinality.

Theorem 3.22. Let I be a nonempty subset of H.

(i) Assume that H satis�es (AP). If I is a proper weak HvMV-ideal satisfying
(3.1), then it is an obstinate weak HvMV-ideal.

(ii) If 0 is a scalar, every obstinate weak HvMV-ideal satis�es (3.1).

Proof. (i) We assume that H satis�es (AP) and I is a proper weak HvMV-ideal
of H satisfying (3.1). For x, y ∈ H \ I we have x∗, y∗ ∈ I. On the other hand
x� y∗ � y∗ and y∗ � x � y∗, whence x� y∗ ∪ y∗ � x � I. Similarly, it is proved
that x∗ � y ∪ y � x∗ � I, completes the proof.

(ii) Assume that 0 is a scalar, I is an obstinate weak HvMV-ideal of H and
x ∈ H \ I. Since 1 6∈ I, so {x∗} = x∗ � 1 ∪ 1� x∗ � I, whence x∗ ∈ I.

The next corollary is immediately follows.

Corollary 3.23. In an HvMV-algebra satisfying (AP ) and in which 0 is a scalar,
a proper weak HvMV-ideal is obstinate if and only if it satis�es (3.1).

Example 3.24. Consider the HvMV-algebra 〈H;⊕,∗ , 0〉 with H = {0, a, b, c, d, 1}
and ⊕ and ∗ are de�ned as in Table 7.

⊕ 0 a b c d 1

0 {0, a, c} {a} {b} {c} {d} {1}
a {a} {0, a} H {0, a, c} H \ {1} H
b {b} H H \ {1} {0, a, c} H \ {1} H
c {c} {0, a, c} {0, a, c} H \ {1} {1} H
d {d} H \ {1} H \ {1} {1} H \ {1} H
1 H H H H H H

∗ 1 b a d c 0

Table 7: Cayley table of Example 3.24

Then H does not satisfy (AP) because b 6� {0, a, c} = b⊕ c. Moreover, {0, a, c}
is a weak HvMV-ideal satisfying (3.1), while it is not an obstinate weak HvMV-ideal
because b, d 6∈ {0, a, c} but b∗ � d ∪ d � b∗ = {1, b, d} 6� {0, a, c}. This example
shows that the condition (AP) is necessary in Theorem 3.22(i).
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Example 3.25. Consider the HvMV-algebra 〈H;⊕,∗ , 0〉 in whichH = {0, a, b, c, 1}
and ⊕ and ∗ are de�ned as in Table 8. Routine calculations show that H satis�es
(AP). Moreover, {0, a} is an obstinate weak HvMV-ideal of H, which does not
satisfy (3.1) because c = c∗ 6∈ {0, a}. This example shows that the converse of
Theorem 3.22(i) may not be true in general.

⊕ 0 a b c 1

0 {0} {a} {b} {c} H
a {a} {0, a, b, c} H {0, a, b, c} H
b {0, a, b, c} H {0, a, b, c} {0, a, b, c} H
c {0, a, b, c} {0, a, b, c} {0, a, b, c} {1} H
1 H H H {0, a, c, 1} {0, b, 1}
∗ 1 b a c 0

Table 8: Cayley table of Example 3.25

Example 3.26. Consider the HvMV-algebra 〈H;⊕,∗ , 0〉 in which H = {0, a, b, 1}
and ⊕ and ∗ are de�ned as in Table 9. Obviously, 0 is not a scalar. Moreover,
{0, a} is an obstinate weak HvMV-ideal of H, which does not satisfy (3.1) because
b = b∗ 6∈ {0, a}. This example shows that if 0 is not a scalar, Theorem 3.22(ii)
may not be true.

⊕ 0 a b 1

0 {0} {a} {a, b} H
a {a} {a, 1} {b} H
b {0, b} {0, a, b} H {1}
1 H {0, a, 1} {a, 1} H

∗ 1 a b 0

Table 9: Cayley table of Example 3.26

Example 3.27. Consider the HvMV-algebra H given in Example 3.12. It is not
di�cult to check thatH satis�es (AP) and {0, b} is a weak HvMV-ideal ofH, which
is not an obstinate weak HvMV-ideal because a, 1 6∈ {0, b}, while a∗� 1∪ 1� a∗ =
{a} 6� {0, b}. We observe that a, a∗ 6∈ {0, b}. This example shows that the
condition (3.1) is necessary in Theorem 3.22(i).

Lemma 3.28. For a ∈ H \{0}, if H \{a, 1} is a weak HvMV-ideal of H satisfying
(3.1), it is an obstinate weak HvMV-ideal, too.

Proof. Let I = H \ {a, 1} (with a 6= 0) be a weak HvMV-ideal of H which satis�es
(3.1). Now, we prove that I satis�es (WOI), for x, y ∈ {a, 1}. If a = 1, from
0 ∈ 1∗ � 1 ∪ 1 � 1∗, the proof is complete. Assume that a 6= 1. Again from
0 ∈ 1∗ � 1 ∪ 1� 1∗ and that 0 ∈ a∗ � a ∪ a� a∗ and 0 ∈ 1∗ � a ∪ a� 1∗ it follows
that 1∗ � 1 ∪ 1� 1∗ � I, a∗ � a ∪ a� a∗ � I and 1∗ � a ∪ a� 1∗ � I. Also, since
a∗ ∈ a∗ � 1 ∪ 1� a∗ and a∗ ∈ I, so a∗ � 1 ∪ 1� a∗ � I, completes the proof.

Now, we give more general case than Lemma 3.28.
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Lemma 3.29. Let n > 2 be a positive integer and a1, a2, . . . , an, an+1 = 1 ∈ H be
such that

(∃k ∈ {1, 2, . . . , n, n+1}) a∗k ∈ a∗i �aj ∪aj �a∗i , ∀i, j ∈ {1, 2, . . . , n, n+1}. (3.3)

If H \ {a1, a2, . . . , an, 1} is a weak HvMV-ideal of H satisfying (3.1), it is an ob-
stinate weak HvMV-ideal, too.

Proof. Let I = H \ {a1, a2, . . . , an, an+1 = 1} be a weak HvMV-ideal of H. We
know that 0 ∈ 1∗�ai∪ai�1∗ and 0 ∈ a∗i �ai∪ai�a∗i , whence 1∗�ai∪ai�1∗ � I
and a∗i � ai ∪ ai � a∗i � I, for all i ∈ {1, 2, . . . , n + 1}. From (3.1) it follows that
a∗i ∈ I, for all i ∈ {1, 2, . . . , n+ 1}, whence combining a∗i ∈ 1� a∗i ∪ a∗i � 1 we get
1�a∗i ∪a∗i � 1 � I. Moreover, from (3.3) and that a∗k ∈ I for k ∈ {1, 2, . . . , n+1},
it follows that a∗i � aj ∪ aj � a∗i � I, completes the proof.

Example 3.30. Consider the HvMV-algebra 〈H;⊕,∗ , 0〉 in whichH = {0, a, b, c, 1}
and ⊕ and ∗ are de�ned as in Table 10.

⊕ 0 a b c 1

0 {0} {a} {b} {c} {1}
a {a} {0, a, b, c} H {0, a, b, c} H
b {b} H {0, a, b, c} {0, a, b, c} H
c {c} {0, a, b, c} {0, a, b, c} H H
1 {1} H H {0, a, 1} {0, a, b, 1}
∗ 1 b a c 0

Table 10: Cayley table of Example 3.30

(i) It is obvious that H \ {b, 1} = {0, a, c} is a weak HvMV-ideal of H satisfy-
ing (3.1). This example shows that those weak HvMV-ideals satisfying the
conditions of Lemma 3.28 do exist.

(ii) It is not di�cult to check that I = {0, a, b} is a weak HvMV-ideal of H but it
is not an obstinate weak HvMV-ideal because c, 1 6∈ I, while c∗�1∪1� c∗ =
{c} 6� I. Also, obviously {0, a, b} does not satisfy (3.1). Hence the condition
(3.1) is necessary in Lemma 3.28.

(iii) Routine calculations show that J = {0, a} is a weak HvMV-ideal of H, which
is not an obstinate weak HvMV-ideal because c, 1 6∈ J , while c∗�1∪1� c∗ =
{c} 6� J . We observe that J satis�es (3.3) but does not satisfy (3.1) because
c = c∗ 6∈ {0, a}. This example shows that the condition (3.1) is necessary in
Lemma 3.29.

Theorem 3.31. Let H be an HvMV-algebra with |H| < 6. Then every proper
weak HvMV-ideal of H satisfying (3.1) is an obstinate weak HvMV-ideal.

Proof. Assume thatH is an HvMV-algebra with at most �ve elements. We consider
the following cases.
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Case 1: |H| = 2 or 3. If H = {0, 1} or H = {0, a, 1}, then the only possible
proper weak HvMV-ideals of H satisfying (3.1) are {0} and {0, a}, whence by
Lemma 3.28, they are obstinate weak HvMV-ideals.

Case 2: Assume that H = {0, a, b, 1} with four elements. If a∗ = a and b∗ = b,
the only possible proper weak HvMV-ideal of H satisfying (3.1) is {0, a, b}, whence
by Lemma 3.28, it follows that it is an obstinate weak HvMV-ideal. If a∗ = b
(whence b∗ = a), the only possible proper weak HvMV-ideals satisfying (3.1) are
{0, a} and {0, b}, whence by Lemma 3.28 it follows that they are obstinate weak
HvMV-ideals of H.

Case 3: Assume that H = {0, a, b, c, 1} with �ve elements. We �rst assume
that a∗ = a, b∗ = b and c∗ = c. Then the only possible proper weak HvMV-ideal
of H satisfying (3.1) is {0, a, b, c}, whence by Lemma 3.28 it follows that it is an
obstinate weak HvMV-ideal. Let a∗ = b, b∗ = a and c∗ = c. Then {0, a, c} and
{0, b, c} can be the only proper weak HvMV-ideals of H satisfying (3.1), whence
by Lemma 3.28 it follows that they are obstinate HvMV-ideals.

Now, we give some conditions under which those weak HvMV-ideals mentioned
in Lemma 3.28 there exist.

Theorem 3.32. Let H be an HvMV-algebra. Then H \ {1} is a weak HvMV-ideal
if and only if

(∀x, y ∈ H \ {1}) x⊕ y 6= {1}. (3.4)

Proof. Assume that I = H \ {1} satis�es (3.4) and let x � y and y ∈ I, for some
x, y ∈ I. It is clear that x 6= 1, whence x ∈ I. Now, let x, y ∈ I. Since x⊕y 6= {1},
so there exists a ∈ x⊕y such that a 6= 1. This implies that a ∈ I. Hence x⊕y � I,
proving I is a weak HvMV-ideal of H.

The converse is obvious.

Corollary 3.33. In an HvMV-algebra H, H\{1} is an obstinate weak HvMV-ideal
if and only if x⊕ y 6= {1}, for all x, y ∈ H \ {1}.

Proof. Assume that x ⊕ y 6= {1}, for all x, y ∈ H \ {1}. We must prove that
0�1∪1�0 � I. But this follows from the fact that 0 ∈ 0�1∪1�0. Considering
Theorem 3.32, we conclude that H \ {1} is an obstinate weak HvMV-ideal of H.
The converse follows from Theorem 3.32 and the fact that any obstinate weak
HvMV-ideal is a weak HvMV-ideal.

Example 3.34. Consider the HvMV-algebra H given in Example 3.30. It is easy
to check that H \ {1} = {0, a, b, c} is a weak HvMV-ideal satisfying (3.4). This
example shows that those weak HvMV-ideals satisfying the conditions of Theorem
3.32 do exist.

Example 3.35. Consider the HvMV-algebra H given in Example 3.4. Then H \
{1} = {0, a, b} is not a weak HvMV-ideal because a ⊕ b = {1} 6� H \ {1}. This
example shows that the condition (3.4) is necessary in Theorem 3.32.
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De�nition 3.36. An element a ∈ H is called a coatom if there is not any element
b ∈ H \ {1} such that a ≺ b.

Theorem 3.37. Let a ∈ H be a coatom. Then H \ {a, 1} is a weak HvMV-ideal
of H if and only if

(∀x, y ∈ H \ {a, 1}) x⊕ y 6⊆ {a, 1}. (3.5)

Proof. Assume that (3.5) holds and let I = H \ {a, 1}. Also, let x � y and y ∈ I,
for x, y ∈ H. Since y /∈ {a, 1} and a and 1 are coatoms, then x /∈ {a, 1}, whence
x ∈ I. Now, let x, y ∈ I. By hypothesis, there exists z ∈ x⊕y such that z /∈ {a, 1},
whence z ∈ I. Hence x⊕ y � I.

The converse follows from the fact that a and 1 are coatoms.

Corollary 3.38. Assume that a ∈ H is a coatom with a∗ 6= a. If H \ {a, 1}
satis�es (3.1) and (3.5), then it is an obstinate weak HvMV-ideal of H.

Proof. It follows from Lemma 3.28 and Theorem 3.37.

Example 3.39. Consider the HvMV-algebra H given in Example 3.11.

(i) Obviously, c is a coatom with c∗ = c. Moreover, {0, a, b} is a weak HvMV-
ideal of H, which is not obstinate because c∗ � 1 ∪ 1� c∗ = {c} 6� {0, a, b}.
Hence the condition `a∗ 6= a, for all coatoms a' is necessary in Corollary 3.38.

(ii) Obviously, b is also a coatom with b∗ = a 6= b. It is easily checked that
H \ {b, 1} = {0, a, c} satis�es (3.1) and (3.5). Hence it is an obstinate weak
HvMV-ideal of H.

Theorem 3.40. Assume that a1, . . . , an be coatoms of H. Then H \{a1, . . . , an, 1}
is a weak HvMV-ideal of H if and only if

(∀x, y ∈ H \ {a1, . . . , an, 1}) x⊕ y 6⊆ {a1, . . . , an, 1}. (3.6)

Proof. It is similar to the proof of Theorem 3.37.

Corollary 3.41. Let a1, . . . , an be coatoms of H which satisfy the conditions of
Lemma 3.29. If H \ {a1, . . . , an, 1} satis�es (3.1) and (3.6), then it is an obstinate
weak HvMV-ideal.

Proof. It follows from Lemma 3.29 and Theorem 3.40.

Example 3.42. Consider the HvMV-algebra H given in Example 3.25. It is easy
to check that a, b and c are coatoms of H. Moreover, H \ {b, c, 1} = {0, a} is a
weak HvMV-ideal of H and (3.6) satis�ed. This example shows that those weak
HvMV-ideals satisfying (3.6) do exist.
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4. Boolean, prime and obstinate weak HvMV-ideals

In this section, the notions of Boolean weak HvMV-ideals and prime weak HvMV-
ideals are introduced and the relationships between them and obstinate weak
HvMV-ideals are investigated.

De�nition 4.1. Let I be a proper weak HvMV-ideal of H. I is called a

(i) prime weak HvMV-ideal if x ∧ y � I implies that x ∈ I or y ∈ I, for all
x, y ∈ H,

(ii) Boolean weak HvMV-ideal if x ∧ x∗ ∪ x∗ ∧ x � I, for all x, y ∈ H.

Example 4.2. Consider the HvMV-algebra 〈H;⊕,∗ , 0〉 in which ⊕ and ∗ are
de�ned as in Table 11. It is not di�cult to check that {0, a, b, c} is prime weak
HvMV-ideal of H but it is not a Boolean weak HvMV-ideal because a∧ b∪ b∧ a =
{1} 6� {0, a, b, c}.

⊕ 0 a b c 1

0 {0} {a} {b} {c} {1}
a {a} {c} H {0, a, b, c} H
b {b} H {c} {0, a, b, c} H
c {c} {0} {0} H H
1 {1} H H {0, a, c, 1} {0, a, c, 1}
∗ 1 b a c 0

Table 11: Cayley table of Example 4.2

Example 4.3. Consider the HvMV-algebra 〈H;⊕,∗ , 0〉, whereH = {0, a, b, 1} and
⊕ and ∗ are de�ned as in Table 12. It is not di�cult to check that I = {0, b} is a
Boolean weak HvMV-ideal of H, while it is not a prime weak HvMV-ideal because
a ∧ a = H � I but a 6∈ I.

⊕ 0 a b 1

0 {0} {0, a} {0, a, b} {0, a, b, 1}
a {0, a} {0, a} {0, a, b, 1} {0, a, b, 1}
b {0, a, b} {0, a, b, 1} {0, a, b} {0, a, b, 1}
1 {0, 1} {a, 1} {b, 1} {a, b, 1}
∗ 1 b a 0

Table 12: Cayley table of Example 4.3

Theorem 4.4. Let H be an HvMV-algebra with the property (AP ) and assume
that 0 is a scalar. Then every obstinate weak HvMV-ideal of H is a Boolean weak
HvMV-ideal.

Proof. Let I be an obstinate weak HvMV-ideal of H. By Theorem 3.22(ii), we
have x ∈ I or x∗ ∈ I, for all x ∈ H. On the other hand, since H satis�es (AP),
so x ∧ x∗ � x∗ and x∗ ∧ x � x, whence x ∧ x∗ ∪ x∗ ∧ x � I. Hence I is a Boolean
weak HvMV-ideal of H.
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Example 4.5. Consider the HvMV-algebra H given in Example 4.2. Obviously,
0 is a scalar. Also, H does not satisfy (AP) because a 6� {c} = a ⊕ a. It is not
di�cult to check that {0, a, b} is an obstinate weak HvMV-ideal of H but it is not
a Boolean weak HvMV-ideal because a ∧ b = {1} 6� {0, a, b}. This example shows
that the condition (AP) is necessary in Theorem 4.4.

Example 4.6. Consider the HvMV-algebra H given in Example 3.25. Obviously,
0 is not a scalar. Routine calculations show that H satis�es (AP). Moreover, {0, b}
is an obstinate weak HvMV-ideal of H but it is not a Boolean weak HvMV-ideal
because c∧c = {c} 6� {0, b}. This example shows that if 0 is not a scalar, Theorem
4.4 may not be true in general.

Example 4.7. Consider the HvMV-algebraH given in Example 3.30. Obviously, 0
is a scalar. Also, it is not di�cult to check that H satis�es (AP). Moreover {0, a, b}
is a Boolean weak HvMV-ideal of H but it is not an obstinate weak HvMV-ideal
because c, 1 6∈ {0, a, b}, while c∗� 1∪ 1� c∗ = {c} 6� {0, a, b}. This example shows
that the converse of Theorem 4.4 does not true in general.

Theorem 4.8. In an HvMV-algebra with the property (AP ), every proper weak
HvMV-ideal which is both Boolean and prime is an obstinate weak HvMV-ideal.

Proof. Let H be an HvMV-algebra with the property (AP) and let I be a Boolean
weak HvMV-ideal and a prime weak HvMV-ideal of H. Then x ∧ x∗ ∪ x∗ ∧ x � I,
for all x ∈ H. This implies that x ∧ x∗ � I or x∗ ∧ x � I, for all x ∈ H. In any
case, we get x ∈ I or x∗ ∈ I. Now, by Theorem 3.22(i) the proof is complete.

Example 4.9. Consider the HvMV-algebra 〈H;⊕,∗ , 0〉, where H = {0, a, b, 1}
and ⊕ and ∗ are de�ned as given in Table 13. It is not di�cult to check that
H satis�es (AP). Also, I = {0, a} is a prime weak HvMV-ideal of H, while it is
neither a Boolean weak HvMV-ideal nor an obstinate HvMV-ideal because b∧ b∗ =
b∗ ∧ b = {b} 6� I and b, 1 /∈ I, while b∗ � 1 ∪ 1 � b∗ = {b} 6� I, respectively. This
example shows that the condition `Boolean' is necessary in Theorem 4.8.

⊕ 0 a b 1

0 {0} {0, a, b} {b} H
a {a} H {a, b} H
b {b} {a, b} {1} {1}
1 {b, 1} {0, 1} {1} {a, b, 1}
∗ 1 a b 0

Table 13: Cayley table of Example 4.9

Example 4.10. Consider the HvMV-algebra H given in Example 3.30. It is easily
seen that H satis�es (AP). Also, it is not di�cult to check that {0, b} is a Boolean
weak HvMV-ideal, while it is neither an obstinate weak HvMV-ideal nor a prime
weak HvMV-ideal because c, 1 6∈ {0, b} but c∗ � 1 ∪ 1 � c∗ = {c} 6� {0, b} and
a ∧ c = H � {0, b}, while a, c 6∈ {0, b}. This example shows that the condition
`prime' is necessary in Theorem 4.8.
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Example 4.11. Consider Example 3.3. Routine calculations show thatH satis�es
(AP). Moreover, I = {0, a} is an obstinate weak HvMV-ideal of H but it is not a
prime weak HvMV-ideal because 1 ∧ b = {0, a, b, 1} � I, while b, 1 6∈ I. Also, it is
not a Boolean weak HvMV-ideal because b ∧ b = {a, b} � I, while b 6∈ I. Hence
the converse of Theorem 4.8 is not true in general.

In HvMV-algebras with at most �ve elements we have more strong result:

Theorem 4.12. In any HvMV-algebra H with |H| < 6, every proper weak HvMV-
ideal which is both Boolean and prime is an obstinate weak HvMV-ideal.

Proof. It is obvious that every proper weak HvMV-ideal which is both Boolean
and prime satis�es (3.1). The remains follows from Theorem 3.31.

Theorem 4.13. Let H = {0, a, 1} be an HvMV-algebra satisfying

a ∈ a⊕ a or 0 ∈ a⊕ a. (4.7)

Then {0, a} is a weak HvMV-ideal of H.

Proof. Let I = {0, a}. Obviously, (I0) is satis�ed. From 0 ∈ 0 ⊕ 0 and a ∈
a⊕ 0 ∩ 0⊕ a it follows that 0⊕ 0 � I, a⊕ 0 � I and 0⊕ a � I. Under condition
(4.7) it is obvious that a⊕a � I, as well. Hence I is a weak HvMV-ideal of H.

Theorem 4.14. Let H = {0, a, 1} be an HvMV-algebra satisfying (4.7). Then {0}
and {0, a} are Boolean weak HvMV-ideals of H.

Proof. We know that {0} is a weak HvMV-ideal, in any HvMV-algebra. From
Proposition 2.2(10), it follows that 1 ∧ 1∗ ∪ 1∗ ∧ 1 � {0}. If a ∈ a ⊕ a, then
0 ∈ (a∗ ⊕ a)∗ ⊆ ((a⊕ a)∗ ⊕ a)∗ = a ∧ a, whence a∗ ∧ a = a ∧ a � {0}. Similarly, if
0 ∈ a⊕a, then 0 ∈ (0∗⊕a)∗ ⊆ ((a⊕a)∗⊕a)∗ = a∧a = a∗∧a. Hence a∗∧a � {0}.
Thus, {0} is a Boolean weak HvMV-ideal of H.

Now, from 0∗ ∈ a∗⊕ a = a⊕ a it follows that a ∈ 0⊕ a ⊆ (a⊕ a)∗⊕ a, whence
a = a∗ ∈ ((a ⊕ a)∗ ⊕ a)∗ = a∗ ∧ a. Hence a∗ ∧ a � I. Therefore I is a Boolean
weak HvMV-ideal of H.

Lemma 4.15. In an HvMV-algebra, every two distinct elements a, b with a∗ = a
and b∗ = b are incomparable.

Proof. Let a, b be two distinct elements of H. Then

a � b ⇔ 0∗ ∈ a∗ ⊕ b ∩ b⊕ a∗ = a⊕ b ∩ b⊕ a = a⊕ b∗ ∩ b∗ ⊕ a ⇔ b � a,

which is a contradiction.

Lemma 4.16. In any HvMV-algebra H, for every x ∈ H the following hold:

(i) if x∗ = x, then x ∈ x ∧ x,
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(ii) if x ∈ x⊕ x or 0 ∈ x⊕ x, then 0 ∈ x ∧ x∗,

(iii) if x∗ ∈ x⊕ x, then x ∈ x ∧ x∗,

(iv) if 0∗ ∈ x⊕ x, then x∗ ∈ x ∧ x∗,

Proof. (i) Assume that x∗ = x, for x ∈ H. From 0∗ ∈ x∗ ⊕ x and x ∈ 0 ⊕ x it
follows that x = x∗ ⊆ (0⊕ x)∗ ⊆ ((x∗ ⊕ x)∗ ⊕ x)∗ = x ∧ x.

(ii) Assume that x ∈ x⊕x. Then 0 ∈ x�x∗ ⊆ (x⊕x)�x∗ = x∧x∗. Similarly,
if 0 ∈ x⊕ x, then 0 ∈ 0� x∗ ⊆ (x⊕ x)� x∗ = x ∧ x∗.

(iii) If x∗ ∈ x⊕ x, then x ∈ (x⊕ x)∗ ⊆ ((x⊕ x)∗ ⊕ x)∗ = x ∧ x∗.
(iv) If 0∗ ∈ x⊕ x, then x∗ ∈ 0∗ � x∗ ⊆ (x⊕ x)� x∗ = x ∧ x∗.

Theorem 4.17. Let H = {0, a, b, 1} be an HvMV-algebra.

(i) If a∗ = a and b∗ = b, {0, a} and {0, b} can not be simultaneously a prime
weak HvMV-ideal and an obstinate weak HvMV-ideal.

(ii) Let a∗ = b. Then {0, a} and {0, b}) are weak HvMV-ideals of H if and only
if they are Boolean weak HvMV-ideals of H.

(iii) {0, a, b} is a weak HvMV-ideal of H if and only if it is a Boolean weak HvMV-
ideal.

Proof. (i) By contrary, we assume that I = {0, a} is a prime weak HvMV-ideal and
an obstinate weak HvMV-ideal ofH. From b, 1 /∈ I it follows that (b⊕0)∗∪(0⊕b)∗ =
b∗� 1∪ 1� b∗ � I, whence (b⊕ 0)∗ � I or (0⊕ b)∗ � I. Considering Lemma 4.15,
it follows that a ∈ b ⊕ 0 or 0∗ ∈ b ⊕ 0 or a ∈ 0 ⊕ b or 0∗ ∈ 0 ⊕ b. From the two
�rst cases it follows that b ∧ b � I and from the two second cases it follows that
b ∧ 1 � I. This contradicts the hypothesis that I is a prime weak HvMV-ideal of
H.

Similarly, it is proved that {0, b} can not be simultaneously a Boolean weak
HvMV-ideal and an obstinate weak HvMV-ideal.

(ii) Assume that a∗ = b (whence b∗ = a) and I = {0, a} is a weak HvMV-ideal
of H. From 0 ∈ 0∧1∪1∧0 it follows that 0∧1∪1∧0 � I. It remains that to show
that a∧b∪b∧a � I. Since a ∈ I and I is a weak HvMV-ideal, so a⊕a � I, whence
0 ∈ a⊕ a or a ∈ a⊕ a, or b ∈ a⊕ a and b � a. In the �rst two cases it follows that
0 ∈ a ∧ b, whence a ∧ b � I. In the last case, we have 0∗ ∈ b∗ ⊕ a = a⊕ a and so
0 ∈ (a ⊕ a)∗ ⊆ ((a ⊕ a)∗ ⊕ a)∗ = a ∧ b. Hence a ∧ b � I, proving I is a Boolean
weak HvMV-ideal of H.

Similar argument shows that if {0, b} is a weak HvMV-ideal, it is also a Boolean
weak HvMV-ideal.

The converse is obvious.
(iii) Assume thatI = {0, a, b} is a weak HvMV-ideal of H. Obviously, 0 ∧ 0∗ ∪

0∗ ∧ 0 = 1∗ ∧ 1 ∪ 1 ∧ 1∗ � I. Now, if a∗ = a and b∗ = b, from Lemma 4.16(i) it
follows that a ∈ a ∧ a∗ ∪ a∗ ∧ a and b ∈ b ∧ b∗ ∪ b∗ ∧ b, whence a ∧ a∗ ∪ a∗ ∧ a � I
and b∧ b∗ ∪ b∗ ∧ b � I. Otherwise, since I is a weak HvMV-ideal, so we must have
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a ⊕ a � I and b ⊕ b � I, whence {0, a, b} ⊆ a ⊕ a and similarly {0, a, b} ⊆ b ⊕ b.
If a∗ = b ∈ a ⊕ a, then a ∈ a ∧ a, by Lemma 4.16(iii), otherwise 0 ∈ a ∧ a∗, by
Lemma 4.16(ii). In any case a ∧ a∗ � I. Similarly, we can show that b ∧ b∗ � I.
Hence I is a Boolean HvMV-ideal.

The converse is obvious.

Example 4.18. Consider the HvMV-algebra H given in Example 3.26. Obviously,
H satis�es the conditions of Theorem 4.17(i). Also, it is easily checked that {0, a}
is an obstinate weak HvMV-ideal of H, which is not a prime weak HvMV-ideal
because b ∧ b = H � {0, a}, while b /∈ {0, a}.

Example 4.19. Consider the HvMV-algebraH given in Example 4.9. Then a∗ = a
and b∗ = b and {0, a} is a prime weak HvMV-ideal, while it is not an obstinate
weak HvMV-ideal. This example shows that those HvMV-algebras satisfying the
conditions of Theorem 4.17 do exist.

Example 4.20. Consider the HvMV-algebra H given in Example 3.3. Obviously,
{0, a} and {0, b} are weak HvMV-ideals of H and so by Theorem 4.17 are Boolean
weak HvMV-ideals of H.

Example 4.21. Consider the HvMV-algebra H given in Example 3.7. Then
{0, a, b} is a weak HvMV-ideal of H and so by Theorem 4.17, it is a Boolean
weak HvMV-ideal of H.

Example 4.22. As Example 4.9 shows {0, a} is a weak HvMV-ideal of H, while
it is not a Boolean weak HvMV-ideal. We observe that a∗ 6= a does not hold in H.
So, this condition is necessary in Theorem 4.17(ii).

In connection with quotient HvMV-algebras induced by obstinate weak HvMV-
ideals we have the following result. Before, we state it we observe that an HvMV-
algebra H is said to be commutative if x⊕ y = y ⊕ x, for all x, y ∈ H.

Theorem 4.23. Assume that H is commutative and let I be an obstinate weak
HvMV-ideal of H. If there exists a regular congruence θ in H such that 0/θ = I,
then

(i) H/θ is the two-elements Boolean algebra,

(ii) I is an HvMV-ideal,

(iii) x∗ 6= x, for all x ∈ H,

(iv) |H| is an even positive integer.

Proof. Let I be an obstinate weak HvMV-ideal of H and θ be a regular congruence
in H such that 0/θ = I.

(i) Let x, y ∈ H be such that x/θ, y/θ 6= 0/θ. Then x, y /∈ I, whence x∗ � y =
y�x∗ � I and y∗�x = x�y∗ � I. This implies that (x⊕y∗)∗ = x∗�y∩I 6= ∅ and
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(y ⊕ x∗)∗ = y∗ � x∩ I 6= ∅. Hence there exist a ∈ x⊕ y∗ and b ∈ y ⊕ x∗ such that
a∗, b∗ ∈ I = 0/θ, whence a, b ∈ 0∗/θ. This means that x⊕y∗θ{0∗} and y⊕x∗θ{0∗}.
Since θ is regular, so xθy; i.e., x/θ = y/θ. Therefore, H/θ = {0/θ, 0∗/θ}.

(ii) We observe that in an HvMV-algebra 0∗ /∈ 0 ⊕ 0, otherwise we must have
0∗ � 0, which is impossible. Hence in H/θ we have I⊕I = 0/θ⊕0/θ = {0/θ}. This
implies that for every x, y ∈ I, x⊕ y ⊆ I, which implies that I is an HvMV-ideal.

(iii) Assume that x∗ = x, for some x ∈ H. Considering (i) we have x ∈ 0/θ
or x ∈ 0∗/θ. In the �rst case we have x = x∗θ0∗, whence 0θ0∗, which is a
contradiction. Similarly, if x ∈ 0∗/θ we get 0θ0∗, which is a contradiction.

(iv) Considering (iii), the proof is obvious.

Remark 4.24. We notice that Theorem 4.23 does not state that an obstinate
weak HvMV-ideal which is the kernel of a congruence is an obstinate HvMV-ideal.
It just states that, as a weak HvMV-ideal, it must be an HvMV-ideal. To see this
consider the HvMV-algebra given in Table 14. It is not di�cult to check that H
is a commutative HvMV-algebra in which I = {0, a} is an HvMV-ideal (and so a
weak HvMV-ideal) of H which is an obstinate weak HvMV-ideal, while it is not an
obstinate HvMV-ideal because 1 /∈ I but 1∗ � 1 = {0, b} 6⊆ I. It is not di�cult to
verify that the relation θ = 4H∪{(0, a), (a, 0), (b, 1), (1, b)} is a regular congruence
in H such that 0/θ = I.

⊕ 0 a b 1

0 {0} {a} {b} {a, 1}
a {a} {0} {1} {b, 1}
b {b} {1} {a, 1} H
1 {a, 1} {b, 1} H {0, a, 1}
∗ 1 a b 0

Table 14: A commutative HvMV-algebra

5. Conclusions

We introduced a new type of HvMV-ideals (obstinate HvMV-ideals and obstinate
weak HvMV-ideals) and gave a deep characterization of them. We proved that in
any HvMV-algebra with odd number of elements there does not exist any obsti-
nate HvMV-ideal. Especially, in an HvMV-algebra with at least three elements, the
singleton {0} is not an obstinate weak HvMV-ideal. Moreover, obstinate HvMV-
ideals are maximal (if exist). Next, we studied the properties of obstinate weak
HvMV-ideals. We proved that every proper weak HvMV-ideal satisfying suitable
conditions is an obstinate weak HvMV-ideal. In the sequel, we introduced the no-
tions of prime weak HvMV-ideals and Boolean weak HvMV-ideals and gave some
basic properties. Furthermore, we investigated the relationships between obstinate
weak HvMV-ideals, prime weak HvMV-ideals and Boolean weak HvMV-ideals. We
proved that every proper weak HvMV-ideal which is both Boolean and prime is an
obstinate weak HvMV-ideal, under suitable conditions, but the converse may not be
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true. We also characterized obstinate weak HvMV-ideals and the relationships be-
tween prime weak HvMV-ideals and Boolean weak HvMV-ideals in HvMV-algebras
with at most �ve elements and investigated what subsets can be a suitable candi-
date to be an obstinate weak HvMV-ideal, Boolean weak HvMV-ideal or a prime
weak HvMV-ideal.
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