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Construction of mono-associative quasigroups

Mehtab Khan and Amir Khan

Abstract. We construct an infinite family of mono-associative quasigroups whose smallest
member is of order 4, and an infinite family of non-commutative mono-associative quasigroups
whose smallest member is of order 6. We also construct an infinite family of such quasigroups
with left or two-sided identity.

Mono-associative quasigroups are quasigroups satisfying z(zz) = (zz)z for all
x. For more study on mono-associative quasigroups and loops we refer [1, 2, 3].

Let G and A be two multiplicative groups with neutral elements 1, and 1,
respectively. We take a map p : G X G — A and then define multiplication on
G x A by

(g,a)(h,b) = (gh,a*b*pu(g,h)), where g,h € G and a,b € A.

The resulting groupoid is clearly a quasigroup. It will be denoted by (G, A, ).
In the following lemma we give a scheme to construct an infinite family of
mono-associative quasigroups.

Lemma 1. Let u : GXG — A be a factor set. Then (G, A, 1) is a mono-associative
quasigroup if and only if

1(g*,9) = u(g.g°), forallge€G. (1)

Proof. By definition the quasigroup (G, A, u) is mono-associative quasigroup if
and only if

((gva)(gva))(gva) = (gva)((gva)(gva))'

This gives
(9%,a% * u(g.9))(g.a) = (9,0)(g%, a* * (g, 9))
(9°,a® * u(g.9) * 1(g”, 9)) = (g°, a” x g, 9) * (g, 9%)).
Comparing both sides, we get (1). Hence the result follows. O
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Proposition 1. Let n > 2 be an integer. Let A be a cyclic group of order n, and
y € A an element of order bigger than 1. Let G = {1,x} be a multiplicative group
of order 2 with neutral element e. Define p: G x G — A by

u(a,b) :{ y i (@) = (L), (2,1) o

e otherwise.

Then Q = (G, A, 1) is a non-associative, mono-associative quasigroup.

Proof. To show that @ = (G, A, i) is mono-associative quasigroup, we must verify
(1). It is easy to see that @ = (G, A, ) is non-associative and commutative. [

Proposition 2. Let n > 2 be an integer. Let A be a cyclic group of order n and
y € A an element of order bigger than 1. Let G = {1,z,2%} be a multiplication
group of order 3 with neutral element 1. Define p: G x G — A by

e otherwise.
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Then Q@ = (G, A, u) is a non-associative, mono-associative quasigroup with left
identity (1,e).

Proof. To show that Q@ = (G, A, ) is mono-associative quasigroup, we must ver-
2

ify (1). Since ((22,¢)(z,y))(2%,y) # (2% €)((z,y)(2?,y)), @ = (G, A, ) is HOE
associative.

Analogously we can verify

Proposition 3. Let n > 2 be an integer. Let A be a cyclic group of order n and
y € A an element of order bigger than 1. Let G = {1,z,2%} be a multiplication
group of order 3 with neutral element 1. Define p: G x G — A by

ula,b) = { g if (a,b) = (1,2%), (2, 1), (z,22), (a2, 2) 4)

e otherwise.

Then Q = (G, A, 1) is a non-associative, mono-associative quasigroup.

Proposition 4. Let n > 2 be an integer. Let A be a cyclic group of order n and
y € A an element of order bigger than 1. Let G = {e,a,b,c} be the Klein 4-group
with neutral element e. Define p: G X G — A by

w(g,h) = { y if (g,h) = (a,b), (a,c), (b,c) .

e otherwise.

Then Q = (G, A, 1) is a non-associative, mono-associative quasigroup.
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Example 1. The smallest group A satisfying the assumption of Proposition 1 is
the 2-element cyclic group {e, y}. The construction of Proposition 1 gives rises to
the smallest non-associative, commutative quasigroup of order 4.

. ‘ (1,e) (Liy) (x,e) (z,y) . ‘ 1 2 3 4
(Le) | (Le) (Ly) (z,y) () 11 2 4 3
(Ly) | (Ly) (Le) (ze) (zy) = 2|2 1 3 4
(z,e) | (z,y) (z,e) (Le) (1,y) 314 3 1 2
(x,y) | (xe) (z,y) (Ly) (L€ 413 4 2 1

Example 2. The smallest group A satisfying the assumption of Proposition 2 is
the 2-element cyclic group {e,y}. The construction of Proposition 2 gives rises
to the smallest non-associative non-commutative mono-associative quasigroup of
order 6.

) (176) (m,e) ($276) (Ly) (xvy) (1’2,:1/)
(Le) | (Le) (z) (%y) Ly (zy) (%e)
(z.e) | (ze) (2%e) (Ly) (zy) (%Y (e
(z%e) | (z%e) (Ly) (z,e) (¢%y) (Le) (z,y)
Ly) | Ly  (zy) @%e) (Le) (ze) (%y)
(zy) | (zy) (%Y (Le) (ze) (2%e) (L)
@) | @y (Le)  (zy) (e (Ly) (z¢)

Example 3. The smallest group A satisfying the assumption of Proposition 3 is
the 2-element cyclic group {1,y}. The construction of Proposition 3 gives rises
to the smallest non-associative non-commutative mono-associative quasigroup of

order 6.
) (176) (:Cve) (:1:2,e) (Ly) (:C,y) (x27y)
(Le) | (Le) (z¢) (@(%y Ly (zy) (%e
(z.e) | (zy) (%) (Ly) (ze)

(@%e) | (a%e) (Ly) (ze) (a*y)
Ly) | (Ly)  (zy) (@%e)

(z,y) | (z,e (
(@*y) | @%y)  (Le) (zy) (%e) (Ly (ze)

Example 4. The smallest group A satisfying the assumption of Proposition 4 is
the 2-element cyclic group {1,y}. The construction of Proposition 4 gives rises
to the smallest non-associative non-commutative mono-associative quasigroup of
order 8.

- [ (Le) (ae) (be) (ce) (Ly) (ay) (by) (cy)
(Le) | (Le) (ae) (be) (ce) (Ly) (ay) (by) (oY)
(a,€) | (a,¢) (Le) (cy) (by) (ay) (Ly) (ce) (be)
(b,e) | (be) (ce) (Le) (ae) (by) (cy) (Ly) (ay)
(c.e) | (c,e)  (be) (ae) (Lie) (cy) (by) (ay) (Ly)
(Ly) | (Ly) (ay) () (cy) (Le) (ae) (be) (ce)
(@.9) | (ay) (Ly) (ce) (be) (ae) (Le) (cy) (by)
0y) | (by) (ey) (Ly) (ay) (be) (ce) (Le) (ae)
¢y | (cy) Gy (ay) Ly (ce) (be) (ae) (L)
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Quasigroups constructed in the last three examples can be (respectively) iden-
tified with the following;:

-1 2 3 4 5 6 -1 2 3 4 5 6
111 2 6 4 5 3 111 2 6 4 5 3
212 3 4 5 6 1 215 3 4 2 6 1
313 4 2 6 1 5 313 4 2 6 1 5
414 5 3 1 2 6 414 5 3 1 2 6
515 6 1 2 3 4 512 6 1 5 3 4
6|16 1 5 3 4 2 6|6 1 5 3 4 2
-1 2 3 4 5 6 7 8
111 2 3 4 5 6 7 8
212 1 8 7 6 5 4 3
313 4 1 2 7 8 5 6
414 3 2 1 8 7 6 5
515 6 7 8 1 2 3 4
66 5 4 3 2 1 8 7
7|7 8 5 6 3 4 1 2
8|18 7 6 5 4 3 2 1

We verified the above three examples with the help of GAP package [4].
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