Construction of mono-associative quasigroups

Mehtab Khan and Amir Khan

Abstract. We construct an infinite family of mono-associative quasigroups whose smallest member is of order 4, and an infinite family of non-commutative mono-associative quasigroups whose smallest member is of order 6. We also construct an infinite family of such quasigroups with left or two-sided identity.

Mono-associative quasigroups are quasigroups satisfying x(xx) = (xx)x for all x. For more study on mono-associative quasigroups and loops we refer [1, 2, 3].

Let G and A be two multiplicative groups with neutral elements 1_g and 1_a respectively. We take a map $\mu: G \times G \to A$ and then define multiplication on $G \times A$ by

$$(g, a)(h, b) = (gh, a * b * \mu(g, h)), \text{ where } g, h \in G \text{ and } a, b \in A.$$

The resulting groupoid is clearly a quasigroup. It will be denoted by (G, A, μ) .

In the following lemma we give a scheme to construct an infinite family of mono-associative quasigroups.

Lemma 1. Let $\mu : G \times G \to A$ be a factor set. Then (G, A, μ) is a mono-associative quasigroup if and only if

$$\mu(g^2, g) = \mu(g, g^2), \quad for \ all \ g \in G. \tag{1}$$

Proof. By definition the quasigroup (G, A, μ) is mono-associative quasigroup if and only if

$$((g,a)(g,a))(g,a) = (g,a)((g,a)(g,a)).$$

This gives

$$\begin{split} (g^2, a^2 * \mu(g,g))(g,a) &= (g,a)(g^2, a^2 * \mu(g,g))\\ (g^3, a^3 * \mu(g,g) * \mu(g^2,g)) &= (g^3, a^3 * \mu(g,g) * \mu(g,g^2)). \end{split}$$

Comparing both sides, we get (1). Hence the result follows.

²⁰¹⁰ Mathematics Subject Classification: 20M05.

 $^{{\}it Keywords:}\ {\it quasigroup,\ mono-associative\ quasigroup.}$

Proposition 1. Let $n \ge 2$ be an integer. Let A be a cyclic group of order n, and $y \in A$ an element of order bigger than 1. Let $G = \{1, x\}$ be a multiplicative group of order 2 with neutral element e. Define $\mu : G \times G \to A$ by

$$\mu(a,b) = \begin{cases} y & \text{if } (a,b) = (1,x), (x,1) \\ e & \text{otherwise.} \end{cases}$$
(2)

Then $Q = (G, A, \mu)$ is a non-associative, mono-associative quasigroup.

Proof. To show that $Q = (G, A, \mu)$ is mono-associative quasigroup, we must verify (1). It is easy to see that $Q = (G, A, \mu)$ is non-associative and commutative. \Box

Proposition 2. Let $n \ge 2$ be an integer. Let A be a cyclic group of order n and $y \in A$ an element of order bigger than 1. Let $G = \{1, x, x^2\}$ be a multiplication group of order 3 with neutral element 1. Define $\mu : G \times G \to A$ by

$$\mu(a,b) = \begin{cases} y & if(a,b) = (1,x^2), (x,x^2), (x^2,x) \\ e & otherwise. \end{cases}$$
(3)

Then $Q = (G, A, \mu)$ is a non-associative, mono-associative quasigroup with left identity (1, e).

Proof. To show that $Q = (G, A, \mu)$ is mono-associative quasigroup, we must verify (1). Since $((x^2, e)(x, y))(x^2, y) \neq (x^2, e)((x, y)(x^2, y))$, $Q = (G, A, \mu)$ is non-associative.

Analogously we can verify

Proposition 3. Let $n \ge 2$ be an integer. Let A be a cyclic group of order n and $y \in A$ an element of order bigger than 1. Let $G = \{1, x, x^2\}$ be a multiplication group of order 3 with neutral element 1. Define $\mu : G \times G \to A$ by

$$\mu(a,b) = \begin{cases} y & if(a,b) = (1,x^2), (x,1), (x,x^2), (x^2,x) \\ e & otherwise. \end{cases}$$
(4)

Then $Q = (G, A, \mu)$ is a non-associative, mono-associative quasigroup.

Proposition 4. Let $n \ge 2$ be an integer. Let A be a cyclic group of order n and $y \in A$ an element of order bigger than 1. Let $G = \{e, a, b, c\}$ be the Klein 4-group with neutral element e. Define $\mu : G \times G \to A$ by

$$\mu(g,h) = \begin{cases} y & \text{if } (g,h) = (a,b), (a,c), (b,c) \\ e & \text{otherwise.} \end{cases}$$
(5)

Then $Q = (G, A, \mu)$ is a non-associative, mono-associative quasigroup.

Example 1. The smallest group A satisfying the assumption of Proposition 1 is the 2-element cyclic group $\{e, y\}$. The construction of Proposition 1 gives rises to the smallest non-associative, commutative quasigroup of order 4.

•	(1, e)	(1, y)	(x, e)	(x,y)		•	1	2	3	4
(1, e)	(1,e)	(1, y)	(x, y)	(x,e)			1			
(1, y)	(1, y)	(1, e)	(x, e)	(x,y)	=		2			
(x, e)	(x,y)	(x, e)	(1, e)	(1, y)			4			
(x,y)	(x,e)	(x,y)	(1, y)	(1, e)		4	3	4	2	1

Example 2. The smallest group A satisfying the assumption of Proposition 2 is the 2-element cyclic group $\{e, y\}$. The construction of Proposition 2 gives rises to the smallest non-associative non-commutative mono-associative quasigroup of order 6.

	(1, e)	(x,e)	(x^2, e)	(1, y)	(x,y)	(x^2, y)
(1,e)	(1,e)	(x, e)	(x^2, y)	(1, y)	(x,y)	(x^2, e)
	(x, e)	(x^2, e)	(1, y)	(x,y)	(x^2, y)	(1, e)
(x^2, e)	(x^2, e)	(1, y)	(x,e)	(x^2, y)	(1, e)	(x,y)
(1,y)	(1, y)	(x,y)	(x^2, e)	(1, e)	(x, e)	(x^2, y)
(x,y)	(x,y)	(x^2, y)	(1, e)	(x, e)	(x^2, e)	(1, y)
(x^2, y)	(x^2, y)	(1, e)	(x,y)	(x^2, e)	(1,y)	(x, e)

Example 3. The smallest group A satisfying the assumption of Proposition 3 is the 2-element cyclic group $\{1, y\}$. The construction of Proposition 3 gives rises to the smallest non-associative non-commutative mono-associative quasigroup of order 6.

•	(1, e)	(x, e)	(x^2, e)	(1, y)	(x,y)	(x^2, y)
(1, e)	(1, e)	(x, e)	(x^2, y)	(1, y)	(, 0)	(x^2, e)
(x, e)	(x,y)	(x^2, e)	(1, y)	(x, e)	(x^2, y)	(1, e)
(x^2, e)	(x^2, e)	(1, y)	(x, e)	(x^2, y)	(1, e)	(x,y)
(1, y)	(1, y)	(x,y)	(x^2, e)	(1, e)	(x, e)	(x^2, y)
(x,y)	(x, e)	(x^2, y)	(1, e)	(x,y)	(x^2, e)	(1, y)
(x^2, y)	(x^2, y)	(1, e)	(x,y)	(x^2, e)	(1,y)	(x,e)

Example 4. The smallest group A satisfying the assumption of Proposition 4 is the 2-element cyclic group $\{1, y\}$. The construction of Proposition 4 gives rises to the smallest non-associative non-commutative mono-associative quasigroup of order 8.

(1, e)	(a, e)	(b,e)	(c,e)	(1, y)	(a, y)	(b,y)	(c, y)
(1, e)	(a,e)	(b,e)	(c,e)	(1, y)	(a, y)	(b,y)	(c,y)
(a, e)	(1, e)	(c,y)	(b,y)	(a, y)	(1, y)	(c,e)	(b,e)
(b,e)	(c,e)	(1, e)	(a, e)	(b,y)	(c,y)	(1, y)	(a,y)
(c, e)	(b,e)	(a,e)	(1, e)	(c,y)	(b,y)	(a, y)	(1,y)
(1, y)	(a, y)	(b,y)	(c,y)	(1, e)	(a,e)	(b,e)	(c,e)
(a, y)	(1,y)	(c,e)	(b,e)	(a, e)	(1,e)	(c,y)	(b,y)
(b,y)	(c,y)	(1, y)	(a, y)	(b,e)	(c, e)	(1, e)	(a, e)
(c, y)	(b,y)	(a, y)	(1,y)	(c,e)	(b,e)	(a,e)	(1, e)
	$\begin{array}{c} (1,e) \\ (a,e) \\ (b,e) \\ (c,e) \\ (1,y) \\ (a,y) \\ (b,y) \end{array}$	$\begin{array}{cccc} (1,e) & (a,e) \\ (a,e) & (1,e) \\ (b,e) & (c,e) \\ (c,e) & (b,e) \\ (1,y) & (a,y) \\ (a,y) & (1,y) \\ (b,y) & (c,y) \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Quasigroups constructed in the last three examples can be (respectively) identified with the following:

•	1	2	3	4	5	6				1	2	3	4	5	6
1	1	2	6	4	5	3	-		1	1	2	6	4	5	3
2	2	3	4	5	6	1			2	5	3	4	2	6	1
3	3	4	2	6	1	5			3	3	4	2	6	1	5
4	4	5	3	1	2	6			4	4	5	3	1	2	6
5	5	6	1	2	3	4			5	2	6	1	5	3	4
6	6	1	5	3	4	2			6	6	1	5	3	4	2
						1	2	3	4	5	6	7	8		
					1	1	2	3	4	5	6	7	8		
					2	2	1	8	7	6	5	4	3		
					3	3	4	1	2	7	8	5	6		
					4	4	3	2	1	8	7	6	5		
					5	5	6	7	8	1	2	3	4		
					6	6	5	4	3	2	1	8	7		
					7	7	8	5	6	3	4	1	2		
					8	8	7	6	5	4	3	2	1		

We verified the above three examples with the help of GAP package [4].

References

- T.G. Jaiyéolá and J.O. Adéníran, New identities in universal Osborn loops, Quasigroups and Related Systems, 17 (2009), 55 - 76.
- [2] T.G. Jaiyéolá and J.O. Adéníran, On another two cryptographic identities in universal Osborn loops, Surv. Math. Appl. 5 (2010), 17 – 34.
- [3] M. Kinyon and I.M. Wanless, Loops with exponent three in all isotopes, Internat. J. Algebra Comput. 25 (2015), 1159 - 1177.
- [4] G.P. Nagy and P. Vojtechovsky, LOOPS: Computing with quasigroups and loops in GAP, version 1.0.0, http://www.math.du.edu/loops.

Received April 20, 2017 Revised October 12, 2018

M. Khan

Department of Mathematics & Statistics, Bacha Khan University, Charsadda, Pakistan E-mail: mehtabkhan85@gmail.com

A. Khan

Department of Mathematics and Statistics, University of Swat, Pakistan