On T^{*}-pure ordered semigroups

Pisan Sammaprab

Abstract

The concepts of T^{*}-pure ordered semigroups is introduced. We characterize T^{*}-pure archimedean ordered semigroups and prove that any T^{*}-pure ordered semigroup is a semilattice of archimedean semigroups.

A bi-ideal A of a semigroup S is said to be two-sided pure if $A \cap x S y=x A y$ for all $x, y \in S$. A semigroup S is said to be T^{*}-pure if every bi-ideal of S is two-sided pure. T^{*}-pure semigroups has been studied by N. Kuroki [9].

A semigroup (S, \cdot) together with a partial order \leqslant that is compatible with the semigroup operation, i.e., for any $x, y, z \in S$,

$$
x \leqslant y \text { implies } z x \leqslant z y \text { and } x z \leqslant y z,
$$

is called a partially ordered semigroup (or simply an ordered semigroup).
Let (S, \cdot, \leqslant) be an ordered semigroup. For any nonempty subsets A of S we define

$$
(A]=\{x \in S \mid x \leqslant a \text { for some } a \in A\} .
$$

It was shown in [8] that for any nonempty subsets A, B of S the following holds: (1) $A \subseteq(A]$; (2) $A \subseteq B$ implies $(A] \subseteq(B]$; (3) $(A](B] \subseteq(A B]$; (4) $(A \cup B]=(A] \cup(B] ;(5) \quad((A]]=(A]$.

A nonempty subset A of S is called a left (resp., right) ideal of S (cf. [4]), if $S A \subseteq A$ (resp., $A S \subseteq A)$ and $A=(A]$, that is, for any $x \in A, y \in S, y \leqslant x$ implies $y \in A$.

If A is both a left and a right ideal of S, then A is called a two-sided ideal, or simply an ideal of S. It is known that the union and intersection of two ideals of S are an ideal of S.

A left (right) ideal A of S is said to be proper if $A \subset S . S$ is said to be left (resp., right) simple if S does not contain proper left (resp., right) ideals. If S does not contain proper ideals then we call S simple. A proper ideal A of S is said to be maximal if for any ideal B of S, if $A \subset B \subseteq S$, then $B=S$. In an ordered semigroup (S, \cdot, \leqslant), the principal ideal generated by a is of the form $I(a)=(a \cup S a \cup a S \cup S a S]$.

A subsemigroup B is called a bi-ideal of S if (i) $B S B \subseteq B$; (ii) for any $x \in B$ and $y \in S$, $y \leqslant x$ implies $y \in B$ ([5]).

A bi-ideal generated by a has the form $B(a)=\left(a \cup a^{2} \cup a S a\right]$.
A congruence σ on S is called semilattice congruence if $\left(a^{2}, a\right) \in \sigma$ and $(a b, b a) \in \sigma$ for every $a, b \in S$. A semilattice congruence σ on S is complete if $a \leqslant b$ implies $(a, a b) \in \sigma$. An ordered semigroup S is a semilattice of archimedean semigroups (resp., complete semilattice of archimedean) if there exists a semilattice congruence (resp., complete semilattice congruence) σ on S such that for each $x \in S$ the σ-class $(x)_{\sigma}$ is an archimedean subsemigroup of S.

A subsemigroup F is called a filter of S if (i) $a, b \in S, a b \in S$ implies $a \in F$ and $b \in F$; (ii) if $a \in F$ and b in $S, a \leqslant b$, then $b \in F$ ([3]).

For an element x of S, we denote by $N(x)$ the filter of S generated by x and consider the equivalence relation $\mathcal{N}:=\{(x, y) \mid N(x)=N(y)\}$. The relation \mathcal{N} is the lest complete semilattice congruence on S.

2010 Mathematics Subject Classification: 06F05.
Keywords: Ordered semigroup, weakly commutative semigroup, semilattice of archimedean semigroups, bi-ideal.

An element e of an ordered semigroup (S, \cdot, \leqslant) is called an ordered idempotent if $e \leqslant e^{2}$. The set of all ordered idempotent of an ordered semigroup S denoted by $E(S)$. An ordered semigroup S is idempotent ordered if $S=E(S)$.

An ordered semigroup (S, \cdot, \leqslant) is called archimedean [2] if for any $a, b \in S$ there exits a positive integer n such that $a^{n} \in(S b S]$. If for any $a, b \in S$ there exists positive integer n such that $(a b)^{n} \in(b S a]$, the S is called weakly commutative [7].

An element $a \in S$ is regular (resp., completely regular) if $a \in(a S a]$ (resp., $\left.a \in\left(a^{2} S a^{2}\right]\right)$. A semigroup S is regular (resp., completely regular) if each its element is regular (resp., completely regular).

Definition 1. Let (S, \cdot, \leqslant) be an ordered semigroup. A bi-ideal A of S is said to be two-sided pure if $A \cap(x S y]=(x A y]$ for all $x, y \in S$. An ordered semigroup S is said to be T^{*}-pure if every bi-ideal of S is two-sided pure.

Example 1. Let $S=\{a, b, c, d\}$ and $\leqslant=\{(a, a),(a, b),(a, c),(a, d),(b, b),(c, c),(d, d)\}$. Then (S, \cdot, \leqslant) with the multiplication $c c=d c=d d=b$ and $x y=a$ in all other cases, is an ordered semigroup and all its bi-ideals, namely $\{a\},\{a, b\},\{a, b, c\},\{a, b, d\}, S$, are pure. So, it is the T^{*}-pure ordered semigroup.

First, we have the following proposition.
Proposition 1. Any T^{*}-pure ordered semigroup is weakly commutative.
Proof. Let S be T^{*}-pure ordered semigroup and $a, b \in S$. Then ($\left.b S a\right]$ is two-sided pure and

$$
(a b)^{3}=a b a b a b \in(a(b S a] b]=(a S b] \cap(b S a] \subseteq(b S a]
$$

Hence S is weakly commutative.
Proposition 2. Let S be T^{*}-pure ordered semigroup. Then S has the following properties:
(1) $(a S b]=\left(a^{2} S b^{2}\right]$ for all $a, b \in S$.
(2) For any $a \in S$, a^{n} is completely regular for all positive integer $n \geqslant 3$.
(3) For each $x \in S, N(x)=\left\{y \in S \mid x^{n} \in(y S y]\right.$ for some $\left.n \in N\right\}$.
(4) $(e S]=(S e]$ for all $e \in E(S)$.

Proof. (1). Since S is T^{*}-pure, ($\left.a S b\right]$ is a two-sided pure bi-ideal. Thus

$$
(a S b]=(a S b] \cap(a S b]=(a(a S b] b] \subseteq\left(a^{2} S b^{2}\right]
$$

The converse is obvious. Hence $(a S b]=\left(a^{2} S b^{2}\right]$.
(2). By (1), $a^{n}=a a^{n-2} a \in(a S a]=\left(\left(a^{n}\right)^{2} S\left(a^{n}\right)^{2}\right]$ for any $a \in S$ and $n \geqslant 3$. Hence a^{n} is completely regular.
(3). This follows from Proposition 1 and Lemma in [7].
(4). Let $e \in E(S)$ and $x \in(S e]$. Then $x \leqslant a e$ for some $a \in S$. Since S is T^{*}-pure, $(e S e]$ is two-sided pure. Thus

$$
x \leqslant a e \leqslant a e e e e \in(a(e S e] e]=(a S e] \cap(e S e] \subseteq(e S e] \subseteq(e S]
$$

Similarly, $(e S] \subseteq(S e]$. Hence $(e S]=(S e]$.
Theorem 1. Let (S, \cdot, \leqslant) be a regular ordered semigroup. The following statements are equivalent:
(1) S is T^{*}-pure.
(2) S is weakly commutative.
(3) For each $x \in S, N(x)=\left\{y \in S \mid x^{n} \in(y S y]\right.$ for some $\left.n \in N\right\}$.
(4) $(S e]=(e S]$ for all $e \in E(S)$.

Proof. (1) $\Rightarrow(2)$ by Proposition 1.
$(2) \Leftrightarrow(3)$ by Lemma in [7].
(2) \Rightarrow (4). Let $e \in E(S)$ and $x \in(e S]$. Then $x \leqslant e a$ for some $a \in S$. Since S is regular, $e a \leqslant e a b e a$ for some $b \in S$. Then bea \leqslant beabea $=(b e a)^{2}$. Since S is weakly commutative, then there exists positive integer n such that $(b e a)^{n} \in(a S b e]$. Thus,

$$
x \leqslant e a \leqslant e a b e a=e a(b e a) \leqslant e a(b e a)^{n} \in e a(a S b e] \subseteq(e a(a S b e]] \subseteq(e a a S b e] \subseteq(S e] .
$$

Similarly, $(e S] \subseteq(S e]$. Hence $(S e]=(e S]$.
$(4) \Rightarrow(1)$. Let A be bi-ideal of S, and $x, y \in S$. It is obvious that $(x A y] \subseteq(x S y]$. Let $z \in(x A y]$. Then $z \leqslant x a y$ for some $a \in A$. Since S is regular, $a \leqslant a b a$ for some $b \in S$. This implies that $b a, a b \in E(S)$. We have

$$
\begin{aligned}
z \leqslant x a y & \leqslant x a b a y \leqslant x a b a b a b a y=x(b s) a b a(b a) y \in(S a b S b a S] \subseteq((S a b] S(b a S]] \\
& =((a b S] S(S b a]] \subseteq(A S A] \subseteq A
\end{aligned}
$$

Hence $(x A y] \subseteq A \cap(x S y]$.
Let $a \in A \cap(x S y]$. Then $a \leqslant x z y$ for some $z \in S$. Since S is regular, $a \leqslant a b a$ for some $b \in S$. This implies that $b a, a b \in E(S)$. We have

$$
\begin{aligned}
a \leqslant a b a & \leqslant a b a b a b a \leqslant a b a b a b a b a b a \leqslant x z y b a b a b a b a b x z y \\
& =x z y b(a b) a b a(b a) b x z y \in(x S a b S b a S y] \subseteq(x(S a b] S(b a S] y] \\
& =(x(a b S] S(S b a] y] \subseteq(x A S A y] \subseteq(x A y]
\end{aligned}
$$

Thus $A \cap(x S y] \subseteq(x A y]$. Hence $A \cap(x S y]=(x A y]$. This complete the proof.
The following theorem can be obtained from Proposition 1 and Theorem in [7].
Theorem 2. Any T^{*}-pure ordered semigroup is a semilattice of archimedean semigroups.
Now we give a characterization of T^{*}-pure archimedean ordered semigroups.
Theorem 3. For a T^{*}-pure ordered semigroup S the following statements are equivalent:
(1) S is archimedean.
(2) Every bi-ideal of S is archimedean.
(3) For any $e, f \in E(S),(e, f) \in \mathcal{N}$.

Proof. It is clear that (2) implies (1).
(3) $\Rightarrow(2)$. Let A be a bi-deal of S and $a, b \in A$. Since S is T^{*}-pure, a^{3} and b^{3} are regular by Proposition 2. Then $a^{3} \leqslant a^{3} x a^{3}$ and $b^{3} \leqslant b^{3} y b^{3}$ for some $x, y \in S$. This implies that $a^{3} x, b^{3} y \in E(S)$. We have $b^{3} y \in N\left(a^{3} x\right)$. Then $\left(a^{3} x\right)^{n} \in\left(b^{3} y S b^{3} y\right]$ for some positive integer n. Thus $\left(a^{3} x\right)^{n} \leqslant b^{3} y z b^{3} y$ for some $z \in S$. We have

$$
\begin{aligned}
a^{3} \leqslant a^{3} x a^{3} & \leqslant a^{3} x a^{3} x a^{3}=\left(a^{3} x\right) a^{3} x a^{3} \leqslant\left(a^{3} x\right)^{n} a^{3} x a^{3} \leqslant\left(b^{3} y z b^{3} y\right) a^{3} x a^{3} \\
& =b b\left(b\left(y z b^{3} y a^{3} x a^{2}\right) a\right) \in(A b(A S A)] \subseteq(A b A]
\end{aligned}
$$

Hence A is archimedean.
$(1) \Rightarrow(3)$. Let $e, f \in E(S)$. Since S is archimedean, there exists positive integer n such that $e^{n} \in(S f S]$. Since S is T^{*}-pure, $(f S f]$ is two-sided pure ideal. Then we have

$$
e^{n} \in(S f S] \subseteq(S f f f S] \subseteq(S f S f S] \subseteq(S(f S f] S]=(S S S] \cap(f S f] \subseteq(f S f]
$$

Thus $f \in N(e)$. Hence $N(f) \subseteq N(e)$ Similarly, we have $N(e) \subseteq N(f)$. Hence $(e, f) \in \mathcal{N}$.
Theorem 4. Any T^{*}-pure archimedean regular ordered semigroup S does not contain proper bi-ideals.

Proof. Let A be any bi-ideal of S. Let $a \in A$ and $b \in S$. Since S is archimedean, then there exists positive integer n such that $b^{n} \in(S a S]$. Since S is T^{*}-pure, ($\left.a S a\right]$ is two-sided pure. Then by regularity of S and Theorem 2 , we have

$$
\begin{aligned}
b \in(b S b] & =\left(b^{n} S b^{n}\right] \subseteq((S a S] S(S a S]] \subseteq(S a S S S a S] \subseteq(S(a S a) S] \subseteq(S(a S a] S] \\
& =(S S S] \cap(a S a] \subseteq(A S A] \subseteq A
\end{aligned}
$$

Thus $S \subseteq A$. Hence $S=A$.
The following theorem can be obtained from Theorem 4.
Theorem 5. Any T^{*}-pure archimedean regular ordered semigroup is left and right simple.
Theorem 6. For a T^{*}-pure archimedean ordered semigroup S the following statements are equivalent:
(1) S is regular.
(2) S does not contain proper bi-ideals.
(3) S are left and right simple.

Proof. By Theorem 4, (1) implies (2). It is clear that (2) implies (3).
$(3) \Rightarrow(1)$. Let $a \in S$. Since S are left and right simple, $S=(S a]$ and $S=(a S]$ by Corollary 2 in [6]. We have $a \in(a S]=(a(S a]] \subseteq(a S a]$. This completes the proof.

References

[1] A.K. Bhuniya and K. Hansda Complete semilattice of ordered semigroups, arxiv:1701.01282v1.
[2] T. Changphas, An Introduction to Ordered Semigroups, Lecture Note, 2016.
[3] N. Kehayopulu, On weakly commutative poe-semigroups, Semigroup Forum, 34 (1987), $367-370$.
[4] N. Kehayopulu, On weakly prime ideals of ordered semigroups, Math. Japonica, 35 (1990), 1051 - 1056.
[5] N. Kehayopulu, On completely regular poe-semigroups, Math. Japonica, 37 (1992), $123-130$.
[6] N. Kehayopulu, J. S. Ponizovskii, and M. Tsingelis, Note on Green's relations in ordered semigroups, J. Math. Sci., 36 (1991), $211-214$.
[7] N. Kehayopulu and M. Tsingelis, On weakly commutative ordered semigroups, Semigroup Forum, 56 (1998), $32-35$.
[8] N. Kehayopulu, M. Tsingelis, On left regular ordered semigroups, Southeast Asian Bull. Math., 25 (2002), $609-615$.
[9] N. Kuroki, T^{*}-pure Archimedean semigroups, Comment. Math. Univ. St. Paul. 31 (1982), $115-128$.

Received February 27, 2018
Department of Mathematics, Rajamangala University of Technology Isan, Khon Kaen Campus, Khon Kaen 40000, Thailand
E-mail: pisansu9999@gmail.com

