Construction of mono-associative quasigroups

Mehtab Khan and Amir Khan

Abstract

We construct an infinite family of mono-associative quasigroups whose smallest member is of order 4, and an infinite family of non-commutative mono-associative quasigroups whose smallest member is of order 6 . We also construct an infinite family of such quasigroups with left or two-sided identity.

Mono-associative quasigroups are quasigroups satisfying $x(x x)=(x x) x$ for all x. For more study on mono-associative quasigroups and loops we refer [1, 2, 3].

Let G and A be two multiplicative groups with neutral elements 1_{g} and 1_{a} respectively. We take a map $\mu: G \times G \rightarrow A$ and then define multiplication on $G \times A$ by

$$
(g, a)(h, b)=(g h, a * b * \mu(g, h)), \quad \text { where } g, h \in G \text { and } a, b \in A .
$$

The resulting groupoid is clearly a quasigroup. It will be denoted by (G, A, μ).
In the following lemma we give a scheme to construct an infinite family of mono-associative quasigroups.

Lemma 1. Let $\mu: G \times G \rightarrow A$ be a factor set. Then (G, A, μ) is a mono-associative quasigroup if and only if

$$
\begin{equation*}
\mu\left(g^{2}, g\right)=\mu\left(g, g^{2}\right), \quad \text { for all } g \in G \tag{1}
\end{equation*}
$$

Proof. By definition the quasigroup (G, A, μ) is mono-associative quasigroup if and only if

$$
((g, a)(g, a))(g, a)=(g, a)((g, a)(g, a)) .
$$

This gives

$$
\begin{aligned}
\left(g^{2}, a^{2} * \mu(g, g)\right)(g, a) & =(g, a)\left(g^{2}, a^{2} * \mu(g, g)\right) \\
\left(g^{3}, a^{3} * \mu(g, g) * \mu\left(g^{2}, g\right)\right) & =\left(g^{3}, a^{3} * \mu(g, g) * \mu\left(g, g^{2}\right)\right) .
\end{aligned}
$$

Comparing both sides, we get (1). Hence the result follows.
2010 Mathematics Subject Classification: 20M05.
Keywords: quasigroup, mono-associative quasigroup.

Proposition 1. Let $n \geqslant 2$ be an integer. Let A be a cyclic group of order n, and $y \in A$ an element of order bigger than 1 . Let $G=\{1, x\}$ be a multiplicative group of order 2 with neutral element e. Define $\mu: G \times G \rightarrow A$ by

$$
\mu(a, b)= \begin{cases}y & \text { if }(a, b)=(1, x),(x, 1) \tag{2}\\ e & \text { otherwise }\end{cases}
$$

Then $Q=(G, A, \mu)$ is a non-associative, mono-associative quasigroup.
Proof. To show that $Q=(G, A, \mu)$ is mono-associative quasigroup, we must verify (1). It is easy to see that $Q=(G, A, \mu)$ is non-associative and commutative.

Proposition 2. Let $n \geqslant 2$ be an integer. Let A be a cyclic group of order n and $y \in A$ an element of order bigger than 1 . Let $G=\left\{1, x, x^{2}\right\}$ be a multiplication group of order 3 with neutral element 1. Define $\mu: G \times G \rightarrow A$ by

$$
\mu(a, b)= \begin{cases}y & \text { if }(a, b)=\left(1, x^{2}\right),\left(x, x^{2}\right),\left(x^{2}, x\right) \tag{3}\\ e & \text { otherwise } .\end{cases}
$$

Then $Q=(G, A, \mu)$ is a non-associative, mono-associative quasigroup with left identity $(1, e)$.

Proof. To show that $Q=(G, A, \mu)$ is mono-associative quasigroup, we must verify (1). Since $\left(\left(x^{2}, e\right)(x, y)\right)\left(x^{2}, y\right) \neq\left(x^{2}, e\right)\left((x, y)\left(x^{2}, y\right)\right), Q=(G, A, \mu)$ is nonassociative.

Analogously we can verify
Proposition 3. Let $n \geqslant 2$ be an integer. Let A be a cyclic group of order n and $y \in A$ an element of order bigger than 1 . Let $G=\left\{1, x, x^{2}\right\}$ be a multiplication group of order 3 with neutral element 1. Define $\mu: G \times G \rightarrow A$ by

$$
\mu(a, b)= \begin{cases}y & \text { if }(a, b)=\left(1, x^{2}\right),(x, 1),\left(x, x^{2}\right),\left(x^{2}, x\right) \tag{4}\\ e & \text { otherwise } .\end{cases}
$$

Then $Q=(G, A, \mu)$ is a non-associative, mono-associative quasigroup.
Proposition 4. Let $n \geqslant 2$ be an integer. Let A be a cyclic group of order n and $y \in A$ an element of order bigger than 1. Let $G=\{e, a, b, c\}$ be the Klein 4-group with neutral element e. Define $\mu: G \times G \rightarrow A$ by

$$
\mu(g, h)= \begin{cases}y & \text { if }(g, h)=(a, b),(a, c),(b, c) \tag{5}\\ e & \text { otherwise } .\end{cases}
$$

Then $Q=(G, A, \mu)$ is a non-associative, mono-associative quasigroup.

Example 1. The smallest group A satisfying the assumption of Proposition 1 is the 2 -element cyclic group $\{e, y\}$. The construction of Proposition 1 gives rises to the smallest non-associative, commutative quasigroup of order 4.

\cdot	$(1, e)$	$(1, y)$	(x, e)	(x, y)							
$(1, e)$	$(1, e)$	$(1, y)$	(x, y)	(x, e)							
$(1, y)$	$(1, y)$	$(1, e)$	(x, e)	(x, y)							
(x, e)	(x, y)	(x, e)	$(1, e)$	$(1, y)$							
(x, y)	(x, e)	(x, y)	$(1, y)$	$(1, e)$	\quad			1	2	3	4
:---	:---	:---	:---	:---	:---						

Example 2. The smallest group A satisfying the assumption of Proposition 2 is the 2-element cyclic group $\{e, y\}$. The construction of Proposition 2 gives rises to the smallest non-associative non-commutative mono-associative quasigroup of order 6.

\cdot	$(1, e)$	(x, e)	$\left(x^{2}, e\right)$	$(1, y)$	(x, y)	$\left(x^{2}, y\right)$
$(1, e)$	$(1, e)$	(x, e)	$\left(x^{2}, y\right)$	$(1, y)$	(x, y)	$\left(x^{2}, e\right)$
(x, e)	(x, e)	$\left(x^{2}, e\right)$	$(1, y)$	(x, y)	$\left(x^{2}, y\right)$	$(1, e)$
$\left(x^{2}, e\right)$	$\left(x^{2}, e\right)$	$(1, y)$	(x, e)	$\left(x^{2}, y\right)$	$(1, e)$	(x, y)
$(1, y)$	$(1, y)$	(x, y)	$\left(x^{2}, e\right)$	$(1, e)$	(x, e)	$\left(x^{2}, y\right)$
(x, y)	(x, y)	$\left(x^{2}, y\right)$	$(1, e)$	(x, e)	$\left(x^{2}, e\right)$	$(1, y)$
$\left(x^{2}, y\right)$	$\left(x^{2}, y\right)$	$(1, e)$	(x, y)	$\left(x^{2}, e\right)$	$(1, y)$	(x, e)

Example 3. The smallest group A satisfying the assumption of Proposition 3 is the 2-element cyclic group $\{1, y\}$. The construction of Proposition 3 gives rises to the smallest non-associative non-commutative mono-associative quasigroup of order 6.

\cdot	$(1, e)$	(x, e)	$\left(x^{2}, e\right)$	$(1, y)$	(x, y)	$\left(x^{2}, y\right)$
$(1, e)$	$(1, e)$	(x, e)	$\left(x^{2}, y\right)$	$(1, y)$	(x, y)	$\left(x^{2}, e\right)$
(x, e)	(x, y)	$\left(x^{2}, e\right)$	$(1, y)$	(x, e)	$\left(x^{2}, y\right)$	$(1, e)$
$\left(x^{2}, e\right)$	$\left(x^{2}, e\right)$	$(1, y)$	(x, e)	$\left(x^{2}, y\right)$	$(1, e)$	(x, y)
$(1, y)$	$(1, y)$	(x, y)	$\left(x^{2}, e\right)$	$(1, e)$	(x, e)	$\left(x^{2}, y\right)$
(x, y)	(x, e)	$\left(x^{2}, y\right)$	$(1, e)$	(x, y)	$\left(x^{2}, e\right)$	$(1, y)$
$\left(x^{2}, y\right)$	$\left(x^{2}, y\right)$	$(1, e)$	(x, y)	$\left(x^{2}, e\right)$	$(1, y)$	(x, e)

Example 4. The smallest group A satisfying the assumption of Proposition 4 is the 2-element cyclic group $\{1, y\}$. The construction of Proposition 4 gives rises to the smallest non-associative non-commutative mono-associative quasigroup of order 8.

.	$(1, e)$	(a, e)	(b, e)	(c, e)	$(1, y)$	(a, y)	(b, y)	(c, y)
$(1, e)$	$(1, e)$	(a, e)	(b, e)	(c, e)	$(1, y)$	(a, y)	(b, y)	(c, y)
(a, e)	(a, e)	$(1, e)$	(c, y)	(b, y)	(a, y)	$(1, y)$	(c, e)	(b, e)
(b, e)	(b, e)	(c, e)	$(1, e)$	(a, e)	(b, y)	(c, y)	$(1, y)$	(a, y)
(c, e)	(c, e)	(b, e)	(a, e)	$(1, e)$	(c, y)	(b, y)	(a, y)	$(1, y)$
$(1, y)$	$(1, y)$	(a, y)	(b, y)	(c, y)	$(1, e)$	(a, e)	(b, e)	(c, e)
(a, y)	(a, y)	$(1, y)$	(c, e)	(b, e)	(a, e)	$(1, e)$	(c, y)	(b, y)
(b, y)	(b, y)	(c, y)	$(1, y)$	(a, y)	(b, e)	(c, e)	$(1, e)$	(a, e)
(c, y)	(c, y)	(b, y)	(a, y)	$(1, y)$	(c, e)	(b, e)	(a, e)	$(1, e)$

Quasigroups constructed in the last three examples can be (respectively) identified with the following:

\cdot	1	2	3	4	5	6
1	1	2	6	4	5	3
2	2	3	4	5	6	1
3	3	4	2	6	1	5
4	4	5	3	1	2	6
5	5	6	1	2	3	4
6	6	1	5	3	4	2

\cdot	1	2	3	4	5	6
1	1	2	6	4	5	3
2	5	3	4	2	6	1
3	3	4	2	6	1	5
4	4	5	3	1	2	6
5	2	6	1	5	3	4
6	6	1	5	3	4	2

\cdot	1	2	3	4	5	6	7	8
1	1	2	3	4	5	6	7	8
2	2	1	8	7	6	5	4	3
3	3	4	1	2	7	8	5	6
4	4	3	2	1	8	7	6	5
5	5	6	7	8	1	2	3	4
6	6	5	4	3	2	1	8	7
7	7	8	5	6	3	4	1	2
8	8	7	6	5	4	3	2	1

We verified the above three examples with the help of GAP package [4].

References

[1] T.G. Jaiyéolá and J.O. Adéníran, New identities in universal Osborn loops, Quasigroups and Related Systems, 17 (2009), 55-76.
[2] T.G. Jaiyéolá and J.O. Adéníran, On another two cryptographic identities in universal Osborn loops, Surv. Math. Appl. 5 (2010), $17-34$.
[3] M. Kinyon and I.M. Wanless, Loops with exponent three in all isotopes, Internat. J. Algebra Comput. 25 (2015), 1159 - 1177.
[4] G.P. Nagy and P. Vojtechovsky, LOOPS: Computing with quasigroups and loops in GAP, version 1.0.0, http://www.math.du.edu/loops.

Received April 20, 2017
Revised October 12, 2018
M. Khan

Department of Mathematics \& Statistics, Bacha Khan University, Charsadda, Pakistan
E-mail: mehtabkhan85@gmail.com
A. Khan

Department of Mathematics and Statistics, University of Swat, Pakistan

