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A characterization of elementary abelian 3-groups

Chimere S. Anabanti

The author dedicates this paper to Professor Sarah Hart with admiration and respect.

Abstract. We give a characterization of elementary abelian 3-groups in terms of their maximal

sum-free sets. A corollary to our result is that the number of maximal sum-free sets in an

elementary abelian 3-group of �nite rank n is 3n − 1.

1. Preliminaries

The well-known result of Schur which says that whenever we partition the set of
positive integers into a �nite number of parts, at least one of the parts contains
three integers x, y and z such that x + y = z introduced the study of sum-free
sets. Schur [13] gave the result while showing that the Fermat's last theorem does
not hold in Fp for su�ciently large p. The concept was later extended to groups
as follows: A non-empty subset S of a group G is sum-free if for all s1, s2 ∈ S,
s1s2 /∈ S. (Note that the case s1 = s2 is included in this restriction.) An example
of a sum-free set in a �nite group G is any non-trivial coset of a subgroup of G.
Sum-free sets have applications in Ramsey theory and are also closely related to
the widely studied concept of caps in �nite geometry.

Some questions that appear interesting in the study of sum-free sets are:

(i) How large can a sum-free set in a �nite group be?

(ii) Which �nite groups contain maximal by inclusion sum-free sets of small
sizes?

(iii) How many maximal by cardinality sum-free sets are there in a given �nite
group?

Each of these questions has been attempted by several researchers; though none
is fully answered. For question (i), Diananda and Yap [7], in 1969, following an
earlier work of Yap [18], determined the sizes of maximal by cardinality sum-free
sets in �nite abelian groups G, where |G| is divisible by a prime p ≡ 2(mod 3),
and where |G| has no prime factor p ≡ 2(mod3) but 3 is a factor of |G|. They
gave a good bound in the case where every prime factor of |G| is congruent to
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1(mod 3). Green and Ruzsa [10] in 2005 completely answered question (i) in the
�nite abelian case. The question is still open for the non-abelian case, even though
there has been some progress by Kedlaya [11, 12], Gowers [9], amongst others.

For question (ii), Street and Whitehead [14] began research in that area in
1974. They called a maximal by inclusion sum-free set, a locally maximal sum-
free set (LMSFS for short), and calculated all LMSFS in groups of small orders,
up to 16 in [14, 15] as well as a few higher sizes. In 2009, Giudici and Hart [8]
started the classi�cation of �nite groups containing LMSFS of small sizes. Among
other results, they classi�ed all �nite groups containing LMSFS of sizes 1 and 2,
as well as some of size 3. The size 3 problem was resolved in [5]. Question (ii) is
still open for sizes k > 4; though some progress has been made in [1]. For other
works on LMSFS, the reader may see [2, 3, 4, 6].

To be consistent with our notations, we will use the term `maximal' to mean
`maximal by cardinality' and `locally maximal' to mean `maximal by inclusion'.
T rn uceanu [16] in 2014 gave a characterization of elementary abelian 2-groups
in terms of their maximal sum-free sets. His theorem (see Theorem 1.1 of [16])
states that �a �nite group G is an elementary abelian 2-group if and only if the set
of maximal sum-free sets coincides with the set of complements of the maximal
subgroups". The author of [16] didn't de�ne the term maximal sum-free sets. Un-
fortunately, the theorem is false whichever de�nition is used. If we take �maximal�
in the theorem to mean `maximal by cardinality', then a counterexample is the
cyclic group C4 of order 4, given by C4 = 〈x | x4 = 1〉. Here, there is a unique max-
imal (by cardinality) sum-free set namely {x, x3}, and it is the complement of the
unique maximal subgroup. But C4 is not elementary abelian. On the other hand,
if we take �maximal� to mean `maximal by inclusion', then the theorem will still be
wrong since S = {x1, x2, x3, x4, x1x2x3x4} is a maximal by inclusion sum-free set
in C4

2 = 〈x1, x2, x3, x4 | x2
i = 1, xixj = xjxi for 1 6 i, j 6 4〉, but does not coincide

with any complement of a maximal subgroup of C4
2 . These counterexamples were

�rst pointed out in the arXiv manuscript at https://arxiv.org/abs/1611.06546,
which prompted an erratum to be published by the author (see [17]).

For a prime p and n ∈ N, we write Zn
p for the elementary abelian p-group

of �nite rank n. We recall here that the number of maximal subgroups of Zn
p is

n−1∑
k=0

pk. Corollary 1.2 of [16] is that the number of maximal sum-free sets in Zn
2 is

2n − 1. This result is correct in its own right and can be proved by showing that
each maximal sum-free set in Zn

2 is the non-trivial coset of a maximal subgroup of
Zn
2 , and every maximal subgroup of Zn

2 is the complement of a maximal sum-free
set in Zn

2 . In this paper, we give a characterization of elementary abelian 3-groups
in terms of their maximal sum-free sets. Moreover, for prime p > 3, we show
that there is no direct analogue of our result for elementary abelian p-groups of
�nite ranks. For the rest of this section, we state the main result of this paper
and its immediate corollary. We remind the reader that Φ(G) denotes the Frattini
subgroup of G.
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Theorem 1.1. A �nite group G is an elementary abelian 3-group if and only if

the set of non-trivial cosets of each maximal subgroup of G coincides with two

maximal sum-free sets in G, every maximal sum-free set is a non-trivial coset of

a maximal subgroup, and Φ(G) = 1.

Corollary 1.2. The number of maximal sum-free sets in Zn
3 is 3n − 1.

2. Proof of Theorem

Let S be a sum-free set in a �nite group G. We de�ne SS = {xy | x, y ∈ S},
S−1 = {x−1 | x ∈ S} and SS−1 = {xy−1 | x, y ∈ S}. Clearly, S ∩ SS = ∅.
Moreover, S ∩ SS−1 = ∅ as well; for if x, y, z ∈ S with x = yz−1, then xz = y,
contradicting the fact that S is sum-free.

Lemma 2.1. Let S be sum-free in G = Zn
3 (n ∈ N), and let x ∈ S. Then the

following hold:

(i) any two sets in {S, x−1S, xS} are disjoint;

(ii) any two sets in {S, SS−1, S−1} are disjoint.

Moreover, if S is maximal, then the following also hold:

(iii) S ∪ x−1S ∪ xS = G and |S| = |G|
3 ;

(iv) S ∪ SS−1 ∪ S−1 = G.

Proof. (i). As S is sum-free, S ∩ xS = ∅ = S ∩ x−1S. So we only need to show
that xS ∩ x−1S = ∅. Suppose for contradiction that xS ∩ x−1S 6= ∅. Then there
exist y, z ∈ S such that xy = x−1z. This means that y = xz; a contradiction.
Therefore xS ∩ x−1S = ∅.

The proof of (ii) is similar to (i).

For (iii), as S ∪ x−1S ∪ xS ⊆ G, we have that 3|S| ≤ |G|; whence |S| ≤ |G|3 .

Each maximal subgroup of G has size |G|3 . As any non-trivial coset of such a

subgroup is sum-free and has size |G|3 ; such a coset of the maximal subgroup must

be maximal sum-free. Thus, |S| = |G|
3 , and S ∪ x−1S ∪ xS = G.

The proof of (iv) is similar.

Proposition 2.2. Suppose S is a maximal sum-free set in an elementary abelian

3-group G, and let x ∈ S. Then xS = S−1 = SS.

Proof. Let S be a maximal sum-free set in an elementary abelian 3-group G, and
x ∈ S. In the light of Lemma 2.1(iv), we deduce that x−1S = S−1S. Let y ∈ xS.
By Lemma 2.1(i) therefore y 6∈ S∪̇SS−1. So Lemma 2.1(iv) tells us that y ∈ S−1,
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and we conclude that xS ⊆ S−1. On the other hand, if y ∈ S−1, then Lemma
2.1(ii) and Lemma 2.1(iii) yield y ∈ xS; so S−1 ⊆ xS. Therefore xS = S−1. Now,

SS =
⋃
x∈S

xS =
⋃
x∈S

S−1 = S−1. (1)

Thus, xS = S−1 = SS as required.

Suppose p is the smallest prime divisor of the order of a �nite group G, and
H is a subgroup of index p in G. Then H is normal in G. This fact is well-known
but we include a short proof for the reader's convenience. Suppose for a contra-
diction that H is not normal. Then for some g ∈ G, we have Hg 6= H. But

|HgH| = |Hg||H|
|Hg∩H| = |H|2

|Hg∩H| = |H| |H||Hg∩H| > |H|p = |G|; thus HgH = G. There-

fore, g = (gh1g
−1)h2 for some h1, h2 ∈ H. So g = h2h1 ∈ H, and we conclude

that Hg = H; a contradiction. Therefore H is normal in G.

We now prove Theorem 1.1

Proof. Let G be an elementary abelian 3-group of �nite rank n. Clearly, every
maximal subgroup of G has size 3n−1, and the non-trivial cosets of any maximal
subgroup of G yield two maximal sum-free sets in G. Next, we show that every
maximal sum-free set in G is a non-trivial coset of a maximal subgroup of G.
Suppose S is a maximal sum-free set in G. Let x ∈ S be arbitrary, and de�ne H :=
x−1S. We show that H is a subgroup of G. Let a and b be elements of H. Then
a = x−1y and b = x−1z for some y, z ∈ S. Since ab = x−1(x−1yz), it is su�cient
to show that x−1yz ∈ S. Recall from Lemma 2.1(iii) that G = S ∪ x−1S ∪ xS.
From Proposition 2.2 therefore, G = S∪x−1S∪S−1. Now, suppose x−1yz ∈ x−1S.
Then there exists q ∈ S such that x−1yz = x−1q. This implies that yz = q; a
contradiction. Next suppose x−1yz ∈ S−1. Then there exists q ∈ S such that
x−1yz = q−1. So yz = xq−1, and we obtain that x−1q = y−1z−1 = (yz)−1; a
contradiction as x−1q ∈ x−1S, (yz)−1 ∈ (SS)−1 = S by Equation 1, and Lemma
2.1(i) tells us that x−1S ∩ S = ∅. We have shown that x−1yz 6∈ x−1S ∪ S−1.
In the light of G = S ∪ x−1S ∪ S−1 therefore, x−1yz ∈ S; whence, H is closed.

So H is a subgroup of G. As |H| = |x−1S| = |S| = |G|
3 , we conclude that H is

a maximal subgroup of G, and S = xH is a non-trivial coset of H in G. So we
have shown now that every maximal sum-free set in G is a non-trivial coset of a
maximal subgroup of G. The third part that Φ(G) = 1 follows from the fact that
the intersection of maximal subgroups of G is trivial.

Conversely, suppose G is a �nite group such that the set of non-trivial cosets of
each maximal subgroup of G coincides with two maximal sum-free sets in G, every
maximal sum-free set of G is a coset of a maximal subgroup of G, and Φ(G) = 1.
First and foremost, G has no subgroup of index 2; otherwise it will have a maximal
sum-free set which is not a coset of a subgroup of index 3. As the smallest index
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of a maximal subgroup of G is 3, any such subgroup must be normal in G. Let H
be a Sylow 3-subgroup of G. Then either H = G or H is contained in a maximal
subgroup (say M) of G. Suppose H is contained in such maximal subgroup M . As
|G/M | = 3, we deduce immediately that |G : H| is divisible by 3; a contradiction!
Therefore, H = G, and we conclude that G is a 3-group. Now, G is an elementary
abelian 3-group follows from the fact that Φ(G) = 1 and P/Φ(P ) is elementary
abelian for every p-group P .

Let p > 3 and prime, and suppose n ∈ N. If G = Zn
p , then there exists a normal

subgroupN of G such that G/N ∼= Zp, and Zp has a maximal sum-free set of size at
least 2 (the latter fact follows from the classi�cation of groups containing maximal
by inclusion sum-free sets of size 1 in [8, Theorem 4.1]). The union of non-trivial
cosets of N corresponding to this maximal sum-free set of Zp is itself sum-free in
G. So G has a maximal sum-free set of size at least 2|N |. This argument shows
that for p > 3, no direct analogue of Theorem 1.1 holds for elementary abelian
p-groups of �nite ranks.
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