On T^* -pure ordered semigroups

Pisan Sammaprab

Abstract. The concepts of T^* -pure ordered semigroups is introduced. We characterize T^* -pure archimedean ordered semigroups and prove that any T^* -pure ordered semigroup is a semilattice of archimedean semigroups.

A bi-ideal A of a semigroup S is said to be two-sided pure if $A \cap xSy = xAy$ for all $x, y \in S$. A semigroup S is said to be T^* -pure if every bi-ideal of S is two-sided pure. T^* -pure semigroups has been studied by N. Kuroki [9].

A semigroup (S, \cdot) together with a partial order \leq that is *compatible* with the semigroup operation, i.e., for any $x, y, z \in S$,

$$x \leqslant y$$
 implies $zx \leqslant zy$ and $xz \leqslant yz$,

is called a partially ordered semigroup (or simply an ordered semigroup).

Let (S,\cdot,\leqslant) be an ordered semigroup. For any nonempty subsets A of S we define

$$(A] = \{x \in S \mid x \leqslant a \text{ for some } a \in A\}.$$

It was shown in [8] that for any nonempty subsets A, B of S the following holds: (1) $A \subseteq (A]$; (2) $A \subseteq B$ implies $A \subseteq (A)$; (3) $A \subseteq (A)$; (4) $A \subseteq (A)$; (4) $A \subseteq (A)$; (5) $A \subseteq (A)$; (6) $A \subseteq (A)$; (6) $A \subseteq (A)$; (7) $A \subseteq (A)$; (8) $A \subseteq (A)$; (9) $A \subseteq (A)$; (9) $A \subseteq (A)$; (10) $A \subseteq (A)$; (11) $A \subseteq (A)$; (12) $A \subseteq (A)$; (13) $A \subseteq (A)$; (14) $A \subseteq (A)$; (15) $A \subseteq (A)$; (16) $A \subseteq (A)$; (17) $A \subseteq (A)$; (18) $A \subseteq (A)$; (18) $A \subseteq (A)$; (18) $A \subseteq (A)$; (19) $A \subseteq (A)$; (19)

A nonempty subset A of S is called a *left* (resp., right) ideal of S (cf. [4]), if $SA \subseteq A$ (resp., $AS \subseteq A$) and A = (A], that is, for any $x \in A$, $y \in S$, $y \leqslant x$ implies $y \in A$.

If A is both a left and a right ideal of S, then A is called a two-sided ideal, or simply an ideal of S. It is known that the union and intersection of two ideals of S are an ideal of S.

A subsemigroup B is called a bi-ideal of S if (i) $BSB \subseteq B$; (ii) for any $x \in B$ and $y \in S$, $y \leq x$ implies $y \in B$ ([5]).

A bi-ideal generated by a has the form $B(a) = (a \cup a^2 \cup aSa]$.

A congruence σ on S is called semilattice congruence if $(a^2,a) \in \sigma$ and $(ab,ba) \in \sigma$ for every $a,b \in S$. A semilattice congruence σ on S is complete if $a \leq b$ implies $(a,ab) \in \sigma$. An ordered semigroup S is a semilattice of archimedean semigroups (resp., complete semilattice of archimedean) if there exists a semilattice congruence (resp., complete semilattice congruence) σ on S such that for each $x \in S$ the σ -class $(x)_{\sigma}$ is an archimedean subsemigroup of S.

A subsemigroup F is called a *filter* of S if (i) $a,b \in S$, $ab \in S$ implies $a \in F$ and $b \in F$; (ii) if $a \in F$ and b in S, $a \leq b$, then $b \in F$ ([3]).

For an element x of S, we denote by N(x) the filter of S generated by x and consider the equivalence relation $\mathcal{N}:=\{(x,y)\mid N(x)=N(y)\}$. The relation \mathcal{N} is the lest complete semilattice congruence on S.

Keywords: Ordered semigroup, weakly commutative semigroup, semilattice of archimedean semigroups, bi-ideal.

²⁰¹⁰ Mathematics Subject Classification: 06F05.

An element e of an ordered semigroup (S,\cdot,\leqslant) is called an *ordered idempotent* if $e\leqslant e^2$. The set of all ordered idempotent of an ordered semigroup S denoted by E(S). An ordered semigroup S is *idempotent ordered* if S=E(S).

An ordered semigroup (S,\cdot,\leqslant) is called archimedean [2] if for any $a,b\in S$ there exits a positive integer n such that $a^n\in (SbS]$. If for any $a,b\in S$ there exists positive integer n such that $(ab)^n\in (bSa]$, the S is called $weakly\ commutative$ [7].

An element $a \in S$ is regular (resp., completely regular) if $a \in (aSa]$ (resp., $a \in (a^2Sa^2]$). A semigroup S is regular (resp., completely regular) if each its element is regular (resp., completely regular).

Definition 1. Let (S,\cdot,\leqslant) be an ordered semigroup. A bi-ideal A of S is said to be two-sided pure if $A\cap(xSy]=(xAy]$ for all $x,y\in S$. An ordered semigroup S is said to be T^* -pure if every bi-ideal of S is two-sided pure.

Example 1. Let $S = \{a, b, c, d\}$ and $\leq = \{(a, a), (a, b), (a, c), (a, d), (b, b), (c, c), (d, d)\}$. Then (S, \cdot, \leq) with the multiplication cc = dc = dd = b and xy = a in all other cases, is an ordered semigroup and all its bi-ideals, namely $\{a\}$, $\{a, b\}$, $\{a, b, c\}$, $\{a, b, d\}$, S, are pure. So, it is the T^* -pure ordered semigroup.

First, we have the following proposition.

Proposition 1. Any T^* -pure ordered semigroup is weakly commutative.

Proof. Let S be T^* -pure ordered semigroup and $a, b \in S$. Then (bSa] is two-sided pure and

$$(ab)^3 = ababab \in (a(bSa]b] = (aSb] \cap (bSa] \subseteq (bSa].$$

П

Hence S is weakly commutative.

 $\textbf{Proposition 2.} \ \textit{Let S be T^*-pure ordered semigroup. Then S has the following properties:}$

- (1) $(aSb] = (a^2Sb^2]$ for all $a, b \in S$.
- (2) For any $a \in S$, a^n is completely regular for all positive integer $n \geqslant 3$.
- $(3) \ \textit{For each} \ x \in S, \ N(x) = \{y \in S \, | \, x^n \in (ySy] \ \textit{for some} \ n \in N\}.$
- (4) (eS] = (Se] for all $e \in E(S)$.

Proof. (1). Since S is T^* -pure, (aSb] is a two-sided pure bi-ideal. Thus

$$(aSb] = (aSb] \cap (aSb] = (a(aSb]b] \subseteq (a^2Sb^2].$$

The converse is obvious. Hence $(aSb] = (a^2Sb^2]$.

- (2). By (1), $a^n = aa^{n-2}a \in (aSa] = ((a^n)^2S(a^n)^2]$ for any $a \in S$ and $n \geqslant 3$. Hence a^n is completely regular.
 - (3). This follows from Proposition 1 and Lemma in [7].
- (4). Let $e \in E(S)$ and $x \in (Se]$. Then $x \leq ae$ for some $a \in S$. Since S is T^* -pure, (eSe] is two-sided pure. Thus

$$x \leqslant ae \leqslant aeeee \in (a(eSe]e] = (aSe] \cap (eSe] \subseteq (eSe] \subseteq (eS].$$

Similarly, $(eS] \subseteq (Se]$. Hence (eS] = (Se].

Theorem 1. Let (S, \cdot, \leqslant) be a regular ordered semigroup. The following statements are equivalent:

- (1) S is T^* -pure.
- $(2) \ S \ is \ weakly \ commutative.$
- (3) For each $x \in S$, $N(x) = \{y \in S \mid x^n \in (ySy] \text{ for some } n \in N\}$.
- (4) (Se] = (eS] for all $e \in E(S)$.

Proof. $(1) \Rightarrow (2)$ by Proposition 1.

- $(2) \Leftrightarrow (3)$ by Lemma in [7].
- $(2) \Rightarrow (4)$. Let $e \in E(S)$ and $x \in (eS]$. Then $x \leqslant ea$ for some $a \in S$. Since S is regular, $ea \leqslant eabea$ for some $b \in S$. Then $bea \leqslant beabea = (bea)^2$. Since S is weakly commutative, then there exists positive integer n such that $(bea)^n \in (aSbe]$. Thus,

$$x\leqslant ea\leqslant eabea=ea(bea)\leqslant ea(bea)^n\in ea(aSbe]\subseteq (ea(aSbe]]\subseteq (eaaSbe]\subseteq (Se].$$

Similarly, $(eS] \subseteq (Se]$. Hence (Se] = (eS].

 $(4)\Rightarrow (1)$. Let A be bi-ideal of S, and $x,y\in S$. It is obvious that $(xAy]\subseteq (xSy]$. Let $z\in (xAy]$. Then $z\leqslant xay$ for some $a\in A$. Since S is regular, $a\leqslant aba$ for some $b\in S$. This implies that $ba,ab\in E(S)$. We have

$$z \leqslant xay \leqslant xabay \leqslant xabababay = x(bs)aba(ba)y \in (SabSbaS] \subseteq ((Sab]S(baS]]$$

= $((abS]S(Sba]] \subseteq (ASA] \subseteq A$.

Hence $(xAy] \subseteq A \cap (xSy]$.

Let $a\in A\cap (xSy]$. Then $a\leqslant xzy$ for some $z\in S$. Since S is regular, $a\leqslant aba$ for some $b\in S$. This implies that $ba,ab\in E(S)$. We have

$$\begin{split} a \leqslant aba \leqslant abababa \leqslant abababababa \leqslant xzybababababxzy \\ &= xzyb(ab)aba(ba)bxzy \in (xSabSbaSy] \subseteq (x(Sab]S(baS]y] \\ &= (x(abS]S(Sba]y] \subseteq (xASAy] \subseteq (xAy]. \end{split}$$

Thus
$$A \cap (xSy] \subseteq (xAy]$$
. Hence $A \cap (xSy] = (xAy]$. This complete the proof. \square

The following theorem can be obtained from Proposition 1 and Theorem in [7].

Theorem 2. Any T^* -pure ordered semigroup is a semilattice of archimedean semigroups.

Now we give a characterization of T^* -pure archimedean ordered semigroups.

Theorem 3. For a T^* -pure ordered semigroup S the following statements are equivalent:

- (1) S is archimedean.
- (2) Every bi-ideal of S is archimedean.
- (3) For any $e, f \in E(S)$, $(e, f) \in \mathcal{N}$.

Proof. It is clear that (2) implies (1).

(3) \Rightarrow (2). Let A be a bi-deal of S and $a,b \in A$. Since S is T^* -pure, a^3 and b^3 are regular by Proposition 2. Then $a^3 \leqslant a^3xa^3$ and $b^3 \leqslant b^3yb^3$ for some $x,y \in S$. This implies that $a^3x,b^3y \in E(S)$. We have $b^3y \in N(a^3x)$. Then $(a^3x)^n \in (b^3ySb^3y]$ for some positive integer n. Thus $(a^3x)^n \leqslant b^3yzb^3y$ for some $z \in S$. We have

$$\begin{split} a^3 \leqslant a^3 x a^3 \leqslant a^3 x a^3 x a^3 &= (a^3 x) a^3 x a^3 \leqslant (a^3 x)^n a^3 x a^3 \leqslant (b^3 y z b^3 y) a^3 x a^3 \\ &= b b (b (y z b^3 y a^3 x a^2) a) \in (Ab(ASA)] \subseteq (AbA]. \end{split}$$

Hence A is archimedean.

 $(1) \Rightarrow (3)$. Let $e, f \in E(S)$. Since S is archimedean, there exists positive integer n such that $e^n \in (SfS]$. Since S is T^* -pure, (fSf] is two-sided pure ideal. Then we have

$$e^n \in (SfS] \subseteq (SfffS] \subseteq (SfSfS] \subseteq (S(fSf]S] = (SSS] \cap (fSf] \subseteq (fSf].$$

Thus $f \in N(e)$. Hence $N(f) \subseteq N(e)$ Similarly, we have $N(e) \subseteq N(f)$. Hence $(e, f) \in \mathcal{N}$.

Theorem 4. Any T^* -pure archimedean regular ordered semigroup S does not contain proper bi-ideals.

Proof. Let A be any bi-ideal of S. Let $a \in A$ and $b \in S$. Since S is archimedean, then there exists positive integer n such that $b^n \in (SaS]$. Since S is T^* -pure, (aSa] is two-sided pure. Then by regularity of S and Theorem 2, we have

$$\begin{split} b \in (bSb] &= (b^nSb^n] \subseteq ((SaS]S(SaS]] \subseteq (SaSSSaS] \subseteq (S(aSa)S] \subseteq (S(aSa]S] \\ &= (SSS] \cap (aSa] \subseteq (ASA] \subseteq A. \end{split}$$
 Thus $S \subseteq A$. Hence $S = A$.

The following theorem can be obtained from Theorem 4.

Theorem 5. Any T^* -pure archimedean regular ordered semigroup is left and right simple.

Theorem 6. For a T^* -pure archimedean ordered semigroup S the following statements are equivalent:

- (1) S is regular.
- (2) S does not contain proper bi-ideals.
- $(3) \ \ S \ are \ left \ and \ right \ simple.$

Proof. By Theorem 4, (1) implies (2). It is clear that (2) implies (3).

 $(3)\Rightarrow (1)$. Let $a\in S$. Since S are left and right simple, S=(Sa] and S=(aS] by Corollary 2 in [6]. We have $a\in (aS]=(a(Sa)]\subseteq (aSa]$. This completes the proof.

References

- [1] A.K. Bhuniya and K. Hansda Complete semilattice of ordered semigroups, arxiv:1701.01282v1.
- [2] T. Changphas, An Introduction to Ordered Semigroups, Lecture Note, 2016.
- [3] N. Kehayopulu, On weakly commutative poe-semigroups, Semigroup Forum, 34 (1987), 367 370.
- [4] N. Kehayopulu, On weakly prime ideals of ordered semigroups, Math. Japonica, **35** (1990), 1051 1056.
- [5] N. Kehayopulu, On completely regular poe-semigroups, Math. Japonica, 37 (1992), 123 – 130.
- [6] N. Kehayopulu, J. S. Ponizovskii, and M. Tsingelis, Note on Green's relations in ordered semigroups, J. Math. Sci., 36 (1991), 211 214.
- [7] N. Kehayopulu and M. Tsingelis, On weakly commutative ordered semigroups, Semigroup Forum, **56** (1998), 32 35.
- [8] N. Kehayopulu, M. Tsingelis, On left regular ordered semigroups, Southeast Asian Bull. Math., 25 (2002), 609 615.
- [9] N. Kuroki, T*-pure Archimedean semigroups, Comment. Math. Univ. St. Paul. 31 (1982), 115 – 128.

Received February 27, 2018

Department of Mathematics, Rajamangala University of Technology Isan, Khon Kaen Campus, Khon Kaen 40000, Thailand E-mail: pisansu9999@gmail.com