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NSE characterization of some Suzuki groups

Azam Babai and Maryam Khatami

Abstract. Let G be a group, and πe(G) be the set of element orders of G. For k ∈ πe(G), the

number of elements of G of order k is denoted by mk(G). Set nse(G) = {mk(G) | k ∈ πe(G)}.
Let q = 22n+1, and p = q − 1 be a Mersenne prime. In this paper, we show that if G is a

group such that nse(G) = nse(Sz(q)) and p ∈ πe(G) but p2 /∈ πe(G), then G ∼= Sz(q) or

G ∼= Sz(q) o Z2n+1.

1. Introduction

Let G be a group. Denote by πe(G), the set of orders of elements of G. Let
k ∈ πe(G), and mk(G) be the number of elements of order k in G. Put nse(G) =
{mk(G) | k ∈ πe(G)}, the set of number of elements of the same order in G. For
each �nite group G, and each positive integer t, letMt(G) = {g ∈ G | gt = 1}. The
�nite groups G and H are called of the same order type if |Mt(G)| = |Mt(H)|, for
t = 1, 2, . . . The most important problem related to the set nse(G) is Thompson's
problem:

Thompson's Problem.Suppose that G and H are �nite groups of the same order

type. If G is solvable, is it true that H is necessarily solvable?

Nobody has been solved this problem completely until now. Obviously, ifG and
H are groups of the same order type, then |G| = |H| and nse(G) = nse(H). So, if
a group G is characterizable by its order and nse(G), then G satis�es Thompson's
problem. Note that, in 1987 Thompson gave an example, which shows that not all
groups G are characterizable by |G| and nse(G). In [7], it was proved that if G is
a �nite group and M is a simple K4-group, then G ∼= M if and only if |G| = |M |
and nse(G) = nse(M) (A simple Kn-group is a simple group G such that |G| has
n distinct prime divisors).

Let G be a �nite group, and π(G) be the set of prime divisors of |G|. The prime
graph of a group G, which is denoted by Γ(G), is a graph with vertex set π(G),
and two distinct vertices p and q are adjacent if and only if pq ∈ πe(G). Let t(G)
be the number of connected components of Γ(G), and π1(G), . . . , πt(G)(G) be the
set of vertices of the connected components of Γ(G). If there is no ambiguity, we
use the notation πi instead of πi(G). If 2 ∈ π(G), we always assume that 2 ∈ π1,
and π1 is called the even component of Γ(G) and π2, . . . , πt(G) are called the odd
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components of Γ(G). Note that |G| can be expressed as a product of coprime
integers ki, for i = 1, . . . , t(G), such that π(ki) = πi. We call k1, . . . , kt(G) the
order components of G.

In [5], it is proved that the simple group Sz(22n+1), where 22n+1−1 is a prime
number, is uniquely determined by nse(Sz(22n+1)) and |Sz(22n+1)|.

In this paper, we improve their result and show that if G is a group such that
nse(G) = nse(Sz(q)), where q = 22n+1, and p = q − 1 is a prime, and p ∈ πe(G)
and p2 /∈ πe(G), then G ∼= Sz(q) or G ∼= Sz(q) o Z2n+1. To prove the theorem,
we show that the prime graph of the group G is disconnected, and then by using
William's theorem and the classi�cation of �nite simple groups we get the result.

Let n be an integer, by π(n) we mean the set of prime divisors of n. Note
that π(G) = π(|G|). For every r ∈ π(G), denote by Pr, a Sylow r-subgroup of G,
and by nr(G), the number of Sylow r-subgroups of G. Also, the Euler's totient
function is denoted by φ(n), which is the number of positive integers less that n
that are relatively prime to n.

2. Main results

The following preliminary results are needed to prove our main theorem:

Theorem 2.1. (cf. [8]) Let G be a group containing more that two elements. If

the maximal number s of elements of the same order in G is �nite, then G is �nite

and |G| 6 s(s2 − 1).

Theorem 2.2. (cf. [4]) Let G be a �nite group and t be a positive integer dividing

|G|. Then t | |Mt(G)|.

It is easy to obtain the following corollary:

Corollary 2.3. Let G be a �nite group. Then the following hold:

(1) For every divisor n of |G|, n |
∑

d|nmd(G).

(2) For every n ∈ πe(G), mn(G) = kφ(n) where k is the number of cyclic

subgroups of order n.

Theorem 2.4. (cf. [2]) Let G be a Frobenius group of even order with kernel K
and complement H. Then t(G) = 2, and the prime graph components of G are

π(K) and π(H), and the following hold:

(i) K is nilpotent;

(ii) |K| ≡ 1 (mod |H|).

A �nite group G is called 2-Frobenius, if it has a normal series 1EH EK EG,
such that K is a Frobenius group with kernel H, and G/H is a Frobenius group
with kernel K/H.
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Theorem 2.5. (cf. [2]) Let G be a 2-Frobenius group with normal series 1EH E
K E G, such that K and G/H are Frobenius groups with kernels H, and K/H,

respectively. Then

(i) t(G) = 2, π1 = π(G/K) ∪ π(H) and π2 = π(K/H);

(ii) G/K and K/H are cyclic, |G/K| is a divisor of (|K/H| − 1) and
G/K 6 Aut(K/H).

Theorem 2.6. (cf. [10]) Let G be a �nite group with t(G) > 2. Then G has one

of the following structures:

(i) G is a Frobenius or 2-Frobenius group.

(ii) G has a normal series 1 EH EK EG such that π(H) ∪ π(G/K) ⊆ π1 and

K/H is a nonabelian simple group. In particular, H is nilpotent, G/K 6
Out(K/H), and the odd order components of G are the odd order components

of K/H.

Theorem 2.7. (cf. [3]) The equation pm− qn = 1, where p and q are primes and

m,n > 1 has only one solution, namely 32 − 23 = 1.

Theorem 2.8. (Zsigmondy Theorem) (cf. [11]) Let p be a prime and n be a pos-

itive integer. Then one of the following holds:

(i) There is a primitive prime p′ for pn−1, that is, p′ | (pn−1) but p′ - (pm−1),
for every 1 6 m < n,

(ii) p = 2, n = 1 or 6,

(iii) p is a Mersenne prime and n = 2.

Remark 2.9. Let k and n be coprime integers. If there is an integer x such
that x2 ≡ k (mod n), then k is called a quadratic residue modulo n, otherwise k
is called a quadratic nonresidue modulo n. For a prime p, the symbol (a/p) is
de�ned as follows: (a/p) = 1 if a is a quadratic residue modulo p, (a/p) = −1 if
a is a quadratic nonresidue modulo p, and (a/p) = 0 if p | a. It is a well known
result that (−1/p) = (−1)(p−1)/2.

Let p be a prime and a be an integer such that (a, p) = 1. The smallest positive
integer k > 1 such that ak ≡ 1 (mod p) is called the order of a with respect to p,
and is denoted by ordp(a). Obviously, if an ≡ 1 (mod p), then ordp(a) | n.

In [9], Suzuki showed that Sz(q) has a partition as follows:

(1) q2 + 1 Sylow 2-subgroups of order q2 and exponent 4.

(2) q2(q2 + 1)/2 cyclic subgroups of order q − 1.

(3) q2(q−1)(q+
√
2q+1)

4 cyclic subgroups of order q −
√

2q + 1.

(4) q2(q−1)(q−
√
2q+1)

4 cyclic subgroups of order q +
√

2q + 1.

So, it is easy to see that nse(Sz(q)) = {(q−1)(q2+1), q(q−1)(q2+1), φ(r)q2(q2+
1)/2, φ(s)q2(q − 1)(q +

√
2q + 1)/4, φ(t)q2(q − 1)(q −

√
2q + 1)/4}, where r > 1

is a divisor of q − 1, s > 1 is a divisor of q −
√

2q + 1 and t > 1 is a divisor of
q +
√

2q + 1.
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Theorem 2.10. Let G be a group such that nse(G) = nse(Sz(q)), where q =
22n+1 and p = q − 1 is a prime. If p ∈ πe(G) and p2 /∈ πe(G), then G ∼= Sz(q) or

G ∼= Sz(q) o Z2n+1.

Proof. It is obvious by Theorem 2.1 that G is a �nite group. By Corollary 2.3,
m2(G) is the only odd number in nse(G), so m2(G) = (q − 1)(q2 + 1). Note that
p | 1 +mp(G), so mp(G) = φ(r)q2(q2 + 1)/2, where r > 1 is a divisor of q− 1 = p.
Therefore mp(G) = q2(q2 + 1)(q − 2)/2.

Let P be a Sylow p-subgroup of G. By assumption we have exp(P ) = p. We
claim that |P | = p.

Let |P | = pb, for some b > 2. So, |P | | 1 +mp(G), which implies that (q − 1)b

is a divisor of

q5 − 2q4 + q3 − 2q2 + 2 = (q − 1)(q4 − q3 − 2q − 2).

Then we have q − 1 is a divisor of q4 − q3 − 2q − 2 = (q − 1)(q3 − 2) − 4, and
consequently q − 1 | 4, which is impossible. So b = 1, and P is a cyclic group of
order p, as we claimed. Hence it is easy to see that mp(G) = np(G)(p− 1), where
np(G) is the number of Sylow p-subgroups of G. Therefore np(G) = q2(q2 + 1)/2.
• Step 1. t(G) > 2.

We claim that for every t ∈ π(G) distinct from p, tp 6∈ πe(G). Let t ∈ π(G)\{p}
such that G has an element of order tp. Therefore

mtp(G) = φ(tp)np(G)k = np(G)(p− 1)(t− 1)k = mp(G)(t− 1)k,

where k is the number of cyclic subgroups of order t in CG(P ). By considering
nse(G), the only possibility formtp(G) is q2(q2+1)(q−2)/2. So, mtp(G) = mp(G),
and (t− 1)k = 1, which implies that t = 2. Therefore 2p | (1 +m2(G) +mp(G) +
m2p(G)), which implies that p | m2p(G) = mp(G), a contradiction. So our claim
is proved, and p is an isolated vertex in Γ(G). Therefore t(G) > 2, as required.
• Step 2. q2(q2 + 1)(q − 1)/2 | |G| and |G| | q2(q2 + 1)(q − 1)(q − 2)/2.

Since np(G) = q2(q2 + 1)/2 | |G|, and p = q − 1 ∈ π(G), it is obvious that
q2(q2 + 1)(q − 1)/2 | |G|.

Let r ∈ π(G) be distinct from p, and R be a Sylow r-subgroup of G. Since
rp /∈ πe(G), it follows that R acts �xed point freely on the set of elements of
order p in G. Therefore, |R| | mp(G) = q2(q2 + 1)(q − 2)/2. Therefore, |G| |
q2(q2 + 1)(q − 1)(q − 2)/2, and so the result follows.
• Step 3. G is neither a Frobenius group nor a 2-Frobenius group.

Let G be a Frobenius group with kernel K and complement H. By Theorem
2.4, we have the prime graph components of G are π(K) and π(H). Note that
π(q(q2 +1)) ⊆ π1(G) and π2(G) = {p}. By the fact that |H| is a divisor of |K|−1,
we have |H| < |K|. On the other hand |G| = |H||K|, so by Step 2 we conclude
that |H| = p = q − 1, and q2(q2 + 1)/2 | |K|. Take r ∈ π(q −

√
2q + 1). Suppose

that R is a Sylow r-subgroup of K. Since K is nilpotent, it follows that R is a
normal subgroup of G, and R o H is a Frobenius group. So we conclude that
|H| = q − 1 | |R| − 1. Therefore q − 1 6 |R| − 1 6 q −

√
2q, which is impossible.
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Let G be a 2-Frobenius group, with normal series 1EH EK EG, such that K
and G/H are Frobenius groups with Frobenius kernels H and K/H, respectively.
So, π(q(q2 + 1)) ⊆ π1(G) = π(G/K) ∪ π(H), and π2(G) = {p} = π(K/H). Also,
|G/K| is a divisor of |K/H|−1 = p−1 = q−2. Let r ∈ π(q2 + 1). If r ∈ π(G/K),
then r is a divisor of |G/K|, and consequently a divisor of q − 2. So r | q2 − 4,
which implies that r | 5. Therefore π(q2 + 1) \ {5} ⊆ π(H). By Theorem 2.7, it is
easy to see that π(q2 + 1) 6= {5}. Therefore, there exists r ∈ π(q2 + 1) \ {5}, and
so r ∈ π(H).

If π(q2 + 1) 6= {5, r}, then there exists s ∈ π(q2 + 1) ∩ π(H), such that s < q.
Let S be a Sylow s-subgroup of H. Since H is nilpotent, it follows that S is a
normal subgroup of K. Note that S is a cyclic subgroup, and so it has a unique
subgroup S1 of order s. Therefore S1 EK. Let P be a Sylow p-subgroup of K.
So S1 oP is a Frobenius group, which implies that p | s− 1. So p = q− 1 6 s− 1,
which is a contradiction.

Now let π(q2 + 1) = {5, r}. Since q2 + 1 = (q +
√

2q + 1)(q −
√

2q + 1) and
q±
√

2q+1 > 1 and (q−
√

2q+1, q+
√

2q+1) = 1, it follows that π(q+
√

2q+1) = {5},
or π(q −

√
2q + 1) = {5}.

First suppose that π(q +
√

2q + 1) = {5}. So 2n+1(2n + 1) = 5a − 1, for some
integer a.

If a is even, then 2n+1(2n+1) = (5a/2−1)(5a/2+1). Since (5a/2−1, 5a/2+1) = 2,
it follows that 2n | 5a/2−1, or 2n | 5a/2+1. If 2n | 5a/2−1, then 5a/2−1 = 2nB, and
2(2n + 1) = (5a/2 + 1)B, for some odd integer B. If B > 3, then 5a/2 − 1 > 2n+1

and 2n + 1 > 5a/2 + 1, therefore 2n > 5a/2 > 2n+1 + 1, a contradiction. So
B = 1, and 5a/2 = 2n + 1 = 2n+1 + 1, which is impossible. If 2n | 5a/2 + 1, then
5a/2 + 1 = 2nB, and 2(2n + 1) = (5a/2 − 1)B, for some odd integer B. If B > 3,
then 5a/2 + 1 > 2n+1, and 2n + 1 > 5a/2 − 1, hence 2n + 2 > 5a/2 > 2n+1 − 1.
Therefore n = 1, and the equation 2n+1(2n + 1) = 5a − 1 does not have any
solution. Now let B = 1, so 5a/2 = 2n − 1 = 2n+1 + 3, which is impossible.

If a is odd, then 2n+1(2n +1) = 4(1+5+ . . .+5a−1). Then 2n+1 = 4, therefore
n = 1, which is impossible as we said above.

Now suppose that π(q −
√

2q + 1) = {5}. So 2n+1(2n − 1) = 5a − 1, for some
integer a.

Let a be even. Therefore 2n+1(2n − 1) = (5a/2 − 1)(5a/2 + 1), which implies
that either 2n | 5a/2−1, or 2n | 5a/2 +1. Let 2n | 5a/2−1. So 5a/2−1 = 2nB, and
2(2n − 1) = (5a/2 + 1)B, for some odd integer B. If B > 3, then 2n − 2 > 5a/2 >
2n+1 + 1, which is a contradiction. So B = 1, and hence 5a/2 = 2n + 1 = 2n+1− 3,
which implies that n = 2. Therefore, nse(G) = nse(Sz(32)) and by the main
theorem of [6], G ∼= Sz(32), which is not a 2-Frobenius group, a contradiction.
Now let 2n | 5a/2 + 1. So 5a/2 + 1 = 2nB, and 2(2n − 1) = (5a/2 − 1)B, for some
odd integer B. If B > 3, then 2n > 5a/2 > 2n+1 − 1, which is impossible. So
B = 1, and 5a/2 = 2n − 1 = 2n+1 − 1, a contradiction.

So we may assume that a is odd. Hence 2n+1(2n − 1) = 4(1 + 5 + . . .+ 5a−1),
implies that 2n+1 = 4. Therefore n = 1, and q = 8. So |G/K| | 6, which implies
that π(q2 + 1) = {5, 13} ⊆ π(H), so there exists s ∈ π(q2 + 1) ∩ π(H), such that
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s < q and by a similar argument as above we get a contradiction.
• Step 4. G has a normal series 1 EH EK EG such that π(H) ∪ π(G/K) ⊆ π1,
and K/H is a Suzuki simple group.

Since t(G) > 2, and G is not a Frobenius and 2-Frobenius group, Theorem 2.6
implies that G has a normal series 1EHEKEG such that π(H)∪π(G/K) ⊆ π1,
and K/H is a nonabelian simple group, and the odd order components of G are
the odd order components of K/H. In particular t(K/H) > 2. Now by the
classi�cation of �nite simple groups and the results in Tables 1-3 in [1], we show
that K/H is isomorphic to a Suzuki simple group:

(i) K/H is not isomorphic to a sporadic simple group, or 2A3(2), 2F4(2)′,
2A5(2), E7(2), E7(3), A2(4) and 2E6(2).

If K/H is isomorphic to one of the mentioned groups, it is obvious that one
of the odd order components of that group must be the Mersenne prime p. But
in every case it is easy to get a contradiction by the fact that |K/H| is a divisor
of |G|. For example, let K/H ∼= J4, then p = 22n+1 − 1 = 31, which implies that
n = 2 and q = 32. But |J4| - q2(q2 + 1)(q − 1)(q − 2)/2, which is a contradiction
by Step 2.

(ii) K/H is not isomorphic to alternating groups.
Let K/H ∼= Ap′ , where p

′ > 6 and p′−2 are primes. Then either p′ = 22n+1−1
or p′ − 2 = 22n+1 − 1. First let p′ = 22n+1 − 1. So since p′ − 2 is an odd order
component of K/H, we have q−3 = 22n+1−3 is a divisor of q2(q2 +1)(q−2)/2. It
is obvious that (q−3, q2(q−2)/2) = 1, so q−3 | q2+1, which implies that q−3 | 10.
The only possibility is q = 8 and p′ = 7, but |A7| - q2(q2 + 1)(q − 1)(q − 2)/2, a
contradiciton.

Now let p′−2 = 22n+1−1. Therefore p′ = q+1 which is an odd order component
of K/H divides q2(q2 + 1)(q − 2)/2. By the fact that (q + 1, q2(q2 + 1)/2) = 1, it
follows that q + 1 | q − 2, a contradiction.

By a similar argument one can get that K/H can not be isomorphic to Am,
such that 6 < m = p′, p′ + 1, p′ + 2 where p′ is a prime and not both m and m− 2
are primes.

(iii) K/H is not isomorphic to simple groups of Lie type except Suzuki groups.
Case 1. Let K/H ∼= Ap′−1(q′), where p′ is an odd prime, and (p′, q′) 6=

(3, 2), (3, 4). Therefore q′p
′
−1

(q′−1)(p′,q′−1) = p = q − 1. It is easy to see that

q − 1 6 1 + . . .+ q′p
′−2 + q′p

′−1 < 2q′p
′−1 − 1.

So q < 2q′p
′−1, and consequently q2 + 1 6 4q′2(p

′−1). Therefore, |G| 6 q2(q2 +
1)(q − 1)(q − 2)/2 < 32q′6(p

′−1). On the other hand,

|K/H| = q′
1
2p
′(p′−1)

(p′, q′ − 1)
(q′2 − 1) · · · (q′p

′
− 1) >

q′
1
2p
′(p′−1)

(p′, q′ − 1)
q′ · · · q′p

′−1 =
q′p
′(p′−1)

(p′, q′ − 1)
.

By the fact |K/H| 6 |G|, we have q′p
′(p′−1)

(p′,q′−1) < 32q′6(p
′−1), and so q′p

′(p′−1) < q′6p
′
,
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since (p′, q′ − 1) < q′ and 32 6 q′5. Therefore p′(p′ − 1) < 6p′, which implies that
p′ ∈ {3, 5}.

First let p′ = 3. Then q′2+q′+1
(3,q′−1) = p. If 3 | q′ − 1, then q′(q′ + 1) = 3p − 1 =

3.22n+1 − 4 is a divisor of q2(q2 + 1)(q − 2)/2. It is easy to see that (3.22n+1 −
4, (q−2)/2) = 1, so 3.22n+1−4 | q2(q2 +1). Suppose that (3.22n+1−4, q2 +1) = d.
So d is a divisor of 9.24n+2 − 16, and 9.24n+2 + 9, which implies that d | 25. Also
(3.22n+1−4)/d is a divisor of q2, and hence (3.22n+1−4)/d | 4. The only possibility
is n = 1, q = 7 and q′ = 4. But |A2(4)| - q2(q2 +1)(q−1)(q−2)/2, a contradiction.
If 3 - q′ − 1, then q′(q′ + 1) = p− 1 = 2(22n − 1). Since q′ 6= 2, it follows that q′ is
odd and consequently q′ | 2n − 1 or q′ | 2n + 1. If q′ | 2n − 1, then 2n − 1 = q′B
and q′ + 1 = 2(2n + 1)B, for some integer B. Therefore 2n+1 + 1 6 q′ 6 2n − 1,
which is impossible. If q′ | 2n + 1, then 2n + 1 = q′B and q′ + 1 = 2(2n − 1)B,
for some integer B. Therefore 2n+1 − 3 6 q′ 6 2n + 1, and so 2n 6 4, which
implies that n = 1 or 2. If n = 1, then q′ = 2 which is impossible by assumption.
If n = 2, then q = 32 and q′ = 5. Since 41 ∈ π(G) \ π(K/H), it follows that
41 ∈ π(H) ∪ π(G/K). If 41 ∈ π(H), then take R a Sylow 41-subgroup of H,
and P a Sylow 31-subgroup of K. Since R EK, P acts �xed point freely on R,
and so R o P is a Frobenius group, and consequently, |P | = 31 | |R| − 1 = 40, a
contradiction. So 41 ∈ π(G/K), which is a contradiction since G/K 6 Out(K/H).

Now let p′ = 5. Then q′5−1
(q′−1)(5,q′−1) = p. If 5 | q′ − 1, then q′(q′ + 1)(q′2 + 1) =

5.22n+1 − 6 is a divisor of q2(q2 + 1)(q − 2)/2. It is easy to see that (5.22n+1 −
6, (q − 2)/2) = 1, therefore 5.22n+1 − 6 | q2(q2 + 1). Put d = (5.22n+1 − 6, q2 + 1).
So d is a divisor of 25.24n+2 − 36 and 25.24n+2 + 25. Therefore d | 61, and
(5.22n+1 − 6)/d | q2, which implies that (5.22n+1 − 6)/d = 1 or 2, that both of
them are impossible. If 5 - q′ − 1, then q′(q′ + 1)(q′2 + 1) = p − 1 = 2(22n − 1).
If q′ is even, then q′ = 2, and q = 32. But |A4(2)| - q2(q2 + 1)(q − 1)(q − 2)/2,
a contradiction. So q′ is odd and q′ + 1 and q′2 + 1 are even, which implies that
4 | q′(q′ + 1)(q′2 + 1) = 2(22n − 1), a contradiction.

If K/H is isomorphic to Ap′(q
′), where p′ is an odd prime and (q′−1) | (p′+1),

or 2Ap′−1(q′), for an odd prime p′, or 2Ap′(q
′), where p′ is an odd prime, (q′+ 1) |

(p′ + 1) and (p′, q′) 6= (3, 3), (5, 2), then by a similar argument one can get a
contradiction.

Case 2. Let K/H ∼= A1(q′), where 2 < q′ ≡ ε (mod 4) and ε = ±1. Then
either (q′ + ε)/2 = p, or q′ = p.

First let (q′ + ε)/2 = p = 22n+1 − 1. If ε = −1, then q′ − 1 = 22n+2 − 2, and so
q′ = 22n+2 − 1 is a divisor of (q2 + 1)(q − 2)/2. Put d = (22n+2 − 1, q2 + 1). It is
easy to see that d | 5 and so (22n+2 − 1)/d | (q − 2)/2. Therefore (22n+2 − 1)/d is
a divisor of 22n+2 − 1 and 22n+2 − 4, which implies that (22n+2 − 1)/d = 1 or 3.
Therefore n = 1 and q′ = 15, which is impossible. If ε = 1, then q′+1 = 22n+2−2.
Therefore q′ = 22n+2 − 3 is a divisor of (q2 + 1)(q − 2)/2. It is easy to see that
(22n+2−3, (q−2)/2) = 1, and so 22n+2−3 | q2+1. Therefore 22n+2−3 is a divisor
of 24n+4 − 9 and 24n+4 + 4, which implies that 22n+2 − 3 | 13. Therefore n = 1.
Since nse(Sz(8)) = {455, 3640, 5824, 6720, 12480}, by the fact p | 1 +mp(G), it is
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easy to see that 3 /∈ π(G). Therefore this case is impossible.

Now let q′ = p = 22n+1 − 1 be a Mersenne prime. Therefore |K/H| = q(q −
1)(q − 2)/2. There exists r ∈ π(q −

√
2q + 1) such that r /∈ π(K/H). Therefore

r ∈ π(H) or r ∈ π(G/K). If r ∈ π(H), then take R a Sylow r-subgroup of H and
P a Sylow p-subgroup of K. Obviously, Ro P is a Frobenius group and so |P | is
a divisor of |R| − 1. Therefore |P | = q − 1 6 |R| − 1 6 q −

√
2q, a contradiction.

So r ∈ π(G/K), which is a contradiction since G/K 6 Out(A1(p)).

Case 3. Let K/H be isomorphic to A1(q′), where q′ > 2 is even. Then either
q′ + 1 = p or q′ − 1 = p. If q′ + 1 = p = 22n+1 − 1, then 22n+1 − q′ = 2, which is
impossible since 4 | 22n+1 − q′. If q′ − 1 = p = 22n+1 − 1, then q′ + 1 = 22n+1 + 1
is a divisor of q2(q2 + 1)(q − 1)(q − 2)/2, which is impossible.

Case 4. Let K/H ∼= Cm(q′), where m = 2l > 2. Therefore (q′m + 1)/(2, q′ −
1) = p, which implies that q′m ≡ −1 (mod p), and hence (−1/p) = 1. So p ≡ 1
(mod 4), a contradiction.

If K/H is isomorphic to Bm(q′), for odd q′ and m = 2l > 4, 2Dm(q′), for
m = 2l > 4, 2Dm(2), for m = 2l + 1 > 5, 2Dm(3), for m = 2l + 1 > 9 which is not
a prime number, we can get a contradiction by a similar argument.

Case 5. Let K/H be isomorphic to Dp′(q
′), where p′ > 5 is a prime and

q′ = 2, 3, 5. Note that k2 = (q′p
′ − 1)/(q′ − 1). If q′ = 2, then 2p

′ − 1 = 22n+1 − 1,
and hence p′ = 2n+1. Therefore 2p

′−1+1 = 22n+1 is a divisor of q2(q2+1)(q−2)/2.
Since 22n + 1 and q2/2 are relatively prime we have 22n + 1 | (q2 + 1)(q − 2). Let
d = (22n+1, q2+1). Therefore d | 22(2n+1)+1 and d | 4(24n−1), which implies that
d | 5. Obviously (22n+1)/d is a divisor of q−2 = 2(22n−1), and so (22n+1)/d = 1.
Therefore n = 1, and p′ = 3, which is a contradiction by assumption. Let q′ = 3.
Then (3p

′−1)/2 = 22n+1−1, and hence 22n+2−3p
′

= 1, and we get a contradiction
by Theorem 2.7. Now let q′ = 5, and (5p

′−1)/4 = 22n+1−1. Therefore 5p
′−1+1 =

2(22n+2 +1)/5 is a divisor of q2(q2 +1)(q−2)/2. So (22n+2 +1)/5 | (q2 +1)(q−2).
It is easy to see that d = ((22n+2 + 1)/5, q2 + 1) | 5. Hence (22n+2 + 1)/5d | q − 2,
which implies that (22n+2 + 1)/5d | 5. So this case is also impossible.

In the cases that K/H is isomorphic to Bp′(3), for odd prime p′, Cp′(q
′),

where p′ is an odd prime and q′ = 2, 3, or Dp′+1(q′), where p′ is an odd prime and
q′ = 2, 3, we get a contradiction similarly.

Case 6. Let K/H ∼= 2Dp′(3), where p′ = 2m + 1. Then (3p
′−1 + 1)/2 = p

or (3p
′

+ 1)/4 = p. If (3p
′−1 + 1)/2 = p, then 3p

′−1 ≡ −1 (mod p), and hence
(−1/p) = 1. Therfore p ≡ 1 (mod 4), a contradiction. Now let (3p

′
+ 1)/4 = p =

22n+1− 1. Therefore 3p
′−1 + 1 = 2(22n+2− 1)/3 is a divisor of q2(q2 + 1)(q− 2)/2.

So (22n+2−1)/3 | (q2+1)(q−2). It is easy to see that d = ((22n+2−1)/3, q2+1) | 5.
Therefore (22n+2− 1)/3d is a divisor of q− 2 = 22n+1− 2. Consequently, (22n+2−
1)/3d | 3. Thus n = 1, q = 8 and p′ = 3. But |2D3(3)| - q2(q2 + 1)(q− 1)(q− 2)/2,
which is a contradiction.

If K/H is isomorphic to 2Dp′(3), for prime 5 6 p′ 6= 2m +1, then the argument
is similar.

Case 7. Let K/H ∼= F4(q′), where q′ is even. Then k2 = q′4 + 1 and k3 =



NSE characterization of some Suzuki groups 23

q′4−q′2+1. If q′4+1 = 22n+1−1, then q′4−22n+1 = −2, which is impossible since
the left side is divisible by 4. If q′4−q′2+1 = 22n+1−1, then q′2(q′2−1) = 2(22n−1).
Again, the left side is divisible by 4, but the right side is not, a contradiction.

In cases that K/H is isomorphic to F4(q′), for odd q′, 2F4(q′), for q′ = 22m+1 >
2, or 3D4(q′), in a similar way we can get a contradiction.

Case 8. Let K/H ∼= E6(q′). Then (q′6 + q′3 + 1)/(3, q′− 1) = 22n+1− 1. First
let 3 - q′ − 1. Therefore q′3(q′3 + 1) = 2(22n − 1). Obviously, q′ is odd, and so
q′3 | 22n − 1. Since (2n − 1, 2n + 1) = 1, it follows that q′3 | 2n − 1 or q′3 | 2n + 1.
If q′3 | 2n − 1, then 2n − 1 = q′3B, and q′3 + 1 = 2(2n + 1)B, for some integer B.
So, 2n + 1 < q′3 + 1 6 2n, a contradiction. If q′3 | 2n + 1, then 2n + 1 = q′3B and
q′3+1 = 2(2n−1)B. Therefore, 2(2n−1) 6 q′3+1 6 2n+2, and so n = 1 or 2, which
both of them are impossible by equation q′3(q′3+1) = 2(22n−1). Now let 3 | q′−1.
So q′3(q′3 + 1) = 3.22n+1− 4 = 4(3.22n−1− 1). Since q′3(q′3 + 1) divides |K/H|, it
follows that 3.22n−1−1 is a divisor of (q2 +1)(q−2). Let d = (3.22n−1−1, q2 +1).
It is easy to see that d | 25, and consequently (3.22n−1 − 1)/d | q − 2 = 22n+1 − 2.
So (3.22n−1 − 1)/d = 1, which implies that n = 1, and q′3(q′3 + 1) = 20, which is
impossible.

If K/H is isomorphic to 2E6(q′), for q′ > 2, then the result follows similarly.
Case 9. Let K/H be isomorphic to G2(q′), where q′ > 2 and q′ ≡ ε (mod 3),

for ε = ±1. Then q′2 − εq′ + 1 = 22n+1 − 1, and so q′(q′ − ε) = 2(22n − 1).
Obviously q′ is odd and q′ | 2n − 1 or q′ | 2n + 1. If q′ | 2n − 1, then 2n − 1 = q′B
and q′−ε = 2(2n+1)B for some integer B. Therefore, 2n+1 < q′−ε 6 q′+1 6 2n,
which is impossible. If q′ | 2n + 1, then 2n + 1 = q′B and q′ − ε = 2(2n − 1)B, for
some integer B. So 2(2n − 1) 6 q′ − ε 6 q′ + 1 6 2n + 2, which implies that n = 1
or 2. If n = 1, then q′ = 3, which is impossible by assumption. If n = 2, then
q = 32 and q′ = 5, which is impossible since |G2(5)| - q2(q2 + 1)(q − 1)(q − 2)/2.

In cases K/H ∼= G2(q′), where 3 | q′, and K/H ∼= 2G2(q′), where q′ = 32m+1 >
3, one can get a contradiction by a similar argument.

Case 10. Let K/H ∼= E8(q′). Then p ∈ {q′8 + q′7 − q′5 − q′4 − q′3 + q′ +
1, q′8− q′7 + q′5− q′4 + q′3− q′+ 1, q′8− q′6 + q′4− q′2 + 1, q′8− q′4 + 1}. Therefore
p = q−1 < (q′−1)(q′8+q′7+q′6+q′5+q′4+q′3+q′2+q′+1) = q′9−1, which implies
that q < q′9. But q′120 | |E8(q′)|, and consequently q′120 | q2(q2+1)(q−1)(q−2)/2,
which is impossible.
• Step 5. G ∼= Sz(q) or Sz(q) o Z2n+1.

By the previous step, G has a normal series 1 EH EK EG such that π(H) ∪
π(G/K) ⊆ π1, and K/H ∼= Sz(22m+1), for some integer m > 1. If m > n,
then there exists a primitive prime r of 24(2m+1) − 1 such that r ∈ π(K/H)
but r 6∈ π(G), since |G| | q2(q2 + 1)(q − 1)(q − 2)/2. So we have m 6 n. Let
m < n. By Step 1, {p} is an odd component of Γ(G), therefore p = q − 1 ∈
π(K/H) = π(24(2m+1)(22(2m+1) + 1)(22m+1 − 1)). On the other hand, p is a
primitive prime of 22n+1 − 1. Therefore p | 22(2m+1) + 1, which implies that
24(2m+1) ≡ 1 (mod p), therefore ordp(2) = 2n+ 1 | 4(2m+ 1). So 2n+ 1 | 2m+ 1,
and hence n 6 m, a contradiction. Therefore n = m, and K/H ∼= Sz(q). Since
|K/H| = |Sz(q)| is a divisor of |G| and |G| | q2(q2 + 1)(q − 1)(q − 2)/2, it follows
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that |H||G/K| | (q − 2)/2. We claim that H = 1. Otherwise, let r ∈ π(H). Take
R, a Sylow r-subgroup of H and P , a Sylow p-subgroup of K. By Step 1, it is
easy to see that Ro P is a Frobenius group and hence |P | is a divisor of |R| − 1.
Therefore |P | = q − 1 6 |R| − 1 6 (q − 2)/2 − 1, a contradiction. So, H = 1 and
K ∼= Sz(q). Since G/K 6 Out(K/H) = Z2n+1 and 2n + 1 is a prime, it follows
that G ∼= Sz(q), or G ∼= Sz(q) o Z2n+1.

At the end we put forward the following questions:

Question 1. Is it possible to omit the assumption p2 6∈ πe(G) in Theorem 2.10?

Question 2. If q − 1 is not prime, what can be said about characterization of

Sz(q) by the set nse?
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