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Some results on �lters in residuated lattices

Somayeh Motamed and Javad Moghaderi

Abstract. We study the notions of nodal, associative, strong, integral �lters in residuated

lattices and then state and prove some theorems which determine the relationships of these �lters

and other �lters in residuated lattices. Also we get some new properties of positive implicative

�lters in residuated lattices. And we also study the notions of strong, integral residuated lattices

and investigate its properties.

1. Introduction

Nonclassical logic is closely related to logic algebraic systems. A number of re-
searches have motivated to develop nonclassical logics, and also to enrich the
content of algebra. Ward and Dilworth [19], introduced the concept of residuated
lattices (it should be, however, noted that the motivation was by far not logi-
cal) as generalization of ideal lattices of rings. The residuated lattice plays the
role of semantics for a multiple-valued logic called residuated logic. Residuated
logic is a generalization of intuitionistic logic. Therefore it is weaker than classi-
cal logic. Important examples of residuated lattices related to logic are Boolean
algebras corresponding to basic logic, BL-algebras corresponding to Hájek's basic
logic, and MV-algebras corresponding to Lukasiewicz many valued logic. Hájek
[11], introduced the idea of �lters and prime �lters in BL-algebras. In researchs
of logic, theory of �lters plays a very important role in proving completeness with
respect to algebraic semantics. From logical point of view, �lters correspond to
sets of provable formulae. Bu³neag, Piciu [8] and Bourmand Saeid, Pourkhatoun
[6] and Ahadpanah, Torkzadeh [1] introduced the notion of (positive) implicative
�lters, fantastic �lters, easy �lters, obstinate �lters and normal �lters in residu-
ated lattices. The aim of this paper is to develop the �lter theory of residuated
lattices. In this paper, we study the notions of nodal, associative, strong, integral
�lters in residuated lattices and the relations among them and other type of �ters
in residuated lattice are investigated.

The motivation of this paper is to give the simple general principle of studying
the relations among some �lters on residuated lattices. In contrast to proofs of
particular results for concrete special types of these �lters, proofs of those general
theorems in this paper are simple. And the general principle can be applied to all
the subvarieties of residuated lattices.
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2. Preliminaries

We review the basic de�nitions of residuated lattice, with more details.

A residuated lattice is an algebra (L,∧,∨,�,→, 0, 1) of type (2, 2, 2, 2, 0, 0)
equipped with an order 6 satisfying the following:

(LR1) (L,∧,∨, 0, 1) is a bounded lattice,
(LR2) (L,�, 1) is a commutative ordered monoid,
(LR3) � and → form an adjoint pair i.e, c 6 a→ b if and only if a� c 6 b, for

all a, b, c ∈ L.

Proposition 2.1. (cf. [3, 4, 8, 9, 11, 14, 18, 19]) Let L be a residuated lattice.

Then for any x, y, z, w ∈ L we have:

(R1) 1→ x = x, x→ x = 1;
(R2) x� y 6 x, y hence x� y 6 x ∧ y, x 6 y → x and x� 0 = 0;
(R3) x� y 6 x→ y;
(R4) x 6 y if and only if x→ y = 1;
(R5) x→ y = y → x = 1 if and only if x = y;
(R6) x→ 1 = 1, 0→ x = 1, 1→ 0 = 0;
(R7) x 6 y → (x� y), x� (x→ y) 6 y (so, x� (x→ y) 6 x ∧ y),

x 6 (x→ y)→ y and ((x→ y)→ y)→ y = x→ y;
(R8) x→ y 6 (x� z)→ (y � z);
(R9) x→ y 6 (z → x)→ (z → y) 6 z → (x→ y);
(R10) x→ y 6 (y → z)→ (x→ z) (so, x→ y 6 y∗ → x∗) and

(x→ y)� (y → z) 6 x→ z;
(R11) x 6 y, then y → z 6 x→ z, z → x 6 z → y, x� z 6 y � z, y∗ 6 x∗

and x∗∗ 6 y∗∗;
(R12) x 6 y and z 6 w then x� z 6 y � w;
(R13) x ∨ x∗ = 1 implies x ∧ x∗ = 0;
(R14) x� (y → z) 6 y → (x� z) 6 (x� y)→ (x� z);
(R15) x → (y → z) = (x � y) → z = y → (x → z) (so, x → y∗ = y → x∗ =

(x� y)∗);
(R16) x→ y 6 (z → w)→ [(y → z)→ (x→ w)];
(R17) x 6 x∗∗, x∗∗∗ = x∗ and x 6 x∗ → y;
(R18) x� x∗ = 0, x� y = 0 if and only if x 6 y∗;
(R19) x

∗ � y∗ 6 (x� y)∗ (so, (x∗)n 6 (xn)∗ for every n > slant1);
(R20) x

∗∗ � y∗∗ 6 (x� y)∗∗ (so, (x∗∗)n 6 (xn)∗∗ for every n > slant1);
(R21) (x ∨ y)∗ = x∗ ∧ y∗;
(R22) (x→ y∗∗)∗∗ = x→ y∗∗;
(R23) x∨y = 1 implies x�y = x∧y and xn�yn = 1, for every n > slant1;
(R24) x� (y ∨ z) = (x� y) ∨ (x� z);
(R25) (x∨ y)→ z = (x→ z)∧ (y → z), (x→ z)∨ (y → z) 6 (x∧ y)→ z and

x→ (y ∧ z) = (x→ y) ∧ (x→ z);
(R26) (x∨y)�(x∨z) 6 x∨(y�z), hence (x∨y)mn 6 xn∨ym; for m,n > slant1;
(R27) x ∨ y 6 ((x→ y)→ y) ∧ ((y → x)→ x).
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From now on, unless mentioned otherwise, (L,∧,∨,�,→, 0, 1) will be a resid-
uated lattice, which will often be referred by its support set L.

The following de�nitions are stated from [1, 6, 8, 18]. Let φ 6= F ⊆ L, and
x, y, z ∈ L. For convenience, we enumerate some conditions which will be used.

(F1) x, y ∈ F implies x� y ∈ F and x ∈ F , x 6 y imply y ∈ F .
(F ′1) 1 ∈ F and x, x→ y ∈ F then y ∈ F .
(F2) x ∨ y ∈ F implies x ∈ F or y ∈ F .
(F ′2) x→ y ∈ F or y → x ∈ F .
(F3) x 6∈ F if and only if there is n > 1 such that (xn)∗ ∈ F .
(F4) x→ (y → z) ∈ F and x→ y ∈ F imply x→ z ∈ F .
(F ′4) x→ x2 ∈ F .
(F5) (y → z)→ y ∈ F implies y ∈ F .
(F6) y → x ∈ F implies ((x→ y)→ y)→ x ∈ F .
(F7) (y → x)→ x ∈ F implies (x→ y)→ y ∈ F .
(F ′7) x∗∗ ∈ F if and only if x ∈ F .
(F8) (x� y)∗ ∈ F implies (xn)∗ ∈ F or (ym)∗ ∈ F , for some m,n ∈ N .
(F9) x, y 6∈ F implies x→ y ∈ F and y → x ∈ F .
(F ′9) x ∈ F or x∗ ∈ F .
(F10) x∗∗ → (y → z) ∈ F and x∗∗ → y ∈ F imply x∗∗ → z ∈ F .
Conditions (Fn) and (F ′n) are equivalent.
A subset F of L is called
� a �lter of L, if it satis�es (F1),
� proper if F 6= L (that is, 0 6∈ F ),
� a prime �lter of L, if and it satis�es (F1), (F2) and 0 6∈ F ,
� a maximal �lter of L, if it satis�es (F1) and (F3) and 0 6∈ F ,
� an implicative �lter of L, if it satis�es (F1) and (F4).
� a positive implicative �lter of L, if it satis�es (F1) and (F5).
� a fantastic �lter of L, if it satis�es (F1) and (F6).
� a normal �lter of L, if it satis�es (F1) and (F7).
� a primary �lter of L if it satis�es (F1), (F8) and 0 6∈ F .
� an obstinate �lter of L, if it satis�es (F1), (F9) 0 6∈ F .
� an easy �lter of L, if it satis�es (F1) and (F10).
We denote by (F (L), (Spec(L), Max(L), IF (L), PIF (L), FF (L), NF (L),

PF (L), OF (L) EF (L)) the set of all �lters (resp., prime, maximal, implicative,
positive implicative, fantastic, normal, primary, obstinate, easy �lters) of L.

Theorem 2.2. (cf. [1, 6, 8, 18]) The following statements hold.

(i) Spec(L) ⊆ PF (L).
(ii) OF (L) ⊆ PIF (L) ⊆ IF (L).
(iii) PIF (L) ⊆ FF (L).
(iv) PIF (L) ⊆ NF (L).
(v) IF (L) ⊆ EF (L).
(vi) PIF (L) ∩ IF (L) = NF (L).
(vii) OF (L) ⊆ Spec(L).
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The �lter of L generated by X ⊆ L is denoted by 〈X〉. We have 〈∅〉 = {1} and
〈X〉 = {a ∈ L : x1 ∗ x2 ∗ . . . ∗ xn 6 a,∃n ∈ N, ∃x1, x2, . . . , xn ∈ X}. The �lter
F = 〈a〉 is called principal. 〈F ∪G〉 = {a ∈ L : a > f ∗ g,∃f ∈ F,∃g ∈ G} for any
F,G ∈ F (L).

Proposition 2.3. (cf. [7, 10]) If x, y ∈ L, then we have

(i) x 6 y implies 〈y〉 ⊆ 〈x〉;
(ii) 〈x〉 ∩ 〈y〉 = 〈x ∨ y〉;
(iii) 〈x〉 ∨ 〈y〉 = 〈x ∧ y〉.

Let F ∈ F (L). Then the relation ∼F de�ned on L by (x, y) ∈∼F if and only
if x→ y ∈ F and y → x ∈ F is a congruence relation on L. The quotient algebra
L/ ∼F denoted by L/F becomes a residuated lattice in a natural way, with the
operations induced from those of L. So, the order relation on L/F is given by
x/F 6 y/F if and only if x→ y ∈ F . Hence x/F = 1/F if and only if x ∈ F and
x/F = 0/F if and only if x∗ ∈ F .

L is said to be local residuated lattice if and only if it has exactly one maximal
�lter. L/F is a local residuated lattice if and only if F is a primary �lter of L.

Theorem 2.4. Let F ∈ F (L). Then F ∈ NF (L) if and only if x, (x→ y)∗∗ ∈ F
imply y ∈ F .

Proof. We know that F ∈ NF (L) if and only if z∗∗ ∈ F implies z ∈ F . If
x, (x → y)∗∗ ∈ F , then x → y ∈ F . Since x ∈ F we get y ∈ F . Conversely, let
x∗∗ ∈ F . We have (1→ x)∗∗ = x∗∗ ∈ F . So, x ∈ F . Therefore F ∈ NF (L).

3. Main results

From now on, unless mentioned otherwise, (L,∧,∨,�,→, 0, 1) will be a residuated
lattice, which will often be referred by its support set L.

De�nition 3.1. (cf. [2]) A node of a poset L is an element of L which is compa-

rable with every element of L.

The set of all node elements of a L is denoted by nod(L). It is clear that
0, 1 ∈ nod(L).

Example 3.2. (i).Let L = {0, a, b, c, d, 1}, where 0 < a < b < 1, 0 < a < d < 1
and 0 < c < d < 1. De�ne � and → as follows:

→ 0 a b c d 1

0 1 1 1 1 1 1
a d 1 1 d 1 1
b c d 1 c d 1
c b b b 1 1 1
d a b b d 1 1
1 0 a b c d 1

� 0 a b c d 0

0 0 0 0 0 0 0
a 0 0 a 0 0 a
b 0 a b 0 a b
c 0 0 0 c c c
d 0 0 a c c d
1 0 a b c d 1
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Then (L,∧,∨,�,→, 0, 1) is a residuated lattice and nod(L) = {0, 1}.
(ii). Let L = {0, a, b, c, 1}, where 0 < c < a, b < 1. De�ne � and → as follows:

� 0 c a b 1
0 0 0 0 0 0
c 0 c c c c
a 0 c a c a
b 0 c c b b
1 0 c a b 1

→ 0 c a b 1
0 1 1 1 1 1
c 0 1 1 1 1
a 0 b 1 b 1
b 0 a a 1 1
1 0 c a b 1

Then (L,∧,∨,�,→, 0, 1) is a residuated lattice and nod(L) = {0, c, 1}.

Remark 3.3. The following facts are obvious.

(i) nod(L) = L if and only if L is a linearly ordered residuated lattice.

(ii) a ∈ nod(L) if and only if a∧x ∈ nod(L) and a∨x ∈ nod(L), for all x ∈ L.
(iii) If a, b ∈ nod(L) then a ∧ b, a ∨ b ∈ nod(L).

De�nition 3.4. (cf. [2]) A �lter F of L is called a nodal �lter if it is a node of

F (L).

We denote by nod(F (L)) the set of all nodal �lters of a residuated lattice L.
Clearly, {L, {1}} ⊆ nod(F (L)). If x ∈ nod(L), then 〈x〉 ∈ nod(F (L)).

Example 3.5. In Example 3.2(i), F (L) = {{1}, {b, 1}, {c, d, 1}, L} and nod(F (L))
= {{1}, L}. But in Example 3.2(ii) {{1}, {a, b, c, 1}, L} = nod(F (L)) 6= F (L) =
{{1}, {b, 1}, {a, 1}, {a, b, c, 1}, L}. Moreover, in Example 3.2(i) we have 〈a〉 = L ∈
nod(F (L)), while a 6∈ nod(L).

Proposition 3.6. Let x2 = x, for each x ∈ L. If 〈x〉 ∈ nod(F (L)), then x ∈
nod(L).

Proof. Let x 6∈ nod(L). Then there exists y ∈ L such that x 
 y and y 
 x. We
have 〈x〉 ∈ nod(F (L)). If 〈y〉 ⊆ 〈x〉, then y ∈ 〈x〉, i.e., ∃n ∈ N such that y > xn.
We have x2 = x, so xn = x, for all n ∈ N . Thus y > x that is a contradiction. So
〈y〉 * 〈x〉. Similarly 〈x〉 * 〈y〉. That is a contradiction with 〈x〉 ∈ nod(F (L)), i.e.,
x ∈ nod(L).

Corollary 3.7. Let x2 = x and 〈x〉 ∈ nod(F (L)), for each x ∈ L. Then

(i) L is a linearly ordered residuated lattice.

(ii) L is a local residuated lattice.

Proof. (i). Let x, y ∈ L. We must show that x 6 y or y 6 x. We have 〈x〉, 〈y〉 ∈
F (L), so 〈x〉, 〈y〉 ∈ nod(F (L)). Hence by Proposition 3.6, x, y ∈ nod(L), i.e., x 6 y
or y 6 x.

(ii). By part (i), L is a linearly ordered residuated lattice. We know that
L ∼= L/{1}, so L/{1} is a linearly ordered residuated lattice. Hence {1} ∈ Spec(L).
By the fact that Spec(L) ⊆ PF (L), we get {1} ∈ PF (L). Hence L/{1} is local
residuated lattice. Therefore L is a local residuated lattice.
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Lemma 3.8. If L is a linearly ordered residuated lattice then nod(F (L)) = F (L).

Proof. We know nod(F (L)) ⊆ F (L). Let F (L) * nod(F (L)). Hence there exists
H ∈ F (L) such taht H 6∈ nod(F (L)). So there exists G ∈ F (L) such that H * G
and G * H. Thus there exist g ∈ G − H and h ∈ H − G. Since L is a linearly
ordered, g < h or h < g. Therefore h ∈ G and g ∈ H, that is a contradiction.
Hence F (L) ⊆ nod(F (L)). Thus the proof is complete.

Lemma 3.9. If nod(F (L)) = F (L) and x2 = x, for all x ∈ L, then L is a linearly

ordered residuated lattice.

Proposition 3.10. {1} ∈ Spec(L) if and only if nod(F (L)) = F (L).

Proof. Let {1} ∈ Spec(L). Then L is a linearly ordered residuated lattice and
so by Lemma 3.8, nod(F (L)) = F (L). Now assume that nod(F (L)) = F (L) and
a ∨ b = 1, for a, b ∈ L. Then < a >⊆< b > or < b >⊆< a > and so a ∈< b > or
b ∈< a >. Thus a > bn or b > am, for some n,m ∈ N . Therefore a ∨ bn = a or
b ∨ am = b. Since a ∨ b = 1, we have an ∨ bn = 1 and am ∨ bm = 1. Then a = 1 or
b = 1 and so {1} ∈ Spec(L).

Corollary 3.11. Let F be a �lter of L. Then

(i) F ∈ Spec(L) if and only if nod(F (L/F )) = F (L/F ).
(ii) If F ∈ OF (L) then nod(F (L/F )) = F (L/F ).

Proof. (i). Let F ∈ Spec(L). Then L/F is a linearly residuated lattice. So by
Lemma 3.8, nod(F (L/F )) = F (L/F ). Now assume that nod(F (L/F )) = F (L/F )
and a ∨ b ∈ F , for a, b ∈ L. Hence a/F ∨ b/F = 1/F ∈ {1/F}. By Proposition
3.10, {1/F} ∈ Spec(L/F ) and so a/F ∈ {1/F} or b/F ∈ {1/F}. Thus a ∈ F or
b ∈ F and therefore F ∈ Spec(L).

(ii). By Theorem 2.2(vii) and part (i) the proof is clear.

The following example shows that the converse of (ii) is not true.

Example 3.12. Let L = {0, a, b, 1}, where 0 < a < b < 1. De�ne � and → as
follows:

� 0 a b 1

0 0 0 0 0
a 0 a a a
b 0 a b b
1 0 a b 1

→ 0 a b 1

0 1 1 1 1
a 0 1 1 1
b 0 a 1 1
1 0 a b 1

Then (L,∧,∨,�,→, 0, 1) is a residuated lattice. Consider F = {b, 1} and G =
{a, b, 1}. Then F 6∈ OF (L) (as a, a∗ = 0 /∈ F ); but F (L/F ) = {{1/F}, G/F} =
nod(F (L/F )).

Theorem 3.13. Let F ∈ nod(F (L)) be a non principal �lter of L. Then F ∈
Spec(L).
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Proof. Let x ∨ y ∈ F and x, y 6∈ F . We get 〈x ∨ y〉 ⊆ F and 〈y〉, 〈x〉 * F . Since
F ∈ nod(F (L)) we get F ⊂ 〈x〉 and F ⊂ 〈y〉, thus F ⊆ 〈x〉 ∩ 〈y〉 = 〈x ∨ y〉.
Thus F = 〈x ∨ y〉, which is a contradiction, and so x ∈ F or y ∈ F . Therefore
F ∈ Spec(L).

Theorem 3.14. Let F ∈ nod(F (L)) be a proper �lter of L and for each x ∈ L,
x2 = x. Then N(F ) = {a ∈ F : a∗∗ = 1} = F .

Proof. Let N(F ) 6= F . Hence there exists x ∈ F such that x 6∈ N(F ), i.e., x∗∗ 6= 1
so x∗ 6= 0. Since F ∈ nod(F (L)) we get F ⊆ 〈x∗〉 or 〈x∗〉 ⊆ F .

If F ⊆ 〈x∗〉, then x ∈ 〈x∗〉. So x > (x∗)n for some n ∈ N . Then by hypothesis,
x > x∗ and so x∗ → 0 = x∗∗ > x∗. Hence, by (LR3), x

∗ � x∗ = 0 and so x∗ = 0,
that is a contradiction.

If 〈x∗〉 ⊆ F , then 0 = x � x∗ ∈ F , since x ∈ F . Thus F = L, which is a
contradiction. Therefore N(F ) = F .

Example 3.15. In Example 3.2(ii), N(F ) = F , for F = {b, 1}, and x2 = x, for
each x ∈ L. While F 6∈ nod(F (L))

Theorem 3.16. Let F ∈ F (L). Then F ∈ nod(F (L)) if and only if for each

x ∈ F and y 6∈ F , the relation x > yn, for some n ∈ N , is satis�ed.

Proof. Let F ∈ nod(F (L)), x ∈ F and y 6∈ F . Then 〈x〉 ⊆ F and 〈y〉 * F . Since
F ∈ nod(F (L)), we get F ⊂ 〈y〉. So, x ∈ 〈y〉, i.e., x > yn, for some n ∈ N .

Conversely, let F 6∈ nod(F (L)). Then there exists G ∈ F (L) such that F * G
and G * F . Hence there are x, y ∈ L such that x ∈ F − G and y ∈ G − F .
So x ∈ F and y 6∈ F . Thus by hypothesis x > yn, for some n ∈ N . Since
y ∈ G, we get yn ∈ G, for all n ∈ N . And so x ∈ G, a contradiction. Therefore
F ∈ nod(F (L)).

De�nition 3.17. (cf. [20]) By ASF (L) we denote the set of all associative �lters

of L, i.e., subsets F such that
(i) 1 ∈ F
(ii) x→ (y → z) ∈ F and x→ y ∈ F imply z ∈ F ,

for all x, y, z ∈ L such that 0 6= x, z and x, y, z are not equal.

Example 3.18. Note that in Example 3.12 we have F = {a, b, 1} ∈ ASF (L).
In Example 3.2(i), F = {c, d, 1} 6∈ ASF (L), because a → (a → b) = 1 ∈ F and
a→ a = 1 ∈ F but b 6∈ F .

Theorem 3.19. ASF (L) ⊆ F (L).

Proof. Let F ∈ ASF (L) and x, x → y ∈ F . Then x → (1 → y) ∈ F and
x→ 1 = 1 ∈ F . Since F ∈ ASF (L), then y ∈ F . Therefore F ∈ F (L).

Theorem 3.20. Let F ∈ F (L). Then F ∈ ASF (L) if and only if xn → z ∈ F
implies z ∈ F , for all n > 2.
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Proof. Let xn → z ∈ F , for n > 2. Then xn−1 → (x → z) = xn → z ∈ F and
xn−1 → x = 1 ∈ F . Since F ∈ ASF (L) we get z ∈ F .

Conversely, let x → (y → z), x → y ∈ F . We must show that z ∈ F . By
Proposition 2.1, we have x → (y → z) = y → (x → z) 6 (x → y) → (x →
(x → z)). Hence (x → y) → (x → (x → z)) ∈ F and by x → y ∈ F , we get
x → (x → z) ∈ F . Thus x2 → z ∈ F . By Proposition 2.1, we have xn 6 x2, for
all n > 2. So x2 → z 6 xn → z. Hence xn → z ∈ F and consequently z ∈ F .

Theorem 3.21. The following statements hold:

(i) ASF (L) ⊆ PIF (L),
(ii) ASF (L) ⊆ IF (L),
(iii) ASF (L) ⊆ FF (L),
(iv) ASF (L) ⊆ NF (L),
(v) ASF (L) ⊆ EF (L).

Proof. (i). Let F ∈ ASF (L) and (x → y) → x ∈ F . We know (x → y) → (x →
x) = 1 ∈ F . Since (x → y) → x ∈ F and F ∈ ASF (L), then x ∈ F . Therefore
F ∈ PIF (L). So ASF (L) ⊆ PIF (L).

(ii), (iii), (iv). By Theorem 2.2(ii), (iii), (iv), respectively, and part (i).
(v). By Theorem 2.2(v) and (ii).

Example 3.22. In Example 3.2(i) we have F = {c, d, 1} 6∈ ASF (L), while F ∈
{PIF (L), IF (L), NF (L), FF (L), EF (L)}.

Theorem 3.23. Let F ∈ F (L). Then F ∈ ASF (L) if and only if

x→ (y → z) ∈ F ⇐⇒ (x→ y)→ z ∈ F

for all x, y, z ∈ L where x, z 6= 0 and x, y, z are not equal.

Proof. Let F ∈ ASF (L) and x→ (y → z) ∈ F . By Proposition 2.1, we get:

1 = (y → z)→ (y → z) 6 (y → z)→ ((x→ y)→ (x→ z))

= (y → z)→ (x→ ((x→ y)→ z))

= x→ ((y → z)→ ((x→ y)→ z)).

So x → ((y → z) → ((x → y) → z)) = 1 ∈ F and we have x → (y → z) ∈ F .
Hence by F ∈ ASF (L) we get (x→ y)→ z ∈ F .

Now let F ∈ ASF (L) and (x→ y)→ z ∈ F . By Proposition 2.1, we get:

1 = (x→ y)→ (x→ (y → 1)) = (x→ y)→ (x→ (y → (z → z)))

= (x→ y)→ (x→ (z → (y → z)))

= (x→ y)→ (z → (x→ (y → z))).

So (x → y) → (z → (x → (y → z))) = 1 ∈ F and we have (x → y) → z ∈ F .
Hence by F ∈ ASF (L) we get x→ (y → z) ∈ F .

Conversely, let x → (y → z) ∈ F and x → y ∈ F . By hypothesis we get
(x→ y)→ z ∈ F . Since x→ y ∈ F , we get z ∈ F . Therefore F ∈ ASF (L).
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De�nition 3.24. (cf. [12]) By STF (L) we denote the set of all strong �lters of
L, i.e., �lters F such that (x∗∗ → x)∗∗ ∈ F , for all x ∈ L.

Note that F ⊆ G and F ∈ STF (L) imply G ∈ STF (L). Also, if F ∈ STF (L)
or G ∈ STF (L) then 〈F ∪G〉 ∈ STF (L)

Example 3.25. (i). In Example 3.2(i), STF (L) = F (L).
(ii). Let L = {0, a, b, 1}, where 0 < b < a < 1. L becomes a residuated lattice

relative to the following operations:

� 0 a b 1

0 0 0 0 0
a 0 0 0 a
b 0 0 0 b
1 0 a b 1

→ 0 a b 1

0 1 1 1 1
a a 1 a 1
b a 1 1 1
1 0 a b 1

{1} 6∈ STF (L), because (b∗∗ → b)∗∗ = a 6∈ {1}.

Theorem 3.26. The following statements hold:

(i) IF (L) ⊆ STF (L),
(ii) PIF (L) ⊆ STF (L),
(iii) OF (L) ⊆ STF (L),
(iv) IF (L) ⊆ STF (L) ∩ EF (L),
(v) ASF (L) ⊆ STF (L),
(vi) NF (L) ⊆ STF (L).

Proof. (i). Let F ∈ IF (L) and x, y ∈ L. By (R2), we have x 6 x∗∗ → x. So, by
(R11), (x

∗∗ → x)∗ 6 x∗, (x∗∗ → x)∗ � x∗∗ 6 x∗ � x∗∗ and by (R18),

(x∗∗ → x)∗ � x∗∗ = 0. (I)

We take w = (x∗∗ → x)∗. Then By Proposition 2.1 and (I), we get

1 = 0→ x = ((x∗∗ → x)∗ � x∗∗)→ x

= (x∗∗ → x)∗ → (x∗∗ → x)

6 (x∗∗ → x)∗ → (x∗∗ → x)∗∗

= (x∗∗ → x)∗ → ((x∗∗ → x)∗ → 0)

= w → (w → 0).

So w → (w → 0) ∈ F . We have w → w = 1 ∈ F , thus by F ∈ IF (L) we get
w → 0 ∈ F . Therefore (x∗∗ → x)∗∗ ∈ F , i.e., F ∈ STF (L).

(ii), (iii). By Theorem 2.2(ii) and (i).

(iv). By Theorem 2.2(v) and (i).

(v). By Theorem 3.21(i) and (ii).

(vi). By Theorem 2.2(vi) and (i), (ii).
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Example 3.27. In Example 3.2(i), {c, d, 1} ∈ STF (L) but {c, d, 1} 6∈ ASF (L).
In Example 3.2(ii), F = {b, 1} ∈ STF (L) but F 6∈ NF (L), P IF (L), OF (L). We
have 1 = c∗∗ ∈ F but c 6∈ F . So F 6∈ NF (L). Hence by Theorem 2.2(iv), (ii),
F 6∈ PIF (L), OF (L).

Lemma 3.28. Let F ∈ F (L). Then F ∈ STF (L) if and only if ((x∗∗)n → x)∗∗ ∈
F , for all x ∈ L and for all n ∈ N .

Proof. By Proposition 2.1, we have (x∗∗)n 6 x∗∗. Then x∗∗ → x 6 (x∗∗)n → x,
so by (R11) we get (x∗∗ → x)∗∗ 6 ((x∗∗)n → x)∗∗. Let F ∈ STF (L) so (x∗∗ →
x)∗∗ ∈ F , hence ((x∗∗)n → x)∗∗ ∈ F .

Conversely, the proof is easy.

De�nition 3.29. A residuated lattice L is called strong residuated lattice if (x∗∗ →
x)∗ = 0, for all x ∈ L.

All of BL-algebras are strong residuated lattice. A residuated lattice from
Example 3.25(ii) is not strong, because (b∗∗ → b)∗ = a 6= 0.

Theorem 3.30. The following are equivalent on L:
(i) L is a strong residuated lattice,

(ii) STF (L) = F (L),
(iii) {1} ∈ STF (L).

Proof. (i)⇒ (ii). We have (x∗∗ → x)∗ = 0, for all x ∈ L. So (x∗∗ → x)∗∗ = 1 ∈ F ,
for all x ∈ L and for every F ∈ F (L). Hence F ∈ STF (L) for every F ∈ F (L).

(ii)⇒ (iii). The proof is clear.
(iii)⇒ (i). We have (x∗∗ → x)∗∗ = 1 ∈ {1}, for all x ∈ L. Then (x∗∗ → x)∗ =

0, for all x ∈ L, i.e., L is a strong residuated lattice.

Theorem 3.31. Let F ∈ F (L). Then F ∈ STF (L) if and only if L/F is a strong

residuated lattice.

Proof. Let F ∈ F (L). We have

F ∈ STF (L)⇔ (x∗∗ → x)∗∗ ∈ F, for all x ∈ L;
⇔ (x∗∗ → x)∗∗/F = 1/F, for all x/F ∈ L/F ;
⇔ (x∗∗/F → x/F )∗∗ = 1/F, for all x/F ∈ L/F ;
⇔ (x∗∗/F → x/F )∗ = 0/F, for all x/F ∈ L/F ;
⇔ L/F is a strong residuated lattice.

Lemma 3.32. L is a strong residuated lattuce if and only if ((x∗∗)n → x)∗ = 0,
for all x ∈ L and for all n ∈ N .

Proof. By Proposition 2.1 we have (x∗∗)n 6 x∗∗. Then x∗∗ → x 6 (x∗∗)n → x,
so by (R11) we get ((x∗∗)n → x)∗ 6 (x∗∗ → x)∗. By the fact that L is a strong
residuated lattice, (x∗∗ → x)∗ = 0, so ((x∗∗)n → x)∗ = 0.

Conversely, the proof is easy.
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De�nition 3.33. (cf. [5]) By INF (L) the set of all integral �lters of L, i.e.,
proper �lters F of L such that for all x, y ∈ L, (x � y)∗ ∈ F implies x∗ ∈ F or
y∗ ∈ F .

Example 3.34. In Example 3.2(ii), F = {a, 1} ∈ INF (L). In L = {0, a, b, c, d, 1},
with 0 < a < c < 1, 0 < b < c, d < 1 and operations � and → de�ned by:

� 0 a b c d 1

0 0 0 0 0 0 0
a 0 a 0 a 0 a
b 0 0 0 0 b b
c 0 a 0 a b c
d 0 0 b b d d
1 0 a b c d 1

→ 0 a b c d 1

0 1 1 1 1 1 1
a d 1 d 1 d 1
b c c 1 1 1 1
c b c d 1 d 1
d a a c c 1 1
1 0 a b c d 1

F = {d, 1} 6∈ INF (L), since (b� b)∗ = 1 ∈ F but b∗ = c 6∈ F .

Theorem 3.35. Let F,G ∈ F (L) be proper �lters of L, such that F ⊆ G. If

F ∈ INF (L), then G ∈ INF (L).

Proof. Let (x�y)∗ ∈ G, for x, y ∈ L. We know that ((x�y)� (x�y)∗)∗ = 1 ∈ F .
Since F ∈ INF (L), then (x� y)∗ ∈ F or (x� y)∗∗ ∈ F .

If (x � y)∗ ∈ F then x∗ ∈ F or y∗ ∈ F . Hence x∗ ∈ G or y∗ ∈ G i.e.,
G ∈ INF (L). If (x� y)∗∗ ∈ F , then (x� y)∗∗ ∈ G. So by (x� y)∗ ∈ G, we have
0 = (x� y)∗ � (x� y)∗∗ ∈ G. And so G = L, that is a contradiction.

Theorem 3.36. The following statements hold.

(i) INF (L) ⊆ PF (L),
(ii) OF (L) ⊆ INF (L),
(iii) INF (L) ∩NF (L) = OF (L).

Proof. (i). It is clear.
(ii). Let F ∈ OF (L) and (x � y)∗ ∈ F , but x∗, y∗ 6∈ F , for x, y ∈ L. Since

F ∈ OF (L), then x∗∗, y∗∗ ∈ F . By Theorem 2.2(ii), (iv), we know that OF (L) ⊆
NF (L), so F ∈ NF (L). Hence x, y ∈ F . Then x � y ∈ F , and so 0 = (x � y) �
(x� y)∗ ∈ F , which is a contradiction because F ∈ OF (L). Therefore x∗ ∈ F or
y∗ ∈ F .

(iii). Let F ∈ INF (L)∩NF (L) and x 6∈ F . It is enough to show that x∗ ∈ F .
We have (x � x∗)∗ = 1 ∈ F . Since F ∈ INF (L), then x∗ ∈ F or x∗∗ ∈ F . Let
x∗∗ ∈ F . By F ∈ NF (L), we get x ∈ F , which is a contradiction. And so x∗ ∈ F ,
i.e., F ∈ OF (L). Therefore INF (L) ∩NF (L) ⊆ OF (L).

Conversely, by Theorem 2.2(ii), (iv), we have OF (L) ⊆ NF (L). Hence by (ii),
the proof is complete.

Example 3.37. In the residuated lattice L = {0, a, b, c, d, 1} from Example 3.34
F = {d, 1} ∈ PF (L), but F 6∈ INF (L). In Example 3.2(ii). F = {a, 1} ∈
INF (L), but F 6∈ OF (L). Because b, b∗ 6∈ F .
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De�nition 3.38. L is called an integral residuated lattice, if x�y = 0, then x = 0
or y = 0, for all x, y ∈ L.

The residuated lattice in Example 3.2(ii) is an integral residuated lattice, but
L = {0, a, b, c, d, 1} from Example 3.34 is not an integral residuated lattice, because
a� b = 0, for a, b 6= 0.

Theorem 3.39. Let F be a proper �lter of L. Then L/F is an integral residuated

lattice if and only if F ∈ INF (L).

Proof. Let L/F be an integral residuated lattice and (x � y)∗ ∈ F , for x, y ∈ L.
Then (x�y)/F = 0/F . Since L/F is an integral residuated lattice then x/F = 0/F
or y/F = 0/F . Hence x∗ ∈ F or y∗ ∈ F , i.e., F ∈ INF (L).

Conversely, let F ∈ INF (L) and x/F � y/F = 0/F , for x/F, y/F ∈ L/F .
Then (x � y)/F = 0/F , i.e (x � y)∗ ∈ F . Since F ∈ INF (L), then x∗ ∈ F
or y∗ ∈ F . And so x/F = 0/F or y/F = 0/F . Therefore L/F is an integral
residuated lattice.

Corollary 3.40. Let F be a proper �lter of L.
(i) If F ∈ IF (L) ∩Max(L). then L/F is an integral residuated lattice.

(ii) If F ∈ PIF (L) ∩Max(L), then L/F is an integral residuated lattice.

(iii) If F ∈ OF (L), then L/F is an integral residuated lattice.

Proof. By Theorem 3.13 in [5] and our Theorem 3.39.

Theorem 3.41. The following conditions are equivalent:

(i) L is an integral residuated lattice,

(ii) {1} ∈ INF (L),
(iii) F (L) = INF (L).

Proof. (i) ⇒ (ii). Let L be an integral residuated lattice. Then L/{1} is an
integral residuated lattice. So, by Theorem 3.39, {1} ∈ INF (L).

(ii)⇒ (iii). Let {1} ∈ INF (L). Then by Theorem 3.35, the proof is clear.
(iii) ⇒ (i). Let F (L) = INF (L). Then {1} ∈ INF (L). Hence by Theorem

3.39, L/{1} is an integral residuated lattice. Therefore L is an integral residuated
lattice.

Theorem 3.42. Let F ∈ F (L) be a proper and for each a ∈ L, a2 = a. Then

(i) F ∈ PF (L) if and only if L/F is an integral residuated lattice,

(ii) L is an integral residuated lattice if and only if L is a local residuated

lattice,

(iii) INF (L) = PF (L).

Proof. (i). Let F ∈ PF (L) and x/F � y/F = 0/F , for x/F, y/F ∈ L/F . Then
(x� y)/F = 0/F , i.e., (x� y)∗ ∈ F . So there exist m,n ∈ N such that (xn)∗ ∈ F
or (ym)∗ ∈ F . By hypothesis we get x∗ ∈ F or y∗ ∈ F . Hence x/F = 0/F or
y/F = 0/F , i.e., L/F is an integral residuated lattice.
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Conversely, by Theorem 3.39 and Theorem 3.36(i) the proof is clear.
(ii). Let L be an integral residuated lattice. By Theorem 3.41, {1} ∈ INF (L)

hence by Theorem 3.36(i), {1} ∈ PF (L). So L/{1} is a local residuated lattice,
i.e., L is a local residuated lattice.

Conversely, let L be a local residuated lattice. Then L/{1} is a local residuated
lattice. Hence {1} ∈ PF (L), and by (i), L/{1} is an integral residuated lattice.
So L is an integral residuated lattice.

(iii). By (i) and Theorem 3.39, respectively, we have F ∈ PF (L) if and only
if L/F is an integral residuated lattice if and only if F ∈ INF (L).

Example 3.43. Consider the residuated lattice L = {0, a, b, c, d, 1} in Example
3.34. F = {d, 1} ∈ PF (L), hence L/F is a local residuated lattice. But L/F is
not an integral residuated lattice, since c/F � c/F = a/F = 0/F , but c/F 6= 0/F
(c/F = b/F ).

4. Positive implicative �lters in residuated lattices

We start with

Theorem 4.1. The following conditions are equivalent:

(i) F (L) = PIF (L),
(ii) {1} ∈ PIF (L),
(iii) (x→ y)→ x = x, for all x, y ∈ L,
(iv) L is a Boolean algebra,

(v) x∗ → x = x, for all x ∈ L,
(vi) ((x→ y)→ x)→ x = 1, for all x, y ∈ L.

Proof. By Proposition 25 in [8], we have (i)⇔ (ii)⇔ (iii)⇔ (iv).
(iii)⇒ (v). Let (x→ y)→ x = x, for all x, y ∈ L. Take y = 0, so (x→ 0)→

x = x, for all x ∈ L. Thus x∗ → x = x, for all x ∈ L.
(v)⇒ (iii). Let x∗ → x = x, for all x ∈ L. By Proposition 2.1 we have 0 6 y

then x → 0 6 x → y so (x∗ → x) → x 6 ((x → y) → x) → x. By hypothesis we
get (x∗ → x)→ x = 1 and so ((x→ y)→ x)→ x = 1, for all x, y ∈ L. Hence by
Proposition 2.1 we get (x→ y)→ x = x, for all x, y ∈ L.

(iii) ⇒ (vi). Let (x → y) → x = x, for all x, y ∈ L. Then ((x → y) → x) →
x = 1, for all x, y ∈ L.

(vi) ⇒ (iii). Let ((x → y) → x) → x = 1, for all x, y ∈ L. Then we have
(x → y) → x 6 x. Also x 6 (x → y) → x, by Proposition 2.1. Therefore
(x→ y)→ x = x, for all x, y ∈ L.

Theorem 4.2. Let F ∈ F (L). The following conditions are equivalent.

(i) F ∈ PIF (L),
(ii) ((x→ y)→ x)→ x ∈ F , for all x, y ∈ L,
(iii) (x∗ → x)→ x ∈ F, for all x ∈ L,
(iv) ((xn → y)→ x)→ x ∈ F , for all x, y ∈ L and for all n ∈ N .
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Proof. (i)⇒ (ii). Let F ∈ PIF (L). Then by Proposition 27[8], L/F is a Boolean
algebra. Then by Theorem 4.1 (iv)⇔ (vi), we get (((x→ y)→ x)→ x)/F = 1/F ,
for all x/F, y/F ∈ L/F . Hence ((x→ y)→ x)→ x ∈ F , for all x, y ∈ L.

(ii)⇒ (i). Let (x→ y)→ x ∈ F . By hypothesis ((x→ y)→ x)→ x ∈ F , for
all x, y ∈ L, so we get x ∈ F . Therefore F ∈ PIF (L).

(ii)⇒ (iii). In (ii), take y = 0, so (x∗ → x)→ x ∈ F .
(iii) ⇒ (ii). Let (x∗ → x) → x ∈ F , for each x ∈ L. By Proposition 2.1 we

have 0 6 y then x → 0 6 x → y so (x∗ → x) → x 6 ((x → y) → x) → x. Hence
((x→ y)→ x)→ x ∈ F .

(ii) ⇒ (iv). Let ((x → y) → x) → x ∈ F , for all x, y ∈ L. By Proposition 2.1
we have x→ y 6 x→ (x→ y) then

((x→ y)→ x)→ x 6 ((x→ (x→ y))→ x)→ x

6 (x→ (x→ (x→ y))→ x)→ x

= ((x3 → y)→ x)→ x = . . .

= ((xn → y)→ x)→ x.

Therefore ((xn → y)→ x)→ x ∈ F , for all x, y ∈ L.
(iv)⇒ (ii) In (iv), take n = 1.

By Theorem 4.2, it is clear that extension property hold for positive implicative
�lters.

Corollary 4.3. L is a boolean algebra if and only if (xn → y) → x = x, for all

x, y ∈ L and for all n ∈ N .

Proof. Let L be a boolean algebra. By Theorem 4.1, {1} ∈ PIF (L). So by
Theorem 4.2 we have ((xn → y) → x) → x ∈ {1}, for all x, y ∈ L and for all
n ∈ N . By Proposition 2.1, we get (xn → y)→ x = x, for all x, y ∈ L and for all
n ∈ N .

Conversely, by Theorem 4.1 the proof is easy.
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