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Minimal bi-ideals in regular and

completely regular ordered semigroups

Kalyan Hansda

Abstract. Here we characterize regular and completely regular ordered semigroups by their

minimal bi-ideals. A minimal bi-ideal is expressed as a product of a minimal right ideal and

a minimal left ideal. Furthermore, we show that every bi-ideal in a completely regular ordered

semigroup is minimal and hence a regular ordered semigroup S is completely regular if and only

if S is union its of minimal bi-ideals.

1. Introduction

As well as ring theory regularity plays a noticeable role in ordered semigroups.
T. Saito [11] studied systematically ordered regular, completely regular ordered
semigroups. Success attained by this school characterizing regularity on ordered
semigroups are either in the semilattice and complete semilattice decompositions
into di�erent types of simple components, viz. left, t−, σ, λ-simple etc. or in its
ideal theory.

Here our aim is to study regular and completely regular ordered semigroups
by minimality of their bi-ideals. N. Kehayopulu [6] introduced the notion of bi-
ideal in an ordered semigroup. Mathematicians like Lee, Kang and others studied
these type of ideals in various ways. Author [3] characterized bi-ideals in Cli�ord
and left Cli�ord ordered semigroup. Cao and Xu described minimal and maximal
left ideals in ordered semigroup. Xu and Ma [12] studied minimality of bi-ideals
in an ordered semigroup and characterized t-simplicity of ordered semigroups by
minimality of their bi-ideals. In this paper we use this technique of minimality of
bi-ideals to study the structure of completely regular ordered semigroups.

2. Preliminaries

In this paper N will provide the set of all natural numbers. An ordered semigroup

S is a partially ordered set (S,6), and at the same time a semigroup (S, ·) such
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that a 6 b implies xa 6 xb and ax 6 bx for all a, b, x ∈ S. It is denoted by
(S, ·,6). For an ordered semigroup S and H ⊆ S, denote

(H] := {t ∈ S : t 6 h, for some h ∈ H}.

Let I be a nonempty subset of an ordered semigroup S. I is a left (right)
ideal of S, if SI ⊆ I (IS ⊆ I) and (I] = I. I is an ideal of S if it is both
left and right ideal of S. S is left (right) simple if it has no non-trivial proper
left (right) ideal. Similarly we de�ne simple ordered semigroups. S is called t-

simple ordered semigroup if it is both left and right simple. Due to Kehayopulu
an ordered semigroup S is called an regular [7] (completely regular [6] ) if for every
a ∈ S, a ∈ (aSa] (a ∈ (a2Sa2]).

A subsemigroup B of S is called a bi-ideal [6] if BSB ⊆ B and (B] = B. The
principal left ideal, right ideal [10], ideal and bi-ideal [6] generated by a ∈ S are
denoted by L(a), R(a), I(a), B(a) respectively. It is easy to check that

L(a)=(a∪Sa], R(a)=(a∪aS], I(a)=(a∪Sa∪aS∪SaS] and B(a)=(a∪a2∪aSa],

and if moreover a is regular then L(a) = (Sa], R(a) = (aS], I(a) = (Sa∪aS∪SaS]
and B(a) = (aSa]. Kehayopulu [10] de�ned Green's relations L, R, J and H on
an ordered semigroup S as follows:

aLb if L(a) = L(b), aRb if R(a) = R(b), aJ b if I(a) = I(b), and H = L ∩ R.

These four relations are equivalence relations on S.
For the sake of convenience, we collect few auxiliary results.

Theorem 2.1. (cf. [2]) An ordered semigroup S is regular if and only if for every

right ideal R and left ideal L of S, (RL] = R ∩ L.

Theorem 2.2. (cf. [9]) Let S be regular ordered semigroup, and B a bi-ideal of

S. Then B = (BSB].

By an ordered idempotent [4] in an ordered semigroup S, we shall mean an
element e ∈ S such that e 6 e2. The set of all ordered idempotents in S will
denoted by E6(S).

For example consider the ordered semigroup (R+, ·,6). Then (R+, ·) is not
regular as a semigroup but it is ordered regular, as for example 2 6 2 · 2 · 2. Again
1 is the only idempotent in the semigroup (R+, ·) where as each natural number
n is an ordered idempotent.

In an ordered semigroup S, every left (right) ideal a quasi-ideal and every
quasi-ideal is a bi-ideal. Keeping in mind that every t-simple ordered semigroup
is a t-simple ordered semigroup, we restate the result of Kehayopulu [9].

Theorem 2.3. (cf. [9]) An ordered semigroup S is t-simple ordered semigroup if

and only if it has no proper bi-ideal.
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Theorem 2.4. (cf. [1]) An ordered semigroup S is completely regular if and only

if S is union of t-simple ordered semigroups.

Lemma 2.5. Let S be a completely regular ordered semigroup. Then following

statements hold in S:

(1) For every a ∈ S there is h ∈ S such that a 6 aha, a 6 a2h, and a 6 ha2.

(2) For every a ∈ S there is h ∈ S such that aHah and aHha.

(3) For every a ∈ S there is e, f ∈ E6(S) such that eHf .

Proof. (1). Let a ∈ S. Then there is t ∈ S such that a 6 a2ta2. Now a 6
a3ta2ta2 6 a3ta2ta2ta3 6 aha, where h = a2ta2ta2ta2. Also a 6 ha2 and a 6 a2h
are obvious.

(2). Let a ∈ S. Then a 6 aha, where h = a2ta2ta2ta2, follows from the proof
of (1). Now ah = a(a2ta2ta2ta2) = ua for some u = a(a2ta2ta2ta) ∈ S. Then
from (1) it follows that aHah. Similarly aHha.

(3). This statement is fairly straightforward. e = ah, f = ha ∈ E6(S) as in
(1) serves our purpose.

For a semigroup S (without order), the set P (S) of all �nite subsets of S is a
semilattice ordered semigroup with the operation · and 6 de�ned as follows:

For A,B∈P (F ), AB={ab | a ∈ A, b ∈ B} and A 6 B if and only if A ⊆ B(cf.[1]).

Lemma 2.6. Let S be a regular semigroup. Then P (S) is regular.

Lemma 2.7. Let S be a regular ordered semigroup. Then the following statements

hold in S:

(1) For every a ∈ S, B(a) = (R(a)L(a)].

(2) (SA] ∩ (AS] = (SA ∩AS] for any non empty subset A of S.

Proof. (1). Let x ∈ B(a). Since S is ordered regular there is s ∈ S such that
x 6 asa. Note that a ∈ R(a) and this yields that as ∈ R(a). Also a ∈ L(a). Thus
asa ∈ R(a)L(a), so x ∈ R(a)L(a). Therefore B(a) ⊆ (R(a)L(a)].

Again for some y ∈ (R(a)L(a)] there is s, t ∈ S such that y 6 asta. Then
y ∈ (aSa] = B(a). Hence B(a) = (R(a)L(a)].

(2). First consider a nonempty subset A of S. Let x ∈ (SA] ∩ (AS]. Then
there are s, t ∈ S and a, b ∈ A such that x 6 sa, x 6 bt. Since S is ordered
regular x 6 xzx for some z ∈ S so that x 6 btzsa. Now b(tzsa) ∈ AS, (btzs)a ∈
SA. This yields that btzsa ∈ SA ∩ AS. Therefore x ∈ (SA ∩ AS] and hence
(SA] ∩ (AS] ⊆ (SA ∩ AS]. Also it is obvious that (SA ∩ AS] ⊆ (SA] ∩ (AS]. So
�nally (SA] ∩ (AS] = (SA ∩AS].

Theorem 2.8. In a regular ordered semigroup a nonempty subset A of S is a

bi-ideal of S if and only if A = (RL] for a right ideal R and a left ideal L of S.
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Following Xu and Ma [12] we de�ne minimality of bi-ideals in an ordered semi-
group as follows.

De�nition 2.9. (cf. [12]) A bi-ideal M of an ordered semigroup S is called a
minimal bi-ideal if there is no non trivial bi-ideal B such that M ⊂ B.

Theorem 2.10. (cf. [12]) A bi-ideal B of an ordered semigroup S is minimal if

and only if B is t-simple.

3. Regular ordered semigroups andminimal bi-ideals

In this section we characterize regular ordered by their minimal bi-ideals. We
prove that a bi-ideal in a regular ordered semigroup is minimal if and only if it is
a H-class. Also a regular ordered semigroup is completely regular if and only if it
is union of minimal bi-ideals.

The following result makes a natural analogy between a bi-ideal in a semigroup
and a bi-ideal in an ordered semigroup.

Theorem 3.1. Let S be an ordered semigroup S. Then for any bi-ideal A of S,
P (A) is a bi-ideal of P (S).

Proof. Let X ∈ P (A)P (S)P (A). Then there are X1, X2 ∈ P (A) and Y ∈ P (S)
such that X = X1Y X2. Since X1, X2 ∈ P (A) we have that X1, X2 ⊆ A and so
X ⊆ ASA. Since A is a bi-ideal of S we have X ∈ A. Therefore X ∈ P (A). Hence
P (A)P (S)P (A) ⊆ P (A).

Next let Y ∈ (P (A)]. Then there is Z ∈ P (A) such that Y ⊆ Z. Then
Y ⊆ Z ⊆ A, since Z ∈ P (A). Therefore Y ∈ P (A) and so (P (A)] = P (A). Hence
P (A) is a bi-ideal of P (S).

Theorem 3.2. Let S be a regular ordered semigroup. Then a non empty subset

B of S is a minimal bi-ideal of S if and only if B = (RL] for some minimal

right-ideal R and minimal left ideal L of S.

Proof. First suppose that B is a minimal bi-ideal of S. Then for every a ∈ B,
B(a) = B and hence B = (R(a)L(a)], by Lemma 2.7(1). Let R be a right ideal of S
such that R ⊆ R(a). Since S is regular, (R(a)L(a)] = R(a)∩L(a), by Theorem 2.1.
Now (RL(a)] = R∩L(a) ⊆ R(a)∩L(a) = B. Also by Theorem 2.8, (RL(a)] itself a
bi-ideal of S contained in B. By the minimality of B it follows that B = (RL(a)].
That is R ∩ L(a) = R(a) ∩ L(a). Note that a ∈ R(a) ∩ L(a) = R ∩ L(a). Thus
a ∈ R. Then for every x ∈ R(a), x ∈ R. This implies that R = R(a). Therefore
R(a) is a minimal right ideal of S. Similarly L(a) is a minimal left ideal of S.
Thus the condition is necessary.

Conversely, let B be a nonempty subset of S such that B = (RL] for a minimal
left ideal L and a minimal right ideal R of S. Then B is a bi-ideal of S, by Theorem
2.8. To prove the minimality of B let us choose a bi-ideal B′ of S such that B′ ⊆ B.
Then (SB′] ⊆ (SB] ⊆ (S(RL]] ⊆ (SL] ⊆ L, since L is a left ideal of S.
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Likewise (B′S] ⊆ R. Also (SB′] and (B′S] are left and right ideals of S
respectively. Then the minimality of L and R yields that (SB′] = L and (B′S] =
R. Therefore B = (RL] = ((B′S](SB′]] ⊆ (B′SB′] = B′, by Theorem 2.2. Thus
B′ = B and hence B is a minimal bi-ideal of S.

Then the following corollary follows from Theorem 2.10 and Theorem 2.1.

Corollary 3.3. Let S be an ordered semigroup. If R is a minimal right ideal and

L is a minimal left ideal of S then (RL] is a t-simple ordered subsemigroup of S.

By the Theorem 2.1, Theorem 2.8 and 2.1 we immediately have the following
corollary.

Corollary 3.4. Let B be a bi-ideal of a regular ordered semigroup S. Then B is

a minimal bi-ideal of S if and only if B is an intersection of a minimal left ideal

and a minimal right ideal.

We have the following lemma that characterizes the minimality of bi-ideal in
respect of producing same principal bi-ideals.

Lemma 3.5. Let S be an ordered semigroup. A bi-ideal B of S is minimal if and

only if B(a) = B(b) for all a, b ∈ B.

Proof. First assume that B is a minimal bi-ideal of S. Let a, b ∈ B. Then
B(a) = B = B(b).

Conversely, suppose that the given condition holds in S. Let K be a bi-ideal
of S such that K ⊆ B. Let z ∈ K. Then for every x ∈ B, B(x) = B(z) implies
x ∈ B(x) = B(z) ⊆ K and so K = B. Hence B is a minimal bi-ideal of S.

Now we introduce an equivalence relation which is determined in respect of
producing same principal bi-ideals. Let S be an ordered semigroup. De�ne a
relation β on S by:

aβb⇔ B(a) = B(b).

It requires only routine veri�cation to see that β is an equivalence relation.

Lemma 3.6. The following conditions hold in an ordered semigroup S:

(1) β ⊆ H.

(2) If S is regular then β = H.

Proof. (1). This is obvious.
(2). First suppose that S is regular. Let a, b ∈ S be such that aHb. Then aLb

and aRb implies that L(a) = L(b) and R(a) = R(b). Since S is regular B(a) =
L(a) ∩ R(a), by Lemma 2.7 and Theorem 2.1. Thus B(a) = L(b) ∩ R(b) = B(b),
and so aβb. Hence by (1) β = H.

Theorem 3.7. Let S be an ordered semigroup. Then every bi-ideal is a union of

β-class.
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Proof. Let B be a bi-ideal of S and b ∈ B. Let a ∈ S be such that aβb. Then
B(a) = B(b) ⊆ B implies that a ∈ B. Thus the results follows.

Theorem 3.8. Let S be an ordered semigroup. A bi-ideal B of S is minimal if

and only if it is a β-class.

Proof. First suppose that B is a minimal bi-ideal of S. Let a, b ∈ B. Then by the
minimality of B it follows from Lemma 3.5 that B(a) = B(b), and this implies
that aβb. Therefore B is a β-class.

Conversely, assume that a bi-ideal B of S is a β-class. Choose a bi-ideal K of
S such that K ⊆ B. Let x ∈ B be arbitrary. Consider y ∈ K. Then B(x) = B(y),
since x, y ∈ B. Therefore x ∈ B(y) ⊆ K which implies K = B. Hence B is
contained in a β−class and hence by Theorem 3.7, B is a β−class.

Immediately we have the following corollary. It requires only routine veri�ca-
tion and so its proof is omitted.

Corollary 3.9. Let B be a bi-ideal of a regular ordered semigroup S. Then B is

minimal bi-ideal of S if and only if B is an H-class of S.

Let us consider the following example of [8].

Example 3.10. Let S = {a, b, c, d, e} be the ordered semigroup de�ned by the
multiplication and the order below:

. a b c d e

a a a c a c

b a a c a c

c a a c a c

d d d e d e

e d d e d e

De�ne a relation 6 on S as follows:

6:={(a, a),(a, b),(a, c),(a, d),(a, e),(b, b),(b, c),(b, d), (b, e),(c, c),(c, e),(d, d),(d, e),(e, e)}.

In this example (S, ·,6) is an ordered semigroup. And in S, {a, b} and {a, b, c}
are bi-ideals of S. This shows that {a, b, c} is not a minimal bi-ideal of S. It is
interesting to note that S is not regular and so not a complete regular. We now
see that every bi-ideal in a complete regular ordered semigroup is bi-ideal.

Theorem 3.11. Let S be a completely regular ordered semigroup. Then a bi-ideal

B of S is minimal if and only if B(a) = B(e) for all a ∈ B and e ∈ E6(B).

Proof. First suppose that B is minimal. Let a ∈ B and e ∈ E6(B). Then a, e ∈ B.
Since S is regular we have B(a) = B(e), by Lemma 3.5.

Conversely, assume that the given conditions hold in S. Let K be a bi-ideal of
S such that K ⊆ B. Let z ∈ K and b ∈ B. Since S is completely regular there
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is h ∈ S be such that bHbh, by Lemma 2.5(2). So B = B(b) = B(bh). Also from
the proof of Lemma 2.5(3) we have bh ∈ E6(S), infact bh ∈ E6(B). So by given
condition B(z) = B(bh). Therefore z ∈ B(z) = B, and so K = B. Hence B is
minimal bi-ideal of S.

Corollary 3.12. Let S be a completely regular ordered semigroup. Then a bi-ideal

B of S is minimal if and only if B(e) = B(f) for all e, f ∈ E6(B).

Proof. This is obvious.

Next we discuss about the bi-simplicity of an ordered semigroup.

De�nition 3.13. An ordered semigroup S is called bi-simple if S has no proper
bi-ideal.

In the following theorem bi-simplicity of regular ordered semigroup has been
described by its any two ordered idempotents.

Theorem 3.14. Let S be a regular ordered semigroup. Then S is bi-simple if and

only if for every e, f ∈ E6(S), B(e) = B(f).

Proof. Suppose that S is bi-simple. Consider e, f ∈ E6(S). Clearly B(e) = S =
B(f).

Conversely, assume that the given condition hold in S and choose a bi-ideal
B of S. Let a ∈ S and b ∈ B. Since S is regular there are x, y ∈ S such that
a 6 axa and b 6 byb. Clearly ax, xa, by and yb ∈ E6(S). Now by given condition
we have B(ax) = B(by) and B(xa) = B(yb). This yields that axHby and xaHyb,
in otherwords axRby and xaLyb. Now axRby gives ax 6 byz and by 6 axw for
some z, w ∈ S. So from a 6 axa and b 6 byb we have a 6 byza and b 6 axwb,
which gives that aRb. In like manner aLb follows from ybLxa. Thus aHb and so
B(a) = B(b), by Lemma 3.6. So a ∈ B(b) = B. Hence S = B. This completes the
proof.

Every minimal bi-ideal is a bi-simple ordered semigroup. It is interesting to
note down that there are bi-ideals which are neither left ideal nor a right ideal, but
an ordered semigroup S is bi-simple if and only if it is both left and right simple.
Thus we have the following theorem.

Theorem 3.15. The following conditions are equivalent on an ordered semigroup

S:

(1) S is bi-simple.

(2) S is t-simple ordered semigroup.

(3) For every a ∈ S, S = B(a).

(4) For every a ∈ S, S = L(a) and S = R(a).
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Proof. (1)⇒ (2). This is obvious.
(2)⇒ (3). This implication follows from Theorem 2.3.
(3)⇒ (4). This follows from from the fact that every left ideal and every right

ideal are bi-ideals.
(4) ⇒ (1). Let the given conditions hold in S. Consider a bi-ideal B of S.

Let a ∈ B. Then B(a) = B. Now S = L(a2) and S = R(a2), by condition (4).
Let x ∈ S. Then x ∈ L(a) ∩ R(a). This implies that x 6 sa2 for some s ∈ S1.
Since sa ∈ S there is t ∈ S1 such that sa 6 a2t. Thus x 6 sa2 implies that
x 6 a2ta = a(at)a. Since a(at)a ∈ BSB and B is a bi-ideal of S we have that
a2ta ∈ B. Thus x ∈ B, and hence S = B. This shows that S is bi-simple.

Theorem 3.16. Let S be an ordered semigroup. Then a bi-ideal B is minimal if

and only if it is bi-simple.

Proof. First suppose that B is a minimal bi-ideal of S. Consider a bi-ideal T of B.
Let x ∈ T . Then (xBx] ⊆ (TBT ] ⊆ T . This implies that (xBx] ⊆ T ⊆ B. Also
(xBx] is a bi-ideal of S, by Lemma 3 of [12] . Then the minimality of B yields
that (xBx] = B, and so T = B. Therefore B is bi-simple.

Conversely assume that B is bi-simple. Consider a bi-ideal Y of S such that
Y ⊆ B. Choose y ∈ Y arbitrarily. Then by Lemma 3 of [12], (yBy] is a bi-ideal of
S. Since B is bi-simple, (yBy] = B. Then B ⊆ (Y BY ] ⊆ (Y SY ] ⊆ Y . Therefore
Y = B and hence B is a minimal bi-ideal of S.

In the next theorem we characterize completely regular ordered semigroups in
terms of their bi-ideals.

Theorem 3.17. An ordered semigroup S is a completely regular ordered semigroup

if and only if the following conditions hold in S:

(1) For every bi-ideal B of S there is some e ∈ E6(S) such that B = B(e).

(2) For every x ∈ B, B(x2) = B(e).

Proof. Let S be a completely regular ordered semigroup. Consider a bi-ideal B
of S. Choose a ∈ B. Then by the Theorem 2.5, there is h ∈ S such that a 6
aha, a 6 a2h and a 6 ha2. Then B(a) = (aSa] ⊆ (ahaSa2h] ⊆ (ahSah] = B(e),
where e = ah ∈ E6(S). Also B(e) = (eSe] = (ahSah]. Now h = a2ta2ta2ta2, by
the proof of Lemma 2.5(1), and so B(e) = (ahSah] ⊆ (aSa] = B(a). Therefore
B(a) = B(e). Thus condition (1) follows.

For condition (2) let x ∈ B. Clearly B(x2) = B = B(a). So by condition (1)
we have B(x2) = B(e).

Conversely, assume that the given conditions hold in S. Let a ∈ S. Consider
the bi-idealB(a) of S. Then there is e ∈ E6(S) be such thatB(a) = B(e) = B(a2).
Then B(a) = B(a2) = (a2 ∪ a4 ∪ a2Sa2]. Thus a 6 a2 or a 6 a4 or a ∈ (a2Sa2].
Hence in either case S is completely regular ordered semigroup.
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Corollary 3.18. An ordered semigroup S is completely regular if and only if for

every a ∈ S, B(a) = B(a2).

Corollary 3.19. Let S be an completely regular ordered semigroup. Then every

bi-ideal of S is principal bi-ideal generated by some ordered idempotent.

Then we have the following corollary which follows from Theorem 3.11.

Corollary 3.20. Let S be an completely regular ordered semigroup. Then every

bi-ideal of S is minimal.

In the following theorem completely regular ordered semigroups are character-
ized by the minimality of their bi-ideals.

Theorem 3.21. Let S be a regular ordered semigroup. Then S is completely

regular if and only if S is union of its bi-ideals.

Proof. First suppose that S is completely regular. Since S is regular we have that
H = β, by Lemma 3.6. Then by Theorem 2.4, S is union of β−classes and so S is
union of minimal bi-ideals, by Theorem 3.8. Therefore from Corollary 3.20, S is
union of bi-ideals of S.

Conversely, assume that S is union of its minimal bi-ideals. Then S is union
of its t-simple ordered subsemigroups, by Theorem 3.15 and Theorem 3.16. Hence
by Theorem 2.4, S is completely regular.
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