On ordered semigroups without nilpotent ideals

Jatuporn Sanborisoot

Abstract. We characterize those left, right and two-sided ideals of ordered semigroups without nilpotent that contain at least one minimal left and at least one minimal right ideal.

1. Introduction

A semigroup (S, \cdot) with a partial order \leq that is *compatible* with the semigroup operation, i.e.,

for any $a, b, c \in S$, $a \leq b$ implies $ac \leq bc$ and $ca \leq cb$,

is called a *partially ordered semigroup* (or simply an *ordered semigroup*) (see [1], [4], [5], [6]).

Let (S, \cdot, \leq) be an ordered semigroup. If A is a nonempty subset of S, then $(A] = \{x \in S \mid x \leq a \text{ for some } a \in A\}.$

It is routine matters to verify that for subsets A and B of S the following hold: (1) $A \subseteq B$ implies $(A] \subseteq (B], (2) ((A]] = (A], (3) (A](B] \subseteq (AB], (4) ((A]B] = (A(B]] = ((A](B]] = (AB], (5) (A] \cup (B] = (A \cup B].$

For further information we refer to [9].

In [7], Kehayopulu introduced the concepts of left, right and two-sided ideals of an ordered semigroup as follows.

Let (S, \cdot, \leq) be an ordered semigroup. A nonempty subset A of S is called a *left* (resp., *right*) *ideal* of an ordered semigroup S if satisfies:

(i) $SA \subseteq A$ (resp., $AS \subseteq A$),

(ii) for any $x \in A$ and $y \in S$, if $y \leq x$ then $y \in A$, or equivalently, A = (A].

If A is both a left ideal and a right ideal of S, then A is called a *two-sided ideal* (or an *ideal*) of S. Note that if A and B are two-sided ideals of S, then (BAB] and (AB]are two-sided ideals of S. Intersection of two-sided ideals of S is a two-sided ideal of S if it is nonempty. Union of two-sided ideals of S is a two-sided ideal of S. For a nonempty subset A of S, we denote by $(A)_l$ the left ideal of S generated by A. We have $(A)_l = (A \cup SA]$. Similarly, $(A)_r = (A \cup AS]$ and $(A) = (A \cup SA \cup AS \cup SAS]$ are the right and two-sided generated by A, respectively.

²⁰¹⁰ Mathematics Subject Classification: 06F05.

Keywords: semigroup, ordered semigroup, simple simigroup, two-sided ideal, minimal ideal, nilpotent ideal

The zero of an ordered semigroup (S, \cdot, \leq) is element of S, usually denote by 0, such that $0 \leq a$ and 0a = a0 = 0 for all $a \in S$. A left ideal L of S is called simple if for any left ideal $L' \subseteq L$ implies L' = L. The notions of simple right and two-sided ideals are defined similarly. Let $\mathbb{N} = \{1, 2, \ldots\}$ be the set of natural numbers. An element a of S with zero is called *nilpotent* if there exists an element $n \in \mathbb{N}$ such that $a^n = 0$. A two-sided ideal A of S is called *nilpotent* if there exists $n \in \mathbb{N}$ such that $A^n = \{0\}$ (see [8]).

An ordered semigroup $(S, \cdot \leq)$ is without nilpotent ideals if S contains zero element but no nilpotent left or right ideal $\neq \{0\}$. A left (resp., right, two-sided) ideal of an ordered semigroup $(S, \cdot \leq)$ will be called *minimal left ideal* of S if it is $\neq \{0\}$ and contains no proper subset $\neq \{0\}$ which is also left (resp., right, two-sided) ideal of S.

In [2], Clifford initiated the study of semigroups with at least one left and at least one right minimal ideals. Later, he was in turn extension to the semigroup having a zero element of the same results (without order) in [3].

The purpose of the present paper is to extend results of A.H. Clifford [3] to ordered semigroups.

2. Two-sided ideals containing minimal left ideals

Theorem 2.1. Let (S, \cdot, \leq) be an ordered semigroup without nilpotent ideals. Then any minimal two-sided ideal of S is simple.

Proof. Let M be a minimal two-sided ideal of S. Assume that $B \neq \{0\}$ is a proper two-sided ideal of M. Since (MBM] is a two-sided ideal of S and $(MBM] \subseteq M$, therefore $(MBM] = \{0\}$ because M is a minimal left ideal. We get

$$(MB]^2 = (MB](MB] \subseteq (MBMB] = ((MBM]B] = (0B] = \{0\}.$$

Clearly (MB] is a left ideal. This means that (MB] is a nilpotent left ideal. By assumption we have $(MB] = \{0\}$. Since (SBS] is a two-sided ideal and $(SBS] \subseteq (SMS] \subseteq M$, we have either $(SBS] = \{0\}$ or (SBS] = M. CASE 1. (SBS] = M. We obtain that,

$$(SB]^{2} = (SB](SB] \subseteq (SBSB] = ((SBS]B] = (MB] = \{0\}.$$

CASE 2. $(SBS] = \{0\}$. We obtain that,

$$(SB]^{2} = (SB](SB] \subseteq (SBSB] = ((SBS]B] = (\{0\}B] = \{0\}.$$

This shows that $(SB]^2 = \{0\}$. Thus (SB] is nilpotent. Hence $(SB] = \{0\}$. Similarly, we have $(BS] = \{0\}$. This shows $(SB] \subseteq B$ and $(BS] \subseteq B$, so that B is a two-sided ideal of S. This is a contradiction.

Theorem 2.2. Let (S, \cdot, \leq) be an ordered semigroup with zero. If L is a minimal left ideal of S, then for each $a \in S$, (La] is also a minimal left ideal of S or $(La] = \{0\}$.

Proof. Let $a \in S$. It is clear that (La] is a left ideal of S. Assume that $(La] \neq \{0\}$ and there exists a left ideal $L' \neq \{0\}$ of S such that $L' \subset (La]$. Now let A be the set of all elements x in L such that $xa \leq y$ for some $y \in L'$ and (A] = A. We shall show that A is a left ideal of S. Clearly $A \neq \{0\}$ because $L' \neq \{0\}$. Let $s \in S$. We have

$$sxa = s(xa) \leqslant sy \in SL' \subseteq L'.$$

This shows that $sxa \in L'$. We have $SA \subseteq A$. Thus A is a left ideal of S. Since L is a minimal left ideal of S, A = L. So, $(La] = (Aa] \subseteq L'$. This is a contradiction. Therefore (La] does not contain any proper left ideal.

Theorem 2.3. Let (S, \cdot, \leq) be an ordered semigroup with zero. Let A be a twosided ideal of S containing at least one minimal left ideal of S. Then the sum of all minimal left ideals of S contained in A is a two-sided ideal of S. In particular, if A is minimal, then it is a sum of minimal left ideals of S.

Proof. Let $B = \bigcup_{i \in I} L_i$ be the sum of all minimal left ideals of S contained in A. It is clear that B is a left ideal of S. We claim that B is a right ideal of S. Now let $s \in S$. Then $Bs = (\bigcup_{i \in I} L_i)s$. By Theorem 2.2, $(L_is]$ is a minimal left ideal of S or $(L_is] = \{0\}$ for all $i \in I$. So,

$$Bs = (\bigcup_{i \in I} L_i)s = \bigcup_{i \in I} L_i s \subseteq \bigcup_{i \in I} (L_i s] \subseteq B.$$

This shows that B is a two-sided ideal of S. Consequently, if A minimal, then A = B.

Theorem 2.4. Let (S, \cdot, \leq) be an ordered semigroup without nilpotent ideals. Let M be a minimal two-sided ideal of S containing at least one minimal left ideal of S. Then every left ideal of M is a left ideal of S.

Proof. Firstly we shall show that for any minimal left ideal L of S contained in M is a minimal left ideal of M. For this, let L be a minimal left ideal of S contained in M. Suppose that $L' \neq \{0\}$ is a left ideal of M contained in L. Since (ML'] is a left ideal of S and $(ML'] \subseteq (ML] \subseteq (SL] \subseteq L$. Then $(ML'] = \{0\}$ or (ML'] = L. CASE 1. (ML'] = L. Then $L = (ML'] \subseteq L'$, so that L = L'.

CASE 2. $(ML'] = \{0\}$. Since (SL'] is a left ideal of S and $(SL'] \subseteq (SL] \subseteq L$. We get $(SL'] \subseteq L$, whence (SL'] = L or $(SL'] = \{0\}$. If (SL'] = L, then

$$L^2 = (SL']^2 = (SL'](SL'] \subseteq (SL'SL'] \subseteq (SMSL'] \subseteq (ML'] = \{0\}.$$

This is a contradiction to the assumption that S contains no nilpotent ideal. Thus $(SL'] = \{0\}$. Then $SL' \subseteq (SL'] \subseteq L'$, whence L' is a left ideal of S. By the minimality of L this implies L' = L. Thus L is a minimal left ideal of M.

Now let L_M be any left ideal of M. If $L_M = \{0\}$ then L_M is a left ideal of S. Suppose that $L_M \neq \{0\}$. By Theorem 2.3, M is the sum of all minimal left ideals of S contained in it. Therefore each $a \neq 0$ in L_M belong to some minimal

left ideal L_S of S contained in M. Hence $L_M \cap L_S \neq \{0\}$ since $L_M \cap L_S$ is a left ideal of M contained in L_S and L_S is a minimal left ideal of M. This proves that $L_M \cap L_S = L_S$, whence $L_S \subseteq L_M$. Hence L_M is the sum of all minimal left ideal L_S of S contained in M such that $L_M \cap L_S \neq \{0\}$. Since, the sum of left ideals of S is a left ideal, L_M is a left ideal of S.

3. Two-sided ideals containing minimal ideals

Theorem 3.1. Let (S, \cdot, \leq) be an ordered semigroup without nilpotent ideals and M be a minimal two-sided ideal of S containing at least one minimal left and at least one minimal right ideal of S. Then for each minimal left ideal of S contained in M corresponds at least one minimal right ideal R of S contained in M such that (LR] = M and $(RL] \neq \{0\}$.

Proof. Let L be a minimal left ideal of S contained in M. Clearly (ML] is a left ideal contained in L. Then (ML] = L or $(ML] = \{0\}$. If $(ML] = \{0\}$ then we get $L^2 \subseteq (ML] = \{0\}$, which contradicts to the assumption that S contains no nilpotent ideal. Thus (ML] = L. Since (LM] is a two-sided ideal of S contained in M, so (LM] = M or $(LM] = \{0\}$. Similarly, if $(LM] = \{0\}$ then $L^2 \subseteq (LM] = \{0\}$, which is impossible. This implies (LM] = M.

Now by the left-right dual Theorem 2.3, M is the sum of all minimal right ideals of S contained in M. We have $(LR] \neq \{0\}$ for some right ideal R of S contained in M, since if $(LR] = \{0\}$ for every R, then $(LM] = \{0\}$, which contradicts to (LM] = M. If $(RL] = \{0\}$, then we have

$$L = (ML] = ((LR]L] = ((LR](L)] = (LRL] = (L(RL)] = (L\{0\}] = \{0\}.$$

This is a contradiction. Hence $(RL] \neq \{0\}$.

Theorem 3.2. Let (S, \cdot, \leq) be an ordered semigroup without nilpotent ideals and M be a minimal two-sided ideal of S containing at least one minimal left and at least one minimal right ideal of S. Let L and R are minimal left and right ideals of S contained in M such that (LR] = M and $RL \neq \{0\}$. Then for each a in $(R \cap L) \setminus \{0\}$ and $b \in (RL]$ we have $ax \leq b$, $ya \leq b$, for some $x, y \in (RL]$.

Proof. Suppose that $a \in (R \cap L) \setminus \{0\}$ and $b \in (RL]$. Then (Ma] is a left ideal of S contained in L, since $a \in L$. Hence (Ma] = L or $(Ma] = \{0\}$. If $Ma = \{0\}$ then $(Ma]^2 \subseteq (MaMa] \subseteq (Ma] = \{0\}$, which is impossible by the assumption on S. Thus (Ma] = L. Since (aR] is a right ideal of S contained in R, we have (aR] = R or $(aR] = \{0\}$. If $(aR] = \{0\}$, then by hypothesis, we have $M = (LR] = (MaR] = (M(aR)] = \{0\}$, which is a contradiction to our assumption. This proves that (aR] = R. Then (a(RL)] = (aRL) = ((aR)L] = (RL). This implies $ax \leq b$ for some $x \in RL$. Dually (aM] is a right ideal contained in R. Then the case $(aM] = \{0\}$ is excluded as above, whence (aM] = R. If $(La) = \{0\}$ then we have $M = (LR] = (LaM)] = (LaM) = (\{0\}M] = \{0\}$, this is a contradiction. Thus

(La] = L, and hence (RL] = (R(La]] = (RLa] = ((RL]a]. Hence $ya \leq b$, for some $y \in (RL]$.

Corollary 3.3. Let (S, \cdot, \leq) be an ordered semigroup without nilpotent ideals and M be a minimal two-sided ideal of S containing at least one minimal left and at least one minimal right ideal of S. Let L be minimal left ideal of S contained in M, then for each $a \in L$ there exists an element $e \in L \setminus \{0\}$ such that $a \leq ea$.

Proof. Let $a \in L$. If a = 0 then $a \leq ea$. Now let $a \neq 0$. Let $(a)_l = (a \cup La]$. We know that $(a)_l$ is a minimal left ideal of S. Since (La] is a left ideal such that $(La] \subseteq (a \cup La]$. This implies $(La] = (a \cup La]$ or $(La] = \{0\}$ because $(a)_l$ is a minimal left ideal. By the proof of Theorem 3.2, we have $(La] \neq \{0\}$. We conclude that $(La] = (a \cup La]$. Hence $a \leq ea$ for some $e \in L \setminus \{0\}$. Hence, the theorem is proved.

The following theorem is proved dually:

Corollary 3.4. Let (S, \cdot, \leq) be an ordered semigroup without nilpotent ideals and M be a minimal two-sided ideal of S containing at least one minimal left and at least one minimal right ideal of S. Let R be minimal right ideal of S contained in M, then for each $a \in R$ there exists an element $f \neq 0$ in R such that $a \leq af$.

Corollary 3.5. Let (S, \cdot, \leq) be an ordered semigroup without nilpotent ideals and M be a minimal two-sided ideal of S containing at least one minimal left and at least one minimal right ideal of S. If R and L are minimal left and right ideal of S contained in M, then there exists $e \neq 0$ in (RL] such that $e \leq e^2$.

Proof. Since $(RL](RL] \subseteq (R(LRL)] \subseteq (RL]$, so that (RL] is closed. By Theorem 3.1, we have $(RL] \neq \{0\}$. Now let $a \in (RL]$ be such that $a \neq 0$. Since $(RL] \subseteq R \cap L$, implies $a \in L$ and $a \in R$, by the proof of Theorem 3.2, we have (aR] = R and (La] = L. Thus (RL] = ((aR](La]] = (aRLa] = (a(RL]a]. Hence $a \leq axa$ for some $x \in (RL]$. Since (RL] is closed, $ax \in (RL]$. This shows that $ax \leq (axa)x = (ax)(ax) = (ax)^2$ as required.

Corollary 3.6. Let (S, \cdot, \leqslant) be an ordered semigroup without nilpotent ideals and M be a minimal two-sided ideal of S containing at least one minimal left and at least one minimal right ideal of S. Let R and L be minimal left and right ideal of S contained in M. Let e be an element in (RL] such that $e \neq 0$ and $e \leqslant e^2$ then R = (eS], L = (Se]

Proof. It is clear that (eS] is a right ideal of S. We observe that $(eS] \subseteq ((RL]S] = (RLS] \subseteq R$. Then (eS] is contained in R. Since $0 \neq e \leq e^2 \in eS$, we have $(eS] \neq \{0\}$ By the minimality of R, this implies (eS] = R. Similarly, we obtain (Se] = L.

References

- [1] G. Birkhoff, Lattice Theory, 25, Amer. Math. Soc., Providence, 1984.
- [2] A.H. Clifford, Semigroups containing minimal ideals, Amer. J. Math., 70 (1948), 521-526.
- [3] A.H. Clifford, Semigroups without nilpotent ideals, Amer. J. Math., 71 (1949), 834-844.
- [4] T. Changphas, On left, right and two-sided ideals of an ordered semigroups having a kernel, Bull. Korean Math. Soc. 51 (2014), 1217 - 1227.
- [5] T. Changphas and J. Sanborisoot, On characterizations of (m, n)-regular ordered semigroups, Far East J. Math. Sci., 65 (2012), 75 - 86.
- [6] T. Changphas and J. Sanborisoot, Pure ideal in ordered semigroups, Kyungpook Math. J., 54 (2014), 123 - 129.
- [7] N. Kehayopulu, On weakly prime ideals of ordered semigroups, Math. Japon., 35 (1990), 1051-1056.
- [8] N. Kehayopulu, On ordered semigroups without nilpotent ideal elements, Math. Japon., 36 (1991), 323-326.
- [9] N. Kehayopulu and M. Tsingelis, On ordered semigroups which are semilattices of left simple semigroups, Math. Slovaca 63 (2013), 411-416.

Received May 21, 2018

Department of Mathematics , Faculty of Science, Mahasarakham University, Mahasarakham, 44150, Thailand E-mail: jatuporn.san@msu.ac.th