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Cayley graphs of gyrogroups

Limpapat Bussaban, Attapol Kaewkhao and Suthep Suantai

Abstract. Gyrogroup is a generalization of group. It is well-known that any group can be

viewed as a gyrogroup with trivial gyroautomorphism. In this article, the Cayley graphs of

gyrogroups are discussed and some well-known properties in Cayley graphs of groups will be

proved for Cayley graphs of gyrogroups.

1. Introduction

Cayley graph or Cayley colour graph, named for the famous mathematician Arthur
Cayley, of a group G relative to a generating set S ⊆ G, denoted by Cay(G,S),
is a digraph with vertex set G and edge set E(G) de�ned by (x, y) ∈ E(G) if
y = sx for some s ∈ S, i.e., the edge from x to y is labeled by the colour s. Cayley
graphs of groups have been extensively studied and many interesting results have
been obtained, see [2, 4, 6], for examples. Recall the well-known properties of the
Cayley graphs of a group as follows: the Cayley graph Cay(G,S) is undirected if
and only if the generating S is symmetric, i.e., S = S−1, S−1 = {s−1|s ∈ S}; the
Cayley graph Cay(G,S) is connected if and only if the group G can be generated
by S, i.e., G = 〈S〉 and every Cayley graph Cay(G,S) is vertex-transitive.

Gyrogroup, a group-like structure, �rst arose by A. A. Ungar [10] in the study
of Einstein's velocity addition in the special theory of relativity. Gyrogroups play
an important role in studying non-associative algebraic structure and hyperbolic
geometry, just as groups play an important role in studying associative algebraic
structure and Euclidean geometry. It motivated from the c-ball of relativistically
admissible velocities, R3

c = {v ∈ R : ‖v‖ < c} such that c is a positive constant
representing the speed of light in vacuum and Einstein velocity addition ⊕E in R3

c

is given by

u⊕E v =
1

1 + 〈u,v〉
c2

{
u+

1

γu
v +

1

c2
γu

1 + γu
〈u, v〉u

}
where γu is the Lorentz factor given by γu = 1√

1− ‖u‖2
c2

.

In [9], Ungar showed that the system (R3
c ,⊕E), called Einstein gyrogroup, does

not form a group since ⊕E is neither associative nor commutative. The breakdown
of associativity in (R3

c ,⊕E) is remedied by the space rotations gyr[u, v], called
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gyroautomorphism, i.e.,

u⊕E (v ⊕E w) = (u⊕E v)⊕E gyr[u, v]w

(u⊕E v)⊕E w = u⊕E (v ⊕E gyr[v, u]w).

The resulting system (R3
c ,⊕E) forms a gyrocommutative gyrogroup.

Gyrogroup, generalized algebraic structure of group, was intensively studied in
many papers [1, 3, 5, 8], any group can be observed as a gyrogroup with trivial
gyroautomorphism. However, gyrogroups share remarkable analogies with groups.
The algebraic properties of gyrogroups were studied by Suksumran [7], including
Cayley's theorem, Lagrange's theorem, and isomorphism theorem for gyrogroups.

In this article, the concept of Cayley graphs of gyrogroups will be discussed, and
we continue to prove some well-known properties of Cayley graphs of groups for
�nite gyrogroups, including the direction and the connectivity. Moreover, we show
that there exists a Cayley graph of some gyrogroup which is not vertex-transitive.

2. Preliminaries

For the basic theory of gyrogroups and its algebraic properties, the reader is refered
to [7, 10] and the basic terminologies of algebraic graph theory, the reader is refered
to [2]. Let G be a nonempty set and ⊕ be a binary operation in G. The pair (G,⊕)
is called groupoid if its binary operation is closed. A groupoid (G,⊕) is called loop

if it contains an identity element 0.

De�nition 2.1. A groupoid (G,⊕) is called a gyrogroup if its binary operation
satis�es the following axioms:

(G1) there is 0 ∈ G such that 0⊕ a = a for all a ∈ G;

(G2) for any a ∈ G, there is b ∈ G such that b⊕ a = 0;

(G3) for any a, b ∈ G, there is an automorphism gyr[a, b] : G → G such that for
any c ∈ G,

a⊕ (b⊕ c) = (a⊕ b)⊕ gyr[a, b]c;

(G4) for any a, b ∈ G, gyr[a, b] = gyr[a⊕ b, b].

Throughout this paper, 0 in (G1) is called an identity of G and the element b in
(G2) is called an inverse of a, the notation of inverse of a is denoted by 	a.

De�nition 2.2. Let (G,⊕) be a gyrogroup with gyrogroup operation (or, addi-
tion) ⊕. The gyrogroup cooperation (or, coaddition) � is a second binary operation
in G given by the equation

a� b = a⊕ gyr[a,	b]b

for all a, b ∈ G. Note that a� b = a�	b.
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Proposition 2.3. (cf. [10]) Let (G,⊕) be a gyrogroup and let a, b, c ∈ G. The

following indentities are satis�ed:

1. a⊕ (	a⊕ b) = b [left cancellation]

2. (b	 a) � a = b [right cancellation]

3. (b� a)⊕ a = b [right cancellation]

4. (a⊕ b)⊕ c = a⊕ (b⊕ gyr[b, a]c) [right gyroassociative law]

5. 	(a� b) = (	b) � (	a) [cogyroautomorphic inverse]

6. gyr[a, b]c = 	(a⊕ b)⊕ (a⊕ (b⊕ c))

7. gyr[	a,	b] = gyr[a, b] [even symmetry]

8. gyr−1[a, b] = gyr[b, a] [inverse symmetry]

9. gyr[a, b⊕ a] = gyr[a, b] [right loop property]

A nonempty subset H of a gyrogroup G is called a subgyrogroup of G if it forms
gyrogroup under the binary operation of G restricted to H.

Proposition 2.4. ([7], Proposition 26) Let A be a nonempty subset of a gyrogroup

(G,⊕). There exists a unique smallest subgyrogroup generated by A of G, denoted
by 〈A〉. In case of A singleton, i.e., A = {a}, the smallest subgyrogroup 〈a〉,
instead of 〈{a}〉, forms a group under operation ⊕.

De�nition 2.5. Let (G,⊕) be a gyrogroup. For each a ∈ G, a left gyrotranslation

by a is a self-map La of G given by La(x) = a⊕ x, for all x ∈ G.

Theorem 2.6. (cf. [7]) A loop (G,⊕) is a gyrogroup if and only if the following

conditions hold:

1. for any a, b ∈ G, there exists a bijection gyr[a, b] : G→ G such that

gyr[a, b] ◦ Lx = Lgyr[a,b]x ◦ gyr[a, b]

for all x ∈ G,

2. for any a, b ∈ G, there exists c ∈ G such that La ◦ Lb = Lc ◦ gyr[a, b],

3. for any a, b ∈ G, there exists c ∈ G such that L	c⊕a = L	(c⊕b)⊕b.

Theorem 2.7. (cf. [10]) A groupoid (G,⊕) forms a gyrogroup if and only if it

satis�es the following properties:

(g1) There is 0 ∈ G such that a⊕ 0 = a and 0⊕ a = a for all a ∈ G; [two-sided
identity]
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(g2) For each a ∈ G, there is b ∈ G such that a⊕ b = 0, b⊕ a = 0. [two-sided
inverse]

For a, b, c ∈ G, de�ne [gyrator identity]

gyr[a, b]c = 	(a⊕ b)⊕ (a⊕ (b⊕ c)),

then

(g3) gyr[a, b] ∈ Aut(G,⊕); [gyroautomorphism]

(g3a) a⊕ (b⊕ c) = (a⊕ b)⊕ gyr[a, b]c; [left gyroassociative law]

(g3b) (a⊕ b)⊕ c = a⊕ (b⊕ gyr[b, a]c); [right gyroassociative law]

(g4a) gyr[a, b] = gyr[a⊕ b, b]; [left loop property]

(g4b) gyr[a, b] = gyr[a, b⊕ a]. [right loop property]

Let Γ be a graph. The set of vertices of a graph Γ is denoted by V (Γ) and
the set of edges of a graph Γ is denoted by E(Γ). A graph Γ is called undirected

if every pair of adjecent vertices has a bidirectional edge. A (directed) graph Γ
is called connected if there exist a directed path from u to v and a directed path
from v to u for any pair of vertices (u, v). A mapping f : V (Γ) → V (Γ) is called
endomorphism if (f(x), f(y)) ∈ E(Γ) for any (x, y) ∈ E(Γ). An endomorphism
map f is called automorphism if f is bijective. The set of all automorphisms of a
graph Γ is denoted by Aut(Γ). A graph Γ is called a vertex-transitive graph if for
any x, y ∈ V (Γ), there exists f ∈ Aut(Γ) such that f(x) = y.

De�nition 2.8. Let (G,⊕) be a gyrogroup and ∅ 6= S ⊆ G \ {0}. The Cayley

digraph, or simply Cayley graph, Cay(G,S) is the simple directed graph whose
vertex set and edge set are

V (Cay(G,S)) = G;E(Cay(G,S)) = {(u, v) ∈ G×G : v = s⊕ u for some s ∈ S}.

Remark 2.9. (u, v) ∈ E(Cay(G,S)) is denoted by u→ v, if v � u ∈ S.
Remark 2.10. If S = {s1, s2, . . . sn}, then the Cayley graph Cay(G,S) is the
union of Cayley graphs Cay(G, {si}), i = 1, 2, . . . , n, i.e.,

V (Cay(G,S)) =
⋃
si∈S

V (Cay(G, {si})) and E(Cay(G,S)) =
⋃
si∈S

E(Cay(G, {si})).

Indeed, (u, v) ∈ E(Cay(G,S)) is equivalent to (u, v) ∈ E(Cay(G, {s}) for some
s ∈ S, i.e., to (u, v) ∈

⋃
si∈S E(Cay(G, {si}))

Remark 2.11. The Cayley graph of a gyrogroup is regular since the outdegree
and the indegree of every vertex of Cay(G,S) equal to |S|.
Lemma 2.12. Let (G,⊕) be a gyrogroup and S ⊆ G. Then (0, s) ∈ Cay(G,S)
for all s ∈ S.
Proof. Let s ∈ S. It is obtained by the right identity property that s = s ⊕ 0.
Thus, (0, s) ∈ E(Cay(G,S), that is 0→ s for all s ∈ S.
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3. Main Results

Recall that S−1 = {	s : s ∈ S} and a set S is called symmetric if S = S−1.

Theorem 3.1. Let (G,⊕) be a gyrogroup and let S be a nonempty subset of G.
Then, Cay(G,S) is undirected if and only if S is symmetric.

Proof. Let x, y ∈ G such that x→ y. Then y � x ∈ S. Since x� y = 	(y � x) ∈
S−1 = S, Cay(G,S) is undirected.

Conversely, for any s ∈ S, we have 0→ s. By assumption, there is t ∈ S such
that 0 = t⊕ s. Hence 	s = t ∈ S. That is S = S−1.

It is well-known that the Cayley graph of a group is connected if and only
if the generating set spans a group. However, this fact need not be satis�ed for
the Cayley graph of a gyrogroup. The following example show that the spaning
condition does not guarantee connectedness of Cayley graphs of gyrogroups.

Example 3.2. Let G = {0, 1, 2, 3, 4, 5, 6, 7} with addition ⊕ and gyration table
which are de�ned as follows:

⊕ 0 1 2 3 4 5 6 7
0 0 1 2 3 4 5 6 7
1 1 0 3 2 5 4 7 6
2 2 3 0 1 6 7 4 5
3 3 5 6 0 7 1 2 4
4 4 2 1 7 0 6 5 3
5 5 4 7 6 1 0 3 2
6 6 7 4 5 2 3 0 1
7 7 6 5 4 3 2 1 0

gyr 0 1 2 3 4 5 6 7
0 I I I I I I I I
1 I I A A A A I I
2 I A I A A I A I
3 I A A I I A A I
4 I A A I I A A I
5 I A I A A I A I
6 I I A A A A I I
7 I I I I I I I I

where a mapping A : G→ G is given by

0 7→ 0 4 7→ 4
1 7→ 6 5 7→ 2
2 7→ 5 6 7→ 1
3 7→ 3 7 7→ 7

Since A ◦ La = LA(a) for all a ∈ G, the mapping A is an automorphism. By
using Theorem 2.7, we obtain that (G,⊕) is a gyrogroup. Let S = {1, 2}. Then
〈S〉 = G since 3 = 1⊕ 2, 4 = 1⊕ ((1⊕ 2)⊕ 1), 5 = (1⊕ 2)⊕ 1, 6 = (1⊕ 2)⊕ 2 and
7 = 2⊕ ((1⊕ 2)⊕ 1). By De�nition 2.8, the graph in Figure 1 is not connected.
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Figure 1: Cay(G, {1, 2})

Let S be a nonempty subset of a gyrogroup G. The left-generating subset by
S of G, denoted by (S〉, is de�ned by

(S〉 = {sn ⊕ (. . .⊕ (s3 ⊕ (s2 ⊕ s1)) . . .) : n ∈ N, s1, s2, s3, . . . , sn ∈ S}.

Note that (S〉 is a subset of a subgyrogroup 〈S〉 of a gyrogroup G but, in general,
the subset (S〉 need not form a subgyrogroup of G, such as ({1, 2}〉 = {0, 1, 2, 3}
does not form a subgyrogroup of G in Example 3.2 since 1, 3 ∈ ({1, 2}〉 while
3⊕ 1 /∈ ({1, 2}〉. The connectedness of Cayley graphs of gyrogroups is assured by
the following theorem.

Theorem 3.3. Let G be a gyrogroup and S be a nonempty subset of G such that

S is symmetric. Then Cay(G,S) is connected if and only if (S〉 = G.

Proof. Assume that Cay(G,S) is connected. Then (S〉 ⊆ 〈S〉 = G by Theorem
3.5. For each x ∈ G. By connectedness of Cay(G,S), there are s1, s2, . . . , sn ∈ S
such that y1 = s1 ⊕ 0, y2 = s2 ⊕ y1, . . . , yn = sn ⊕ yn−1. Hence,

0→ y1 → y2 → · · · → yn → x

. That is x = s ⊕ yn = s ⊕ (sn ⊕ . . . ⊕ (s3 ⊕ (s2 ⊕ s1))) for some s ∈ S. Thus,
x ∈ (S〉, that is (S〉 = G.

Conversely, we assume that (S〉 = G. It is su�ciently to see that 0 → x and
x→ 0 for any x ∈ G. Let x ∈ G. By assumption, there exist s1, s2, s3, . . . , sn ∈ S
such that x = sn ⊕ . . .⊕ (s3 ⊕ (s2 ⊕ s1)). By using Lemma 2.12, we can see that
0 → s1 → s2 ⊕ s1 → · · · → x. Since S is symmetric, by Theorem 3.1, we also
obtain that x→ 0. Thus, Cay(G,S) is connected.

Example 3.4. The Cayley graph of gyrogroup (G,⊕) de�ned in Example 3.2
with the generating set S = {1, 3} is connected since (S〉 = G.
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Figure 2: Cay(G, {1, 3})

Note that if G forms a group, then (S〉 = 〈S〉 and the connectness of the Cayley
graphs of gyrogroups and groups are homologous by above theorem. However, in
the case of gyrogroup G, the following corollaries result from Theorem 3.3.

Corollary 3.5. Let (G,⊕) be a gyrogroup and S ⊆ G. If Cay(G,S) is connected,

then 〈S〉 = G.

Corollary 3.6. Let G be a gyrogroup. If Cay(G, {a}) is connected for some a ∈ G,
then G is group.

Recall that a graph Γ is vertex-transitive if for all x, y ∈ V (Γ), there exists
f ∈ Aut(Γ) such that f(x) = y.

Example 3.7. The Cayley graph of gyrogroup (G,⊕) de�ned in Example 3.2
with the generating set S = {1, 2, 3} is not vertex-transitive.
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Figure 3: Cay(G, {1, 2, 3})

Proof. Suppose that the graph in Figure 3, denoted by Γ, is vertex-transitive.
There exists an automorphism f : G→ G such that f(2) = 0. Then f(0), f(3), f(6)
possibly belong to {1, 2, 3} since (2, 0), (2, 3), (2, 6) ∈ E(Γ). If f(0) = 2, then
f(1) must be 6 since f bijective which is a contradiction to (1, 3) ∈ E(Γ) but
(f(1), f(3)) /∈ E(Γ). In another cases can be proved analogous. Thus, Γ =
Cay(G, {1, 2, 3}) is not vertex-transitive.
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4. Conclusion

In this paper, we studied Cayley graphs of gyrogroups and its well-known prop-
erties, including the direction and the connectivity. Moreover, we conclude that
Cayley graph of a gyrogroup need not be a vertex-transitive graph.

Problem: When a Cayley graph of a gyrogroup is vertex-transitive?
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