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Double magma associated with Ward

and double Ward quasigroups

Wieslaw A. Dudek and Robert A. R. Monzo

Abstract. We determine types of double magma associated with Ward quasigroups, double

Ward quasigroups, their duals and the groups they generate. Ward quasigroup double magma and

unipotent, right modular, left-unital double magma are proved to be improper. Necessary and

su�cient conditions are found on a pair of right modular, left unital magma (and right-left unital

magma) for them to form a double magma. We give further insight into the intimate connection

between the property of mediality and the interchange law by proving that a quasigroup is medial

if and only if any pair of its parastrophic binary operations satisfy the interchange law.

1. Introduction

Inspired by Ward's paper [16] on postulating the inverse operations in groups
Cardoso and de Silva de�ned in [1] the notion of aWard quasigroup as a quasigroup
(Q, ·) containing an element e such that xx = e for all x ∈ Q, and satisfying the
identity xy · z = x(z · ey). Polonijo [14] proved that these two conditions can be
replaced by the identity:

xz · yz = xy. (1)

Note that Ward quasigroups are uniquely determined by groups. Given a
group (G, ◦,−1 , e), we can construct a Ward quasigroup by de�ning xy = x ◦ y−1.
Conversely, given a Ward quasigroup Q, it can be shown that Q is unipotent

(xx = yy), so we may write xx = e, and de�ning x−1 = ex and x◦y = xy−1 = x·ey
makes (Q, ◦,−1 , e) a group. If a group (Q, ◦) is abelian, then the corresponding
Ward quasigroup is medial and is a group-like BCI-algebra (cf. [4]). Obviously
such a quasigroup is a BCI-algebra satisfying the Iséki's condition (S) and is the
so-called p-semisimple part of each BCI-algebra (cf. [3] or [10]).

Writing der(Q, ◦, e) for the Ward quasigroup derived (constructed) from the
group (Q, ◦, e) and ret(Q, ·, e) for the group obtained from the Ward quasigroup
(Q, ·, e), it can also be shown that der(ret(Q, ·, e)) = (Q, ·, e) and ret(der(Q, ◦, e)) =
(Q, ◦, e) (cf. [2] and [13]). Therefore, there is a one-to-one correspondence between
groups and Ward quasigroups.
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Similarly, given a group (G, ◦, e), we can construct a quasigroup by de�ning
xy = x−1 ◦ y−1. This quasigroup satis�es the Ward-like identity

(ee · xz)(ey · z) = xy. (2)

A quasigroup (Q, ·) containing an element e such that the above condition is
satis�ed for all x, y, z ∈ Q is called a double Ward quasigroup (not to be confused
with the Ward double quasigroups of [13]) and is denoted by (Q, ·, e). Fiala proved
(cf. [9]) that similarly as in the case of Ward quasigroups there is one-to-one
correspondence between groups and double Ward quasigroups.

Edmunds in [8] constructed double magma in groups, using commutator oper-
ations. He found that a medial Ward quasigroup and its dual, an left unipotent,
right modular quasigroup, form a double magma pair that is proper if and only
if the group derived from the medial Ward quasigroup is not boolean (see Theo-
rem 3.3 below). This example inspired the authors to search for double magma
associated with Ward and double Ward quasigroups, their duals and the groups
they generate, culminating in the results below. The question of whether there
are double Ward double magma, and proper ones, remains unanswered.

2. Preliminary de�nitions, notation and results

Let (Q, ·) be a magma, i.e., a non-empty set Q with one binary operation denoted
by a dot or by juxtaposition. If in (Q, ·) there is an element r such that xr = x
for all x ∈ Q, then it is called a right unit. If there is l ∈ Q such that lx = x
for all x ∈ Q, then it is called a left unit. An element which at the same time is
a right and left unit is called a unit. A magma with a (right, left) unit is called
(right, left) unital. If additionally, for all x ∈ Q we have xx = r (xx = l), then
we say that (Q, ·) is r-unipotent (resp. l-unipotent). A magma that is r-unipotent
and l-unipotent (in this case r = l = 1) is called unipotent.

A magma (Q, ·) is called right modular, if xy · z = zy · x; left modular, if
x·yz = z·yx; medial or entropic, if xy·zw = xz·yw, and reversible, if xy·zw = wz·yx
hold for all x, y, z, w ∈ Q. Both right and left modular magmas are medial.
Magmas (Q, ·) and (Q, ·̄), where x ·̄ y = y · x are called dual.

Let (Q, ·, ∗) be a triple consisting of a non-empty set Q and two binary opera-
tions satisfying one of the interchange laws:

(x · y) ∗ (z · w) = (x ∗ z) · (y ∗ w), (3)

(x · y) ∗ (z · w) = (y ∗ x) · (w ∗ z), (4)

(x · y) ∗ (z · w) = (w ∗ z) · (y ∗ x). (5)

(Q, ·, ∗) satisfying the �rst law is called a double magma, the second � a lateral

double magma, the third � a reversible double magma. Then (Q, ·) and (Q, ∗)
are called double magma partners (or resp. lateral double magma partners and
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reversible double magma partners). If these operations are distinct, then we say
that a double magma is proper. It is clear that (Q, ·, ∗) is a double magma if and
only if (Q, ∗, ·) is a double magma.

In relation to two-fold monoidal categories Kock introduced in [11] the notion
of a double semigroup, i.e., a double magma with two associative operations. He
proved that in cancellable double semigroups and inverse double semigroups both
operations must be commutative. Moreover, if a commutative double semigroup
is unital, then these two operations coincide.

Example 2.1. Let xy = [ax + by]n and x ∗ y = [cx + dy]n where a, b, c, d ∈
Zn = {1, 2, . . . , n} and [a+ b]n is calculated modulo n. Then, (Zn, ·, ∗) is a double
magma. In the case a = b, c = d it is a commutative double semigroup.

Example 2.2. Let R+ be the set of positive reals and n ≥ 2 be an integer. Then
(R+, ·, ∗), where x · y = xnyn and x ∗ y = n

√
xy, is a double magma. Also (R,+,−)

is a double magma.

Note that the interchange laws are symmetric, in the sense that any one of
these laws is satis�ed if and only if the same law, with · and ∗ interchanged, is
satis�ed. That is, we have

(x · y) ∗ (z · w) = (x ∗ z) · (y ∗ w)⇔ (x ∗ y) · (z ∗ w) = (x · z) ∗ (y · w),

(x · y) ∗ (z · w) = (y ∗ x) · (w ∗ z)⇔ (x ∗ y) · (z ∗ w) = (y · x) ∗ (w · z),
(x · y) ∗ (z · w) = (w ∗ z) · (y ∗ x)⇔ (x ∗ y) · (z ∗ w) = (w · z) ∗ (y · x).

Partly as a consequence of this symmetry, all the results of this paper have
their dual version.

A double magma (Q, ·, ∗) is called (right, left) unital if both magma are (right,
left) unital. It is called lr-unital if (Q, ·) is left unital and (Q, ∗) is right unital.

Note that in a Ward quasigroup (Q, ·) there is an element e (the unity of the
corresponding group) such that

xx = yy = e, (6)

xe = x, (7)

e · xy = yx, (8)

e · ex = x, (9)

xy · z = x(z · ey) (10)

hold for all x, y, z ∈ Q.

With these de�nitions the proofs of the following two Lemmas are straightfor-
ward and are omitted.

Lemma 2.3. The following statements are valid.
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(1) (Q, ·, ·̄ ) is a double magma if and only if (Q, ·) is medial,

(2) (Q, ·, ·̄ ) always satis�es the reversible interchange law,

(3) (Q, ·, ·̄ ) satis�es the lateral interchange law if and only if (Q2, ·) is commu-

tative,

(4) (Q, ·, ∗) is a double magma if and only if (Q, ·̄ , ∗̄) is a double magma,

(5) (Q, ·, ∗) is a lateral double magma if and only if (Q, ·̄ , ∗̄) is a lateral double

magma,

(6) (Q, ·, ∗) is a reversible double magma if and only if (Q, ·̄ , ∗̄) is a reversible

double magma,

(7) (Q, ·, ·) satis�es the interchange law if and only if (Q, ·) is medial.

Lemma 2.4. The following statements are valid.

(1) A Ward quasigroup (Q, ·, e) is medial if and only if it is left modular if and

only if ret(Q, ·, e) is abelian,

(2) A Ward quasigroup (Q, ·, e) is commutative if and only if ret(Q, ∗, e) is a

boolean group,

(3) (Q, ·, e) is a Ward quasigroup if and only if there is a group (Q, ?, e) such

that xy = y−1 ? x.

Proposition 2.5. If for a Ward quasigroup (Q, ·, e) and a magma (Q, ∗, l) with

unique left unit l, (Q, ·, ∗) is a double magma, then l = e.

Proof. Indeed, x = xe = (l∗x) ·(l∗e) = (l · l)∗(x ·e) = (l · l)∗x. So, l = l · l = e.

The following is a well-known result. We give the proof to help make this
paper more self-contained and also to give a �avour of some of the methods used
in the proofs below. This result was proved in [7] and uses what is known as the
Eckmann-Hilton argument.

Theorem 2.6. If (Q, ·, ∗) is a unital double magma with units e and e∗ respectively,

then these operations coincide and (Q, ·, ·) is a commutative, unital and associative

double magma.

Proof. We have

x · y = (x ∗ e∗) · (e∗ ∗ y) = (x · e∗) ∗ (e∗ · y) = (e∗ ∗ x) · (y ∗ e∗) = (e∗ · y) ∗ (x · e∗).

Thus y · y = (e∗ · y) ∗ (y · e∗). But

e∗ = e∗ ∗ e∗ = (e∗ · e) ∗ (e · e∗) = (e∗ ∗ e) · (e ∗ e∗) = e · e = e.
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So, e∗ = e, and consequently x · y = y ∗ x = x ∗ y. Hence (Q, ·, ∗) = (Q, ·, ·) is
a commutative double magma. In fact, it is a medial double magma, because,
with · = ∗, the interchange law implies that · = ∗ is medial. Hence, (x ∗ y) ∗ z =
(x ∗ y) · (e∗ ∗ z) = (x ∗ y) · (e ∗ z) = (x · e) ∗ (y · z) = x ∗ (y ∗ z) and (Q, ∗, ∗) = (Q, ·, ·)
is an associative double magma.

Another way to describe this result is that a unital double magma (Q, ·, ∗) is
a commutative monoidal double semigroup (Q, ·, ∗) = (Q, ·, ·).

3. Double magma and Ward quasigroups

As noted in [8], in light of Theorem 2.6, in order to produce a proper double
magma we must be sure that the double magma is not unital. It is tempting to
call a medial pair of dual magma, which by Lemma 2.3 form a double magma,
improper. However, we will not do so, as such double magma can give interesting
examples (see Theorem 3.3 below, from [8]). Given Theorem 2.6, it is natural to
ask whether there are proper right unital, left unital or lr-unital double magma.
We now explore this question, �rst �nding out whether there are Ward quasigroup
double magma.

Theorem 3.1. Let (Q, ·, e) and (Q, ∗, e∗) be Ward quasigroups. Then the following

statements are equivalent:

(1) (Q, ·, ∗) is a double magma,

(2) (Q, ·) = (Q, ∗) is medial,

(3) (Q, ·) = (Q, ∗) is left modular,

(4) (Q, ·) = (Q, ∗) satis�es xy · z = xz · y and x · yz = xy · ez,

(5) (Q, ·) = (Q, ∗) is induced by an abelian group.

Proof. (1) ⇒ (2). Since e = e∗e∗ and e∗ = e ∗ e, we have e∗ = e ∗ e = ee ∗ ee =
(e ∗ e) · (e ∗ e) = e, so e = e∗. Thus, x ∗ y = (x ∗ y) · e∗ = (x ∗ y) · (y ∗ y) =
(x · y) ∗ (y · y) = (x · y) ∗ e∗ = x · y. Therefore (Q, ·) = (Q, ∗) and the mediality is
obvious.

(2)⇒ (1). It is obvious.
(2)⇔ (3). This follows from Lemmas 2.3 and 2.4.
(2)⇒ (4). xy · z = xy · ze = xz · ye = xz · y and x · yz = xe · yz = xy · ez.
(4)⇒ (2). xy · zw = (xy · z) · ew = (xz · y) · ew = xz · yw.
(2)⇔ (5). This follows from the fact that (Q, ·, e) = der(ret(Q, ·, e)).

So, a medial Ward quasigroup double magma is improper and the only Ward
quasigroup double magmas are medial and improper. However, a medial Ward
quasigroup and its dual form a double magma, by Lemma 2.3.

The next theorems are a consequence of Lemma 2.3.
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Theorem 3.2. If (Q, ·, e) is a medial Ward quasigroup, then (Q, ·, ·̄ ) is a double rl-
unital magma and (Q, ·̄ , e) is a unipotent, left unital and right modular quasigroup

with unique left unit e.

Theorem 3.3. ([8], p. 2�3) If a Ward quasigroup (Q, ·) is derived from an abelian

group (Q, ◦), then (Q, ·, ·̄ ) is a double rl-unital magma. It is proper if and only if

(Q, ◦) is not a boolean group.

Theorem 3.4. If (Q, ·, e) is a medial Ward quasigroup, then (Q, ·, ◦), where

(Q, ◦) = ret(Q, ·, e), is a double magma. It satis�es the lateral inverse law if

and only if it satis�es the reverse inverse law if and only if (Q, ◦) is a boolean

group.

Theorem 3.5. If a Ward quasigroup (Q, ·, e) forms a double magma with a unital

magma (Q, ◦, 1), then (Q, ◦, 1) is a retract of (Q, ·, e) and (Q, ·, e) is medial. If

(Q, ·, e) is medial and ret(Q, ·, e) forms a double magma with a left cancellative,

unipotent magma (Q, ?) containing a right unit r, then (Q, ·) = (Q, ?).

Proof. If (Q, ·, e) forms a double magma with a unital magma (Q, ◦, 1), then e =

ee = (e ◦ 1) · (1 ◦ e) = e1 ◦ 1e = e1 ◦ 1 = e1 = 1. So, e = 1 and x ◦ y (7),(9)
=

(e · ex) ◦ ye (3)
= (e ◦ y) · (ex ◦ e) = y · ex = xe ◦ (e · ey)

(3)
= (x ◦ e)(e ◦ ey) = x · ey.

So, (Q, ◦) = ret(Q, ·, e) and (Q, ◦, e) is an abelian group. Consequently, (Q, ·) is
medial.

Now, if (Q, ·, e) is medial and (Q, ◦, e) = ret(Q, ·, e) forms a double magma
with a left cancellative, unipotent magma (Q, ?) containing a right unit r, then
(Q, ◦, e) is abelian and r = r?r = (r◦e)?(e◦r) = (r?e)◦(e?r) = (r?e)◦e = r?e,
whence, by a left cancellation, we obtain r = e. Thus, x ? y = (e ◦ x) ? (y ◦ e) =
(e ? y) ◦ (x ? r) = (e ? y) ◦ x = (e ? y) · ex. This for y = x gives (e ? x) · ex =
x ? x = r = e = ex · ex, which implies e ? x = ex because (Q, ·) is a quasigroup.

So, x ? y = (e ? y) · ex = ey · ex = e · yx (8)
= xy. Hence, (Q, ·) = (Q, ?).

4. Double Ward quasigroups

Fiala proved (cf. [9]) that double Ward quasigroups are in a one-to-one corre-
spondence with groups. Namely, he proved that on any double Ward quasigroup
(Q, ·, e) we can de�ned a group Ret(Q, ·, e) = (Q, �) by putting x � y = ex · ey. In
this group e is the identity and x−1 = ex. On the other side, any group (Q, ◦)
can be transformed into a double Ward quasigroup (Q, ∗, e) with the operation
x ∗ y = x−1 ◦ y−1. Such obtained quasigroup is denoted by Der(Q, ◦, e). More-
over, similarly as in Ward quasigroups, we have Der(Ret(Q, ·, e)) = (Q, ·, e) and
Ret(Der(Q, ◦, e)) = (Q, ◦, e).

Note that element e used in the de�nition of a double Ward quasigroup is not
uniquely determined. Indeed, since xy = x−1 ◦ y−1 for some group (Q, ◦, 1), from
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(2) it follows that in this group e3 = 1. So, if (Q, ◦, 1) is an abelian group, then
as e we can take the unity of this group or an arbitrary element of order 3.

Let (Q, ·, e) = (Q, ·, r), e 6= r, be double Ward quasigroups and x�y = ex ·ey =
α(x)·α(y), x•y = rx·ry = β(x)·β(y), where α, β are bijections of Q. Then (Q, �, e)
and (Q, •, r) are two groups. Since α−1β(x) �α−1β(y) = β(x) · β(y) = x • y, these
groups are isotopic. So, by the Albert's theorem, they are isomorphic. Obviously,
isomorphic groups determine isomorphic double Ward quasigroups. Thus, double
Ward quasigroups are isotopic if and only if they are isomorphic.

Hence, as a consequence of the above relationships between double Ward quasi-
groups and groups we obtain the following Lemma.

Lemma 4.1. In any double Ward quasigroup (Q, ·, e) we have

(1) ee = e,

(2) ex = xe,

(3) ex · ey = e · yx,

(4) e(ey · ex) = xy,

(5) (e · xz)(ey · z) = xy,

(6) x · xe = ex · x = e,

(7) xy · x = x · yx = y

for all x, y, z ∈ Q.

In a Ward quasigroup (Q, ·, e) we have ee = e, but in (2) the element ee cannot
be replaced by e, i.e., a quasigroup (Q, ·, e) satisfying the identity (e·xz)(ey·z) = xy
may not be a double Ward quasigroup. As an example of such quasigroup we can
consider a quasigroup de�ned by table

1 2 3 4 5 6

1 3 6 1 5 4 2
2 6 5 4 3 2 1
3 1 4 6 2 5 4
4 5 3 2 6 1 4
5 4 2 5 1 3 6
6 2 1 3 4 6 5

or the quasigroup (Q, ·) with the operation xy = b − x − y, where (Q,+, 0) is an
abelian group and b 6= 0. For b = 0 it is a double Ward quasigroup.

Proposition 4.2. If (Q, ·, e) is a Ward quasigroup, then (Q, ?, e) with the opera-

tion x ? y = ex · y is a double Ward quasigroup denoted by D(Q, ·, e).
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Proof. Since (Q, ·, e) is a quasigroup, it follows readily that (Q, ?, e) is a quasigroup.
Moreover, e ? x = ee · x = ex. Thus, e ? e = ee = e and

(e ? (x ? z)) ? ((e ? y) ? z) = e(ex · z) ? (e · ey)z
(9)
= (ex · z) · yz (1)

= ex · y = x ? y.

So, ((e ? e) ? (x ? z)) ? ((e ? y) ? z) = x ? y. Therefore (Q, ?, e) is a double Ward
quasigroup.

Proposition 4.3. If (Q, ?, e) is a double Ward quasigroup, then (Q, •, e) with the

operation x • y = (e ? x) ? y is a Ward quasigroup denoted by D(Q, ?, e).

Proof. It is clear that (Q, •, e) is a quasigroup. In this quasigroup (x•z)• (y •z) =
((e ? x) ? z) • ((e ? y) ? z) = (e ? x) ? y = x • y, by Lemma 4.1(5). So, it is a Ward
quasigroup.

Theorem 4.4. D(D(Q, ·, e)) = (Q, ·, e) and D(D(Q, ?, e)) = (Q, ?, e).

Proof. Since e ? y = ex, we have x • y = (e ? x) ? y = ex ? y = (e · ex)y
(9)
= xy. So,

D(D(Q, ·, e)) = (Q, ·, e). Analogously, by Lemma 4.1, for x•y = (e?x)?y we have
x � y = (e • x) • y = (e ? x) • y = (e ? (e ? x)) ? y = (e ? (x ? e)) ? ((e ? y) ? e) = x ? y.
This proves D(D(Q, ?, e)) = (Q, ?, e).

Theorem 4.5. ret(D(Q, ·, e)) = Ret(Q, ·, e) and ret(D(Q, ?, e)) = Ret(Q, ?, e).

Proof. In D(Q, ·, e) we have x ? y = ex · y. So, for ret(D(Q, ·, e)) we obtain x � y =
x ? (e ? y) = x ? (ee · y) = x ? ey = ex · ey. Thus ret(D(Q, ·, e)) = Ret(Q, ·, e).

In D(Q, ?, e) we have x•y = (e?x)?y. Hence, by Lemma 4.1, in ret(D(Q, ?, e)),
x ⊗ y = x • (e • y) = x • ((e ? e) ? y) = x • (e ? y) = (e ? x) ? (e ? y). This implies
ret(D(Q, ?, e)) = Ret(Q, ?, e).

Given Theorem 3.4, we might hope that a double Ward quasigroup (Q, ·, e)
forms a double magma with the group it induces, Ret(Q, ·, e), but this is not the
case. However, the lateral inverse law does hold; that is, xy � zw = (y � x)(w � z).

Theorem 4.6. Any double Ward quasigroup (Q, ·, e) forms a lateral double magma

with the group Ret(Q, ·, e). If a double Ward quasigroup (Q, ·, e) forms a lateral

double magma with a group (Q, ◦, e), then (Q, ◦, e) = Ret(Q, ·, e).

Proof. Let (Q, ·, e) be a double Ward quasigroup. Then, by Lemma 4.1 (3), we
have

xy � zw = (e · xy)(e · zw) = (ey · ex)(ew · ez) = (y � x)(w � z).

So, (Q, ·, �) is a lateral double magma.
If (Q, ·, e) forms a lateral double magma with a group (Q, ◦, e), then

x ◦ y = (ex · e) ◦ (e · ey) = (e ◦ ex)(ey ◦ e) = ex · ey = x � y,

by Lemma 4.1(7) and the identity (4).
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Note that in general from the fact that a double Ward quasigroup (Q, ·, e) forms
a lateral double magma with a group (Q, ◦, 1) it does not follows that (Q, ◦, 1) =
Ret(Q, ◦, 1). As an example we can consider the additive group (Z6,+, 0) and the
double Ward quasigroup (Z6, ∗, 2), where x∗y = (−x−y)(mod 6). Then (Z6, ∗,+)
is a lateral double magma but (Z6, ∗, 2) 6= Ret(Z6,+, 0).

Corollary 4.7. If (Q, ·, e) is a Ward quasigroup, then (Q, ?, e) = D(Q, ·, e) and

(Q, �, e) = Ret(D(Q, ·, e) form a lateral double magma (Q, ?, �). Moreover, in this

case x � y = x ◦ y = x · ey.

As a consequence of the above relationships between double Ward quasigroups,
Ward quasigroups and groups we obtain the following corollary.

Corollary 4.8. A double Ward quasigroup is commutative if and only if it is

medial if and only if the Ward quasigroup inducing it is medial, or equivalently if

its retract is commutative.

Given Theorem 3.2, we may wonder if a double Ward quasigroup and its dual
form a double magma or a reverse double magma. This question is solved below.

Theorem 4.9. The dual of a double Ward quasigroup is a double Ward quasigroup.

Proof. Suppose that (Q, ·, e) is a double Ward quasigroup. Then for is its dual
quasigroup (Q, ·̄ , e), by Lemma 4.1, we have e ·̄ e = e and

(e ·̄ (x ·̄ z)) ·̄ ((e ·̄ y) ·̄ z) = (z · ye) · (zx · e) = e(y · ez) · (e · zx)

= e(y · ez) · (ex · ez) (2)
= y · x = x ·̄ y.

Thus (Q, ·̄ , e) is a double Ward quasigroup.

Corollary 4.10. A double Ward quasigroup (Q, ·, e) forms a double magma with

its dual (Q, ·̄ , e) if and only if it forms a lateral double magma with its dual if and

only if (Q, ·, e) is commutative if and only if (Q, ·, e) is medial.

Theorem 4.11. A magma (Q, ·, e) is a double Ward quasigroup if and only if it

is cancellative and satis�es the identity (2).

Proof. Since a double Ward quasigroup is cancellative and satis�es (2), we will
prove only the converse statement. For this purpose assume that a magma (Q, ·, e)
is cancellative and satis�es (2).

First, we prove that ee = e.
By (2), we have

ee = (ee · ee)(ee · e). (11)

Moreover, for x = ee · ee and y = z = ee · e, we obtain

(ee·ee)(ee·e) (2)
=

(
ee·(ee·ee)(ee·e)

)(
e(ee·e)·(ee·e)

)
(11)
=

(
ee·ee

)(
e(ee·e)·(ee·e)

)
,



42 W. A. Dudek and R. A. R. Monzo

whence, by left cancellation, we get

ee · e = (e(ee · e))(ee · e).

From (2), for x = ee, y = z = e, we also obtain (ee · (ee · e))(ee · e) = ee · e. Thus,

(e(ee · e))(ee · e) = (ee · (ee · e))(ee · e)

This, by right cancellation, implies e = ee.
So, (Q, ·, e) satis�es the identity (e · xz)(ey · z) = xy. Putting in this identity

x = ex and y = z = e we have

ex · e = (e · (ex · e))(ee · e) = (e · (ex · e)) · e.

From this, in view of cancellativity, we deduce x = ex · e.
Analogously, putting x = ee, y = xe and z = e we obtain x = e ·xe. Therefore,

x = ex · e = e · xe. (12)

Now we are able to show that the equations ax = b and ya = b have solutions.
The �rst equation is solved by x = b(ae · e), the second by y = e(eb · ae). Indeed,

ax = a
(
b(ae · e)

)
(12)
=

(
e · e(ae · e)

)(
(e · be)(ae · e)

)
(2)
= e · be = b,

ya = e(eb · ae) · a (12)
= e(eb · ae) · (ee · ae) (2)

= eb · e = b.

Since (Q, ·, e) is cancellative, these solutions are unique. Hence (Q, ·, e) is a double
Ward quasigroup.

Corollary 4.12. A magma (Q, ·) is a double Ward quasigroup if and only if it is

cancellative and has an idempotent e such that (e · xz)(ey · z) = xy is valid for all

x, y, z ∈ Q.

Let Q be a �nite set. For simplicity we assume that they have form Q =
{1, 2, . . . , n} with the natural ordering 1, 2, . . . , n, which is always possible by renu-
meration of elements. Moreover, instead of i ≡ j(modn) we will write [i]n = [j]n.
Additionally, in calculations of modulo n, we assume that 0 = n.

Recall that a magma (Q, ·) is k-translatable, where 1 6 k < n, if its multipli-
cation table is obtained by the following rule: If the �rst row of the multiplication
table is a1, a2, . . . , an, then its s-th row is obtained from the (s−1)-st row by taking
the last k entries in the (s− 1)-st row and inserting them as the �rst k entries of
the s-th row and by taking the �rst n−k entries of the (s−1)-st row and inserting
them as the last s − k entries of the s-th row, where s ∈ {2, 3, . . . , n}. Then the
(ordered) sequence a1, a2, . . . , an is called a k-translatable sequence of (Q, ·) with
respect to a given ordering. Note that a magma (Q, ·) may be k-translatable for
one ordering but not for another.

We will need the following characterization of k-translatable magma.
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Lemma 4.13. (cf. [6, Lemma 2.5]) A magma (Q, ·) is k-translatable if and only

if for all i, j ∈ Q we have i · j = [i+ 1]n · [j+k]n, or equivalently, i · j = a[k−ki+j]n ,

where a1, a2, . . . , an is the �rst row of the multiplication table of (Q, ·).
Theorem 4.14. If (Q, ·, e) is a k-translatable double Ward quasigroup of order n,
then k = n− 1 and (Q, ·, e) is induced by a cyclic group.

Proof. The proof is based on Lemma 4.1.
Let a double Ward quasigroup (Q, ·, e) be k-translatable with translatable se-

quence a1, a2, . . . , an and i · j = a[k−ki+j]n . We can order Q such that e = 1. Then
since e · x = x · e for all x ∈ Q, a2 = 1 · 2 = 2 · 1 = a[1−k]n . Therefore, k = −1 and
i · j = a[i+j−1]n .

(Q, ·, e) also satis�es the identity (i · j) · i = j. Thus,

n = (1 · n) · 1 = an · 1 = aan
= (2 · n) · 2 = a1 · 2 = 1 · 2 = a2.

So, n = a2 and 2 = an. Moreover, for all j ∈ Q we have

n− j = [(j + 1) · (n− j)]n · (j + 1) = an · (j + 1) = 2 · (j + 1) = a[j+2]n .

Now, using the above facts we can prove that the group Ret(Q, ·, e), i.e., the
group that induces (Q, ·, e), is cyclic and is generated by the element n.

Firstly, observe that

i � j = (1 · i) · (1 · j) = ai · aj = a[ai+aj−1]n = a[(n−i−2)+(n−j−2)−1]n = [i+ j − 1]n.

Next, we prove, by induction on t, the hypothesis nt = [1 − t]n. Clearly, for
t = 1 it is true. Assume that it is true for all k 6 t − 1. Then, nt = nt−1 � n =
[2− t]n � n = [(2− t) + n− 1]n = [1− t]n. So, it is true for for all t. This implies
that the ordered n-tuples n, n2, n3, . . . , nn−1, nn and n, n − 1, n − 2, . . . , 2, 1 are
equal, so n generates Ret(Q, ·, e).

Corollary 4.15. A double Ward quasigroup is translatable if and only if it is

induced by a cyclic group. Such quasigroup is commutative.

Theorem 4.16. A �nite Ward quasigroup can be k-translatable only for k = 1.
Then it is induced by a cyclic group.

Proof. Let a k-translatable Ward quasigroup (Q, ·, e) be ordered in this way that
e = 1 and let a1, a2, . . . , an be its translatable sequence. Then i · j = a[k−ki+j]n

and 1 = 1 · 1 = 2 · 2, So, a[k−k+1]n = a[−k+2]n . Hence, 1 = [2 − k]n and k = 1.
Therefore, i · j = a[1−i+j]n .

Thus, in the group ret(Q, ·, e) that induces (Q, ·, e) we have

i ◦ j = i · (1 · j) = i · aj = a[1−i+aj ]n .

Consequently, j = 1 ◦ j = j ◦ 1 implies aaj
= a[2−j]n . So, aj = [2− j]n.

Next,in the same way as in the proof of Theorem 4.14, we prove that the group
ret(Q, ·, e) is cyclic and generated by n.

Corollary 4.17. A Ward quasigroup is translatable if and only if it is induced by

a cyclic group.
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5. Duality

By Lemma 2.3 (4) and Theorem 3.1 a pair of unipotent, right modular and left
unital quasigroups (Q, ·) and (Q, ∗) form a double magma if and only if their
operations are equal. When can a pair of right modular, left unital magma that
are not necessarily unipotent form a double magma?

In order to solve this problem, we de�ne an involutive mapping α on a set Q as
a mapping whose square is the identity map on Q. Clearly, an involutive mapping
is a bijection.

Theorem 5.1. A pair of right modular, left unital magma (Q, ·, e) and (Q, ∗, e)
form a double magma (Q, ·, ∗) if and only if there is an involutive automorphism

α of (Q, ∗) such that x ∗ y = αx · y. In this case, αx = (x ∗ e) · e = (x · e) ∗ e, where
e is a left unit of (Q, ∗).

Proof. Let (Q, ·) and (Q, ∗) be right modular magma with left units e and e,
respectively and let (Q, ·, ∗) be a double magma. Then,

e = e · e = (e ∗ e) · (e ∗ e) (3)
= (e · e) ∗ (e · e) = (e · e) ∗ e.

Thus,
e = e ∗ e = ((e · e) ∗ e) ∗ e = e · e,

because (Q, ∗) is right modular.

Therefore, e · e = (e · e) · e = e · e = e. So, e = e ∗ e = (e · e) ∗ (e · e) (3)
=

(e ∗ e) · (e ∗ e) = (e ∗ e) · e. Then, e = e · e = ((e ∗ e) · e) · e = e ∗ e. Consequently,
e = e ∗ e = (e ∗ e) ∗ e = e.

Thus, by right modularity, x ·y = ((x∗ e)∗ e) · (e∗y)
(3)
= ((x∗ e) · e)∗y = αx∗y,

where αx = (x ∗ e) · e = (x ∗ e) · (e ∗ e) (3)
= (x · e) ∗ (e · e) = (x · e) ∗ e.

It is easily to verify that α is an involutive automorphism of (Q, ∗). Hence,
x ∗ y = αx · y.

Conversely, if x ∗ y = αx · y and α is an involutive automorphism of (Q, ∗),
then, as it is not di�cult to see, α is also an automorphism of (Q, ·). Since, right
modularity implies mediality, we also have (x ∗ y) · (z ∗ w) = (αx · y) · (αz · w) =
(αx · αz) · (y · w) = α(x · z) · (y · w) = (x · z) ∗ (y · w). So, (Q, ·, ∗) is a double
magma.

Corollary 5.2. If (Q, ·, ∗) and (Q, ·, ?) are right modular, left unital double mag-

mas such that x ·y = αx∗y = βx?y, where α and β are involutive automorphisms

of (Q, ·), then (Q, ∗, ?) is a right modular, left unital double magma if and only if

α and β commute, or equivalently, (x ∗ e) ? e = (x ? e) ∗ e for all x ∈ Q, where e
is the unique left unit of (Q, ·).

Corollary 5.3. (Q, ·, ·̄ ) is a double magma if (Q, ·) is a right modular, left unital

magma.
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The following theorem answers the question as to whether a right modular, left
unital magma (Q, ·, e) can form a double magma with a left modular, right unital
magma other than Q, ·̄ , e).

Theorem 5.4. Suppose that (Q, ·, e) is left modular and right unital and that

(Q, ∗, ê) is right modular and left unital. Then (Q, ·, ∗) is a double rl-unital magma

if and only if there is an involutive automorphism α of (Q, ∗) such that x∗y = y·αx.

Proof. (⇒). First observe that

e = ê ∗ e = (ê · e) ∗ (e · e) (3)
= (ê ∗ e) · (e ∗ e) = e · (e ∗ e).

This, by left and right modularity, gives

e = e · e = e · (e · (e ∗ e)) = e ∗ e = (ê ∗ e) ∗ e = (e ∗ e) ∗ ê = e ∗ ê.

Hence, e = e ∗ e = e ∗ ê. Thus,

e = ê ∗ e = (e · (e · ê)) ∗ (e · e) (3)
= (e ∗ e) · ((e · ê) ∗ e) = (e ∗ ê) · ((e · ê) ∗ e)

(3)
= (e · (e · ê)) ∗ (ê · e) = ê ∗ ê = ê.

So,

x ∗ y = (e · (e · x)) ∗ (y · e) (3)
= (e ∗ y) · ((e · x) ∗ e) = (ê ∗ y) · ((e · x) ∗ e)

= y · ((e · x) ∗ e) = y · αx.

It is easily prove that αx = (e · x) ∗ e is an involutive automorphism of (Q, ∗).
(⇐). If α is an involutive automorphism of (Q, ∗) such that x∗y = y ·αx, then

α is also an involutive automorphism of (Q, ·). Then,

(x∗y) ·(z∗w) = (y ·αx) ·(w ·αz) = (y ·w) ·(αx ·αz) = (y ·w) ·α(x ·z) = (x ·z)∗(y ·w)

and so (Q, ·, ∗) is a double rl-unital magma.

Corollary 5.5. Suppose that (Q, ·, e) is right modular and left unital, (Q, ∗, e)
and (Q, ?, e) are left modular, right unital magmas such that (Q, ·, ∗) and (Q, ·, ?)
are double magmas, with x ∗ y = αy · x, x ? y = βy · x, where α, β are involutive

automorphism of (Q, ·). Then (Q, ∗, ?) is a double magma if and only if α and β
commute, or equivalently, (x ∗ e) ? e = (x ? e) ∗ e for all x ∈ Q, where e is the

unique left unit of (Q, ·).

Example 5.6. Let (Q, ·) and (Q, ∗) be idempotent magmas. Then (Q, ·, ∗) is a
lateral double magma if and only if (Q, ·) = (Q, ∗), and (Q, ·, ∗) is a reversible
double magma if and only if (Q, ∗) = (Q, ·̄ ).
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6. Double magma partners of groups

Let (Q, ◦, e) be a group. Theorem 2.6 implies that for any unital double magma
partner (Q, ∗, ê) of (Q, ◦, e), (Q, ◦) = (Q, ∗) is abelian. So, if (Q, ◦, e) is not abelian,
then it has no unital double magma partners. If (Q, ◦, e) is abelian, then its only
double magma partner is itself. What about right unital or left unital double
magma partners of (Q, ◦, e)? The proof of the following Lemma is straightforward
and is omitted.

Lemma 6.1. If a group (Q, ◦, e) and a magma (Q, ∗, ê) are double magma part-

ners, then

(i) if ê is a unique right or left unit of (Q, ∗, ê), then e = ê,

(ii) if ê is a right unit of (Q, ∗, ê) and (Q, ∗, ê) is left cancellative, then e = ê,

(iii) if ê is a left unit of (Q, ∗, ê) and (Q, ∗, ê) is right cancellative, then e = ê,

(iv) if ê is a right or left unit of (Q, ∗, ê) and (Q, ∗, ê) is unipotent, then e = ê.

Recall that if (Q, ·, e) is a unipotent, left unital Ward-dual quasigroup, then
ret(Q, ·, e) = (Q, ◦̄, e), where x ◦̄ y = xe · y = y ·̄ (e ·̄x) is a group with the unity
e. So, (Q, ·̄ , e) = der(Q, ◦̄, e). Hence, xy = x−1 ◦ y and x−1 = xe. On the other
side, if (Q, ◦, e) is an abelian group, then der(Q, ◦, e) = (Q, ·), where xy = x−1 ◦ y
and x−1 = x ◦ e, is a right modular, unipotent quasigroup with unique left unit
e. Moreover, (Q, ◦, e) and der(Q, ◦, e) are double magma partners. We now prove
that der(Q, ◦, e) is the only right modular unipotent quasigroup with left unit that
is a double magma partner of a group.

Theorem 6.2. Let (Q, ◦, e) be any group. If (Q, ◦, e) and (Q, ?, ê) are double

magma partners and (Q, ?, ê) is a right modular unipotent magma with left unit ê,
then (Q, ◦, e) is abelian and (Q, ?, ê) = der(Q, ◦, e).

Proof. Since (Q, ?, ê) is a right modular magma, its left unit ê is unique. So, by
Lemma 6.1, e = ê. Then, x ◦ y = ((x ? e) ? e) ◦ (e ? y) = ((x ? e) ◦ e) ? (e ◦ y) =
(x ? e) ? y = (y ? e) ? x = y ◦x. Unipotency gives x ◦ (x ? e) = e and so x−1 = x ? e.
Hence, x ? y = ((x ? e) ? e) ? y = (x ? e) ◦ y = x−1 ◦ y = xy.

Lemma 6.3. If a unital magma (Q, ·, e) forms a double magma with a quasigroup

(Q, ∗), then this magma is commutative.

Proof. For any w, z ∈ Q there exist x, y ∈ Q such that x ∗ e = w and e ∗ y = z.

Then, zw = (e ∗ y)(x ∗ e) (3)
= ex ∗ ye = xe ∗ ey (3)

= (x ∗ e)(e ∗ y) = wz.

Lemma 6.4. A magma (Q, ·) is a Ward quasigroup if and only if it is cancellative

and satis�es (1).
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Proof. Suppose that a cancellative magma (Q, ·) satis�es (1), i.e xz · yz = xy for
all x, y, z ∈ Q. Then, in particular, xx ·xx = xx. Therefore, for any y ∈ Q, will be
y · xx (1)

= (y · xx)(xx · xx) = (y · xx) · xx. Right cancellation implies that y = y · xx
for any x, y ∈ Q. This implies that xx = yy.

Let xx = e. Then, y = ye,

xy · z (1)
= (xy · ey)(z · ey)

(1)
= xe · (z · ey) = x(z · ey) (13)

and

xy
(1)
= xx · yx = e · yx. (14)

Using the two identities we can show that equations ax = b and ya = b have
solutions for each a, b ∈ Q. The �rst equation has the solution x = eb · ea, the
second y = b ·ea. Indeed, ax = a(eb ·ea)

(13)
= aa ·eb = e ·eb (14)

= be = b. Analogously,

ya = (b·ea)a
(13)
= b(a(e·ea))

(14)
= b·aa = be = b. Since (Q, ·) is cancellative solutions

are unique. So, (Q, ·) is a Ward quasigroup.
The converse statement is obvious.

Theorem 6.5. If the group (Q, ◦, e) forms a double magma with a cancellative

magma (Q, ·) that satis�es the identity zx · zy = xy, then (Q, ◦) is a boolean group

and (Q, ◦) = (Q, ·).

Proof. By Lemma 6.4, (Q, ·̄ ) is a Ward quasigroup. By Lemma 6.3, (Q, ·) is
commutative and so it is unital. By Theorem 2.6 (Q, ◦)=(Q, ·) is a group. By (6)
xx = e for all x ∈ Q and so (Q, ◦, e) is a boolean group.

We can now state without proof the theorems dual to Theorems 3.4 and 3.5 as
follows:

Theorem 6.6. If (Q, ·, e) is a unipotent, left unital and right modular quasigroup,

then (Q, ·, ◦̄ ), where (Q, ◦̄, e) = ret(Q, ·, e) is a double magma. Moreover, (Q, ·, e)
satis�es the lateral inverse law if and only if it satis�es the reverse inverse law if

and only if ret(Q, ·, e) is a boolean group.

Theorem 6.7. If a Ward-dual quasigroup (Q, ·, e) forms a double magma with

a unital magma (Q, �, ê), then (Q, �, ê) = ret(Q, ·, e) and (Q, ·, e) is medial. If

(Q, ·, e) is medial and its retract ret(Q, ·, e) forms a double magma with a right

cancellative, unipotent, left unitary magma (Q, ?), then (Q, ·) = (Q, ?).

7. Double magma and medial quasigroups

The theorem proved in this section gives further evidence of the intimate connec-
tion between the property of mediality and the interchange law. The theorem
states that a quasigroup is medial if and only if any pair of its parastrophic bi-
nary operations satisfy the interchange law. Hence, if the interchange law holds
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between any two of the parastrophic operations of a quasigroup, that fact has a
powerful in�uence on the structure of the quasigroup, via the Toyoda theorem [15].
This well-known theorem states that a medial quasigroup (Q, ·) can be presented
in the form xy = αx+ βy + c, where (Q,+) is an abelian group, α, β commuting
automorphisms of (Q,+) and c ∈ Q is a some �xed element.

Each quasigroup (Q, ·) determines �ve new quasigroups (Q, ◦i) with the oper-
ations ◦i de�ned as follows:

x ◦1 y = z ⇔ xz = y
x ◦2 y = z ⇔ zy = x
x ◦3 y = z ⇔ zx = y
x ◦4 y = z ⇔ yz = x
x ◦5 y = z ⇔ yx = z

Such de�ned (not necessarily distinct) quasigroups are called parastrophes or con-
jugates of a quasigroup (Q, ·). Note that parastrophes are pairwise dual, namely
·̄ = ◦5, ◦̄1 = ◦4 and ◦̄2 = ◦3 .

Generally, parastrophes does not save properties of initial quasigroup. Paras-
trophes of a group are not a group, but parastrophes of an idempotent quasigroup
also are idempotent quasigroups. Moreover, in some cases (described in [12]) paras-
trophes of a given quasigroup are pairwise equal or all are pairwise distinct. In [5]
it is proved that the number of non-isotopic parastrophes of a quasigroup is always
a divisor of 6 and does not depend on the number of elements of a quasigroup.

Theorem 7.1. A quasigroup (Q, ·) is medial if and only if any pair of its paras-

trophic binary operations satisfy the interchange law.

Proof. Directly from the Toyoda theorem it follows that if a quasigroup (Q, ·) is
medial, then all its parastrophes are medial, and conversely, if one of the paras-
trophes of (Q, ·) is medial then (Q, ·) and its other parastrophes are medial. So,
by Lemma 2.3(7), a quasigroup (Q, ·) is medial if and only if (Q, ·, ·) or (Q, ◦i, ◦i),
i = 1, 2, 3, 4, 5, satisfy the interchange law. By Lemma 2.3(1), a quasigroup (Q, ·)
is medial if and only if (Q, ·, ◦5) satis�es the interchange law. Also, it is not dif-
�cult to see that (Q, ·, ◦5) satis�es the interchange law if and only if (Q, ◦k, ◦5),
where k = 1, 2, 3, 4, satis�es this law. Moreover, (Q, ∗, ?) satis�es the interchange
law if and only if (Q, ?, ∗) satis�es this law, so our proof can be restricted to the
cases (Q, ·, ◦k) and (Q, ◦i, ◦j), where k = 1, 2, 3, 4 and 1 6 i < j 6 4.

(⇒). Let a quasigroup (Q, ·) be medial.

• (Q, ·, ◦1). Suppose xy = A, zw = B, A ◦1 B = C, x ◦1 z = D, y ◦1 w = E and
DE = F . Then, AC = B, xD = z, yE = w. So, AC = B = zw = xD · yE =
xy ·DE = AF . Thus, C = F , which means that (Q, ·, ◦1) is a double magma.

• (Q, ·, ◦2). Suppose xy = A, zw = B, A ◦2 B = C, x ◦2 z = D, y ◦2 w = E and
DE = F . Then, CB = A, Dz = x, Ew = y. So, CB = A = xy = Dz · Ew =
DE · zw = FB. Thus, C = F , and (Q, ·, ◦2) is a double magma.

• (Q, ·, ◦3). Suppose xy = A, zw = B, A ◦3 B = C, x ◦3 z = D, y ◦3 w = E and
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DE = F . Then, CA = B, Dx = z, Ey = w. So, CA = B = zw = Dx · Ey =
DE · xy = FA. Thus, C = F and (Q, ·, ◦3) is a double magma.

• (Q, ·, ◦4). Suppose xy = A, zw = B, A ◦4 B = C, x ◦4 z = D, y ◦4 w = E and
DE = F . Then, BC = A, zD = x, wE = y. So, BC = A = xy = zD · wE =
zw ·DE = BF . Thus, C = F and (Q, ·, ◦4) is a double magma.

• (Q, ◦1, ◦2). Let x ◦1 y = A, z ◦1 w = B, A ◦2 B = C, x ◦2 z = D, y ◦2 w = E and
D ◦1 E = F . Then, xA = y, zB = w, CB = A, Dz = x, Ew = y and DF = E.
So, y = xA = Dz · CB = DC · zB = DC · w = Ew and E = DC = DF . Hence,
C = F . Consequently, (Q, ◦1, ◦2) is a double magma.

• (Q, ◦1, ◦3). Let x ◦1 y = A, z ◦1 w = B, A ◦3 B = C, x ◦3 z = D, y ◦3 w = E and
D ◦1 E = F . Then, xA = y, zB = w, CA = B, Dx = z, Ey = w and DF = E.
So, w = zB = Dx · CA = DC · xA = DC · y = Ey = DF · y. Hence, C = F and
(Q, ◦1, ◦3) is a double magma.

• (Q, ◦1, ◦4). Let x ◦1 y = A, z ◦1 w = B, A ◦4 B = C, x ◦4 z = D, y ◦4 w = E and
D ◦1 E = F . Then, xA = y, zB = w, BC = A, zD = x, wE = y and DF = E.
So, y = xA = zD · BC = zB ·DC = w ·DC = wE and DC = E = DF . Hence,
C = F and (Q, ◦1, ◦4) is a double magma.

• (Q, ◦2, ◦3). Let x ◦2 y = A, z ◦2 w = B, A ◦3 B = C, x ◦3 z = D, y ◦3 w = E and
D ◦2 E = F . Then, Ay = x, Bw = z, CA = B, Dx = z, Ey = w and FE = D.
So, FE · x = Dx = z = Bw = CA · Ey = CE · Ay = CE · x. Hence, C = F and
(Q, ◦2, ◦3) is a double magma.

• (Q, ◦2, ◦4). Let x ◦2 y = A, z ◦2 w = B, A ◦4 B = C, x ◦4 z = D, y ◦4 w = E and
D ◦2 E = F . Then, Ay = x, Bw = z, BC = A, zD = x, wE = y and FE = D.
So, z · CE = Bw · CE = BC · wE = Ay = x = zD = z · FE. Hence, C = F and
(Q, ◦2, ◦4) is a double magma.

• (Q, ◦3, ◦4). Let x ◦3 y = A, z ◦3 w = B, A ◦4 B = C, x ◦4 z = D, y ◦4 w = E and
D ◦3 E = F . Then, Ax = y, Bz = w, BC = A, zD = x, wE = y and FD = E.
So, w · FD = wE = y = Ax = BC · zD = Bz · CD = w · CD. Hence, C = F and
(Q, ◦3, ◦4) is a double magma.

This completes the �rst part of the proof.

(⇐). Now we will prove that if a pair of parastrophic operations of a quasigroup
(Q, ·) forms a double magma, then this quasigroup is medial.

Let xy = A, zw = B, AB = C, xz = D, yw = E and DE = F .

• (Q, ·, ◦1). If it is a double magma, then x ◦1 A = y and z ◦1 B = w. Hence
yw = (x◦1A)(z ◦1B) = xz ◦1AB. So, xz ·yw = AB = xy · zw, i.e., (Q, ·) is medial.

• (Q, ·, ◦2). In this case A◦2 y = x and B ◦2w = z. Hence xz = (A◦2 y)(B ◦2w) =
AB ◦2 yw and so xz · yw = AB = xy · zw. Thus (Q, ·) is medial.

• (Q, ·, ◦3). In this case y ◦3A = x and w ◦3B = z. Hence xz = (y ◦3A)(w ◦3B) =
yw ◦3 AB. So, xz · yw = AB = xy · zw. Thus (Q, ·) is medial.

• (Q, ·, ◦4). Then A◦4x = y and B◦4z = w. Consequently, yw = (A◦4x)(B◦4z) =



50 W. A. Dudek and R. A. R. Monzo

AB ◦4 xz. So, xz · yw = AB = xy · zw. Thus (Q, ·) is medial.

• (Q, ◦1, ◦2). Then y = E ◦2 w = (D ◦1 F ) ◦2 (z ◦1 B) = (D ◦2 z) ◦1 (F ◦2 B) =
x◦1 (F ◦2B). Hence, xy = F ◦2 zw. Thus, xy ·zw = F = DE, i.e., (Q, ·) is medial.

• (Q, ◦1, ◦3). Then z = x ◦1 D = (y ◦3 A) ◦1 (E ◦3 F ) = (y ◦1 E) ◦3 (A ◦1 F ) =
w ◦3 (A ◦1 F ). So, zw = xy ◦1 F . Thus, xy · zw = F = DE. So, (Q, ·) is medial.

• (Q, ◦1, ◦4). Then w = y ◦1 E = (A ◦4 x) ◦1 (F ◦4 D) = (A ◦1 F ) ◦4 (x ◦1 D) =
(A ◦1 F ) ◦4 z. So, zw = A ◦1 F . Hence, xy · zw = F = DE. Thus (Q, ·) is medial.

• (Q, ◦2, ◦3). Then x = y ◦3 A = (E ◦2 w) ◦3 (C ◦2 B) = (E ◦3 C) ◦2 (w ◦3 B) =
(E ◦3 C) ◦2 z. So, xz = yw ◦3 AB, which implies the mediality of (Q, ·).
• (Q, ◦2, ◦4). Then y = E ◦2 w = (F ◦4 D) ◦2 (B ◦4 z) = (F ◦2 B) ◦4 (D ◦2 z) =
(F ◦2 B) ◦4 x. So, A = F ◦2 B. Thus F = AB, which gives the mediality of (Q, ·).
• (Q, ◦3, ◦4). Then y = w ◦3 E = (B ◦4 z) ◦3 (F ◦4 D) = (B ◦3 F ) ◦4 (z ◦3 D) =
(B ◦3F )◦4 x. So, xy = B ◦3F , i.e., F = xy ·B. This means the mediality of (Q, ·).

This completes the second part of the proof and, therefore of Theorem 7.1.

If we look at the parastrophes of a group (G, ◦, 1), a Ward quasigroup (W, ◦, r),
a Ward-dual quasigroup (W, ◦̄, r), a double Ward quasigroup (DW, ◦, e) and a
unipotent, left unital, right modular quasigroup (R, ◦, l), then we see the usual
suspects that have appeared throughout the sections above. This is shown by the
following table.

(G, ◦, 1) (W, ◦, r) (W, ◦̄, r) (DW, ◦, e) (R, ◦, l)

x ◦1 y x−1◦y (r◦y)◦(r◦x) (x◦̄r)◦̄y y◦x (x◦l)◦y

x◦2 y x◦y−1 x◦(r◦y) (y◦̄r)◦̄(x◦̄r) y◦x x◦y

x◦3 y y◦x−1 y◦(r◦x) (x◦̄r)◦̄(y◦̄r) x◦y y◦x

x◦4 y y−1◦x (r◦x)◦(r◦y) (y◦̄r)◦̄x x◦y (y◦l)◦x

x ◦5 y y◦x y◦x y◦̄x y◦x y◦x

Note that a non-commutative group has six di�erent parastrophes. If a group
is boolean, then all its parastrophes are equal. In other cases ◦ = ◦5, ◦1 = ◦3 and
◦2 = ◦4, and the group has exactly 3 parastrophes.

In the case of a Ward quasigroup (W, ◦, r) we have three possibilities:
(1) all parastrophes are equal if and only if (W, ◦, r) is a boolean group,

(2) there are three parastrophes, (W, ◦1) = (W, ◦), (W, ◦2) = (W, ◦3) and
(W, ◦4) = (W, ◦5), if and only if (W, ◦, r) is medial but not a boolean group,

(3) there are six parastrophes if and only if (W, ◦) is not boolean and not
medial.

In the case of a dual Ward quasigroup (W, ◦̄, r) we have the same three possi-
bilities.
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Parastrophes of a double Ward quasigroup are equal (then it is commutative)
or ◦ = ◦3 = ◦4 6= ◦1 = ◦2 = ◦5, if it is non-commutative.

Parastrophes of a unipotent, left unital, right modular quasigroups (R, ◦, l) are
equal (then it is a boolean group) or ◦ = ◦2 6= ◦1 = ◦4 6= ◦3 = ◦5. There are no
other possibilities (cf. [5] or [12]).

Note that if (G, ◦) is a group, then the parastrophe (G, ◦2) = (G, ◦̄3) is a Ward
quasigroup; (W, ◦2) = ret(W, ◦) and (W, ◦3) = ret(W, ◦̄) are groups. Parastrophes
of a double Ward quasigroup are double Ward quasigroups, because by Theorem
4.6 the dual of a double Ward quasigroup is a double Ward quasigroup. The
parastrophes (R, ◦1, l) and (R, ◦4, l) are groups. For example, (R, ◦, l), as right
modular, is medial which implies the associativity of the operation ◦1. Indeed,
(x ◦1 y) ◦1 z = (((x ◦ l) ◦ y) ◦ l) ◦ z = ((l ◦ y) ◦ (x ◦ l)) ◦ z = ((l ◦ x) ◦ (y ◦ l)) ◦ z =
(x ◦ (y ◦ l)) ◦ z = (x ◦ (y ◦ l)) ◦ (l ◦ z) = (x ◦ l) ◦ ((y ◦ l) ◦ z) = x ◦1 (y ◦1 z).

As it is not di�cult to see, the parastrophe (R, ◦3, l) = (R, ◦5, l) = (R, ◦̄, l)) is
a medial Ward quasigroup.

Another consequences of the above table are listed below.

Theorem 7.2. (Q, ◦1, r) is a Ward quasigroup if and only if (Q, ◦, r), where x◦y =
(r ◦1 y) ◦1 (r ◦1 x), is a Ward quasigroup.

Theorem 7.3. (Q, ◦2, r) is a Ward quasigroup if and only if x ◦ y = x ◦2 (r ◦2 y)
and (Q, ◦, r) = ret(Q, ◦2, r).

Theorem 7.4. (Q, ◦3, r) is a Ward quasigroup if and only if (Q, ◦, r), where x◦y =
(r ◦3 x) ◦3 (r ◦3 y), is a Ward-dual quasigroup.

Theorem 7.5. (Q, ◦4) is a Ward quasigroup if and only if (Q, ◦, r), where x◦ y =
y ◦4 (r ◦4 x) is a group dual to the group der(Q, ◦4, r).

Theorem 7.6. (Q, ◦1) is a Ward dual quasigroup if and only if x◦y = (x◦1 r)◦1 y
and (Q, ◦, r) = Ret(Q, ◦1, r).

Theorem 7.7. (Q, ◦2) is a Ward dual quasigroup if and only if (Q, ◦, r), where
x ◦ y = (y ◦2 r) ◦2 (x ◦2 r), is a Ward-dual quasigroup.

Theorem 7.8. (Q, ◦3) is a Ward dual quasigroup if and only if (Q, ◦, r), where
x ◦ y = (y ◦3 r) ◦3 x, is a group dual to the group der(Q, ◦3, r).

Theorem 7.9. (Q, ◦4) is a Ward dual quasigroup if and only if (Q, ◦, r), where
x ◦ y = (x ◦4 r) ◦4 (y ◦4 r) is a Ward quasigroup.

Theorem 7.10. (Q, ◦1, l) is a unipotent, right modular, left unital quasigroup if

and only if (Q, ◦, l), where x ◦ y = (y ◦1 l) ◦1 x, is an abelian group.

Theorem 7.11. (Q, ◦i) is a double Ward quasigroup if and only if (Q, ◦) = Q, ◦i)
or (Q, ◦) = (Q, ◦̄i) if and only if (Q, ◦) is a double Ward quasigroup.
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