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Construction of mono-associative quasigroups

Mehtab Khan and Amir Khan

Abstract. We construct an in�nite family of mono-associative quasigroups whose smallest

member is of order 4, and an in�nite family of non-commutative mono-associative quasigroups

whose smallest member is of order 6. We also construct an in�nite family of such quasigroups

with left or two-sided identity.

Mono-associative quasigroups are quasigroups satisfying x(xx) = (xx)x for all
x. For more study on mono-associative quasigroups and loops we refer [1, 2, 3].

Let G and A be two multiplicative groups with neutral elements 1g and 1a
respectively. We take a map µ : G × G → A and then de�ne multiplication on
G×A by

(g, a)(h, b) = (gh, a ∗ b ∗ µ(g, h)), where g, h ∈ G and a, b ∈ A.

The resulting groupoid is clearly a quasigroup. It will be denoted by (G,A, µ).

In the following lemma we give a scheme to construct an in�nite family of
mono-associative quasigroups.

Lemma 1. Let µ : G×G→ A be a factor set. Then (G,A, µ) is a mono-associative

quasigroup if and only if

µ(g2, g) = µ(g, g2), for all g ∈ G. (1)

Proof. By de�nition the quasigroup (G,A, µ) is mono-associative quasigroup if
and only if (

(g, a)(g, a)
)
(g, a) = (g, a)

(
(g, a)(g, a)

)
.

This gives

(g2, a2 ∗ µ(g, g))(g, a) = (g, a)(g2, a2 ∗ µ(g, g))

(g3, a3 ∗ µ(g, g) ∗ µ(g2, g)) = (g3, a3 ∗ µ(g, g) ∗ µ(g, g2)).

Comparing both sides, we get (1). Hence the result follows.
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Proposition 1. Let n > 2 be an integer. Let A be a cyclic group of order n, and
y ∈ A an element of order bigger than 1. Let G = {1, x} be a multiplicative group

of order 2 with neutral element e. De�ne µ : G×G→ A by

µ(a, b) =

{
y if (a, b) = (1, x), (x, 1)
e otherwise.

(2)

Then Q = (G,A, µ) is a non-associative, mono-associative quasigroup.

Proof. To show that Q = (G,A, µ) is mono-associative quasigroup, we must verify
(1). It is easy to see that Q = (G,A, µ) is non-associative and commutative.

Proposition 2. Let n > 2 be an integer. Let A be a cyclic group of order n and

y ∈ A an element of order bigger than 1. Let G = {1, x, x2} be a multiplication

group of order 3 with neutral element 1. De�ne µ : G×G→ A by

µ(a, b) =

{
y if (a, b) = (1, x2), (x, x2), (x2, x)
e otherwise.

(3)

Then Q = (G,A, µ) is a non-associative, mono-associative quasigroup with left

identity (1, e).

Proof. To show that Q = (G,A, µ) is mono-associative quasigroup, we must ver-
ify (1). Since

(
(x2, e)(x, y)

)
(x2, y) 6= (x2, e)

(
(x, y)(x2, y)

)
, Q = (G,A, µ) is non-

associative.

Analogously we can verify

Proposition 3. Let n > 2 be an integer. Let A be a cyclic group of order n and

y ∈ A an element of order bigger than 1. Let G = {1, x, x2} be a multiplication

group of order 3 with neutral element 1. De�ne µ : G×G→ A by

µ(a, b) =

{
y if (a, b) = (1, x2), (x, 1), (x, x2), (x2, x)
e otherwise.

(4)

Then Q = (G,A, µ) is a non-associative, mono-associative quasigroup.

Proposition 4. Let n > 2 be an integer. Let A be a cyclic group of order n and

y ∈ A an element of order bigger than 1. Let G = {e, a, b, c} be the Klein 4-group
with neutral element e. De�ne µ : G×G→ A by

µ(g, h) =

{
y if (g, h) = (a, b), (a, c), (b, c)
e otherwise.

(5)

Then Q = (G,A, µ) is a non-associative, mono-associative quasigroup.
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Example 1. The smallest group A satisfying the assumption of Proposition 1 is
the 2-element cyclic group {e, y}. The construction of Proposition 1 gives rises to
the smallest non-associative, commutative quasigroup of order 4.

· (1, e) (1, y) (x, e) (x, y)

(1, e) (1, e) (1, y) (x, y) (x, e)
(1, y) (1, y) (1, e) (x, e) (x, y)
(x, e) (x, y) (x, e) (1, e) (1, y)
(x, y) (x, e) (x, y) (1, y) (1, e)

=

· 1 2 3 4

1 1 2 4 3
2 2 1 3 4
3 4 3 1 2
4 3 4 2 1

Example 2. The smallest group A satisfying the assumption of Proposition 2 is
the 2-element cyclic group {e, y}. The construction of Proposition 2 gives rises
to the smallest non-associative non-commutative mono-associative quasigroup of
order 6.

· (1, e) (x, e) (x2, e) (1, y) (x, y) (x2, y)

(1, e) (1, e) (x, e) (x2, y) (1, y) (x, y) (x2, e)
(x, e) (x, e) (x2, e) (1, y) (x, y) (x2, y) (1, e)
(x2, e) (x2, e) (1, y) (x, e) (x2, y) (1, e) (x, y)
(1, y) (1, y) (x, y) (x2, e) (1, e) (x, e) (x2, y)
(x, y) (x, y) (x2, y) (1, e) (x, e) (x2, e) (1, y)
(x2, y) (x2, y) (1, e) (x, y) (x2, e) (1, y) (x, e)

Example 3. The smallest group A satisfying the assumption of Proposition 3 is
the 2-element cyclic group {1, y}. The construction of Proposition 3 gives rises
to the smallest non-associative non-commutative mono-associative quasigroup of
order 6.

· (1, e) (x, e) (x2, e) (1, y) (x, y) (x2, y)

(1, e) (1, e) (x, e) (x2, y) (1, y) (x, y) (x2, e)
(x, e) (x, y) (x2, e) (1, y) (x, e) (x2, y) (1, e)
(x2, e) (x2, e) (1, y) (x, e) (x2, y) (1, e) (x, y)
(1, y) (1, y) (x, y) (x2, e) (1, e) (x, e) (x2, y)
(x, y) (x, e) (x2, y) (1, e) (x, y) (x2, e) (1, y)
(x2, y) (x2, y) (1, e) (x, y) (x2, e) (1, y) (x, e)

Example 4. The smallest group A satisfying the assumption of Proposition 4 is
the 2-element cyclic group {1, y}. The construction of Proposition 4 gives rises
to the smallest non-associative non-commutative mono-associative quasigroup of
order 8.

· (1, e) (a, e) (b, e) (c, e) (1, y) (a, y) (b, y) (c, y)

(1, e) (1, e) (a, e) (b, e) (c, e) (1, y) (a, y) (b, y) (c, y)
(a, e) (a, e) (1, e) (c, y) (b, y) (a, y) (1, y) (c, e) (b, e)
(b, e) (b, e) (c, e) (1, e) (a, e) (b, y) (c, y) (1, y) (a, y)
(c, e) (c, e) (b, e) (a, e) (1, e) (c, y) (b, y) (a, y) (1, y)
(1, y) (1, y) (a, y) (b, y) (c, y) (1, e) (a, e) (b, e) (c, e)
(a, y) (a, y) (1, y) (c, e) (b, e) (a, e) (1, e) (c, y) (b, y)
(b, y) (b, y) (c, y) (1, y) (a, y) (b, e) (c, e) (1, e) (a, e)
(c, y) (c, y) (b, y) (a, y) (1, y) (c, e) (b, e) (a, e) (1, e)
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Quasigroups constructed in the last three examples can be (respectively) iden-
ti�ed with the following:

· 1 2 3 4 5 6

1 1 2 6 4 5 3
2 2 3 4 5 6 1
3 3 4 2 6 1 5
4 4 5 3 1 2 6
5 5 6 1 2 3 4
6 6 1 5 3 4 2

· 1 2 3 4 5 6

1 1 2 6 4 5 3
2 5 3 4 2 6 1
3 3 4 2 6 1 5
4 4 5 3 1 2 6
5 2 6 1 5 3 4
6 6 1 5 3 4 2

· 1 2 3 4 5 6 7 8

1 1 2 3 4 5 6 7 8
2 2 1 8 7 6 5 4 3
3 3 4 1 2 7 8 5 6
4 4 3 2 1 8 7 6 5
5 5 6 7 8 1 2 3 4
6 6 5 4 3 2 1 8 7
7 7 8 5 6 3 4 1 2
8 8 7 6 5 4 3 2 1

We veri�ed the above three examples with the help of GAP package [4].
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