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Characterizations of π-t-simple ordered semigroups

by their ordered idempotents

Shauli Sadhya and Kalyan Hansda

Abstract. Here we extend the notion of π-groups in semigroups without order to ordered

semigroups. We call them π-t-simple ordered semigroups. Our approach allows one to see

the relations between Archimedean (t-Archimedean) ordered semigroups and π-t-simple ordered

semigroups. Furthermore we show that a completely π-regular ordered semigroup S such that for

any a, b ∈ S there exists an ordered idempotent e ∈ S with the property that ab, brar ∈
√
H(e)

for any r ∈ N, is a complete semilattice of π-t-simple ordered semigroups and conversely.

1. Introduction

Due to Cao and Xu [3], t-simple ordered semigroups play the same role in the
theory of ordered semigroups as groups in the theory of semigroups without order.
Bhuniya and Hansda [2] studied these ordered semigroups under the name of
group like ordered semigroups. Here we extend t-simple ordered semigroups to
π-t-simple ordered semigroups. Though these ordered semigroups were studied
by Cao and Xu [3], but not under the name of π-t-simple ordered semigroups.
The successful part of this paper is that our observation on π-t-simple ordered
semigroups coincides with [3]. This paper is inspired by the work done by Cao
and Xu [3].

Our paper is organized as follows. The basic de�nitions and properties of
ordered semigroups are presented in Section 2. Section 3 is devoted to π-t-simple
ordered semigroups and their relations with Archimedean ordered semigroups by
their ordered idempotents.

2. Preliminaries

By an ordered semigroup we mean a partially ordered set (S,6) which is at the
same time a semigroup (S, ·) such that for all a, b, x ∈ S, a 6 b implies xa 6 xb and
ax 6 bx. It is denoted by (S, ·,6). For an ordered semigroup S, we denote S1 =
S∪{1}, where 1 is a symbol, such that 1a = a, a1 = a for each a ∈ S and 1 ·1 = 1.
For every subset H ⊆ S, denote (H] = {t ∈ S : t 6 h, for some h ∈ H}. An
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element 0 in S is called a zero of S if 0 6 x and 0x = x0 = 0 for every x ∈ S. An
ordered semigroup S with 0 is called nil if for every a ∈ S there is n ∈ N such that
an = 0.

Let S be an ordered semigroup. A empty subset I of S is said to be a left (right)
ideal of S, if SI ⊆ I (IS ⊆ I) and (I] ⊆ I. If I is both a left and right ideal, then
it is called an ideal of S. We call S a (left, right) simple ordered semigroup if it
does not contain any proper (left, right) ideal.

Due to Kehayopulu [7], Green's relationH on an ordered semigroup S is de�ned
as follows: For a, b ∈ S, aHb if and only if a 6 xb, b 6 ya, a 6 bu, b 6 av for
some x, y, u, v ∈ S1. For a ∈ S, the H-class of a is denoted by H(a).

By radical of a subset A of an ordered semigroup S we shall mean the set
√
A

de�ned by
√
A = {x ∈ S : (∃ m ∈ N) xm ∈ A}. From [1], by the radical of a

relation ρ on an ordered semigroup S we mean the relation denoted by
√
ρ and

de�ned by a
√
ρ b if and only if there exist m, n ∈ N such that amρbn. Let ρ be an

equivalence relation on an ordered semigroup S. In a broad sense by ρ-unique we
shall mean the uniqueness with respect to the relation ρ. Thus if for a, b ∈ S we
have aρb, then we say that a and b are the same with respect to ρ. An equivalence
relation ρ on S is called a congruence if for all a, b, c ∈ S, aρb implies caρcb
and acρbc. A congruence ρ on S is called a semilattice congruence if for every
a, b ∈ S, aρa2 and abρba. By a complete semilattice congruence we mean a
semilattice congruence σ on S such that for a, b ∈ S, a 6 b implies that aσab. An
ordered semigroup S is called a complete semilattice of subsemigroups of type τ
if there exists a complete semilattice congruence ρ such that each ρ−congruence
class (x)ρ is a type τ subsemigroup of S. Equivalently [8], there exist a semilattice
Y and a family of subsemigroups {Sα}α∈Y of type τ of S such that:

1. Sα ∩ Sβ = φ for any α, β ∈ Y with α 6= β,

2. S =
⋃
α ∈ Y Sα,

3. SαSβ ⊆ Sα β for any α, β ∈ Y,

4. Sβ ∩ (Sα] 6= φ implies β � α, where � is the order of the semilattice Y
de�ned by �:= {(α, β) | α = α β (β α)}.

An ordered semigroup S is said to be regular (resp. completely regular) ordered
semigroup if for every a ∈ S, a ∈ (aSa] (resp. a ∈ (a2Sa2]). If a ∈ (Sa2S] for
every a ∈ S, then S is called intra-regular. An ordered semigroup S is called
π-regular (resp. completely π-regular) if for every a ∈ S there is m ∈ N such that
am ∈ (amSam] (resp. am ∈ (a2mSa2m]). The set of regular, completely regular,
intra-regular and π-regular elements in an ordered semigroup S is denoted by
Reg6(S), Gr6(S), Intra(S) and πReg6(S) respectively. An element e ∈ S is
called an ordered idempotent (cf. [2]) if e 6 e2. We denote the set of all ordered
idempotents of an ordered semigroup S by E6(S). An ordered semigroup S is
said to be weakly commutative if for all a, b ∈ S, (ab)n ∈ (bSa] for some n ∈ N.
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An ordered semigroup S is called a t-simple ordered semigroup (cf. [3]) if for
all a, b ∈ S there are x, y ∈ S such that a 6 xb and a 6 by. For e ∈ S, denote
Ge = {a ∈ S : a 6 ea, a 6 ae and e 6 za, e 6 az for some z ∈ S} (cf. [2]).
Now if S is completely regular then we can �nd z ∈ Ge and Ge forms a t-simple
ordered subsemigroup of S (see [2]).

An ordered semigroup S is said to be Archimedean if for every a, b ∈ S there
exists n ∈ N such that an ∈ (SbS]. An ordered semigroup S is said to be left (right)
Archimedean if for every a, b ∈ S there exists n ∈ N such that an ∈ (Sb] (an ∈
(bS]). An ordered semigroup S is said to be t-Archimedean if for every x, y ∈ S
there exists m ∈ N such that ym ∈ (xSx].

Theorem 2.1. (cf. [2]) Every t-simple ordered semigroup is completely regular.

Theorem 2.2. (cf. [2]) A regular ordered semigroup S is a t-simple ordered

semigroup if and only if for all e, f ∈ E6(S), eHf .

Cao and Xu [3] de�ned a nil-extension of an ordered semigroup as follows:
Let I be an ideal of an ordered semigroup S. Then (S/I, ·,�) is called the

Rees factor ordered semigroup of S modulo I, and S is called an ideal extension
of I by the ordered semigroup S/I. Moreover S is said to be a nil-extension of I
if (S/I, ·,�) is a nil ordered semigroup.

3. Main results

Due to Cao and Xu [3, Corollary 5.2 ], an ordered semigroup S is a nil-extension
of a t-simple ordered semigroup if and only if for every a, b ∈ S there exists m ∈ N
such that am ∈ (bnSbn] for every n ∈ N. Thus there may exist a t-simple ordered
subsemigroup H of an ordered semigroup S such that am ∈ H for every a ∈ S and
some m ∈ N. So it is a very logical step to study the class of ordered semigroups
of this type . This section is devoted to characterize these ordered semigroups.

Example 3.1. The set S = {a, b, c, d, e} with respect to the multiplication ′·′ and
the order ′ 6′ below is an ordered semigroup.

· a b c d e
a a b a a a
b b b b b b
c a b a a a
d a b a a a
e a b a a d

6= {(a, a), (a, b), (a, d), (a, e), (b, b), (c, b), (c, c), (c, e), (d, b), (d, d), (d, e), (e, e)}.
Now the subsetsH1 = {a, b} andH2 = {a, b, c} are t-simple ordered subsemigroups
of S, and for every x ∈ S there exist m,n ∈ N such that xm ∈ H1 and xn ∈ H2.
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De�nition 3.2. Let S be an ordered semigroup. Then S is said to be a π-t-simple

ordered semigroup if there exists a t-simple ordered subsemigroup H of S with the
property that for every a ∈ S there exists m ∈ N such that am ∈ H.

The ordered semigroup S, in Example 3.1 is a π-t-simple ordered semigroup.
It is noted that H may not be unique.

A completely π-regular ordered semigroup may not be a π-t-simple ordered
semigroup.

Example 3.3. The set S = {a, b, c, d, e} with respect to the multiplication ′·′ and
the order ′ 6′ de�ned below is a completely π-regular ordered semigroup.

· a b c d e
a a a a a a
b b b b b b
c b b c b b
d a b b d b
e b b b b b

6= {(a, a), (a, b), (a, e), (b, b), (c, b), (c, c), (c, e), (d, b), (d, d), (d, e), (e, e)}. The sub-
set H= {a, b, c, d} is a subsemigroup of S. Here H is not a t-simple ordered semi-
group but still there is m ∈ N such that xm ∈ H for every x ∈ H.
If we take {a, c} or {a, b} or {a, d} or {b, c} or {b, d}, then also the conditions of
S to be π-t-simple ordered semigroup do not hold.

Some characterizations of a π-t-simple ordered semigroup by its ordered idem-
potents have been given in the following theorem.

Theorem 3.4. Let S be an ordered semigroup. Then the following conditions are

equivalent:

(1) S is a π-t-simple ordered semigroup;

(2) S is a nil-extension of a t-simple ordered semigroup;

(3) For any a, b ∈ S there exists m ∈ N such that am ∈ (bamSamb];

(4) S is completely π-regular and contains an H-unique ordered idempotent;

(5) S is π-regular and contains an H-unique ordered idempotent;

(6) S is t-Archimedean with an ordered idempotent.

Proof. (1) ⇒ (4): Suppose S satis�es (1) and let a ∈ S. Then there exist a
t-simple ordered subsemigroup H of S and m ∈ N such that am ∈ H. Since
also a2m ∈ H, there exists s ∈ H such that am 6 a2ms. Furthermore, since
s, a2m ∈ H, we obtain s 6 ta2m for some t ∈ H. Hence am 6 a2ms 6 a2mta2m,
and thus am ∈ (a2mSa2m], which shows that S is completely π-regular.



Characterizations of π-t-simple ordered semigroups 123

Let e, f ∈ E6(S). Then there are m,n ∈ N such that em, fn ∈ H. Since H
is a t-simple ordered subsemigroup, em 6 fnx, em 6 yfn, fn 6 emu, fn 6 vem

for some x, y, u, v ∈ H. Thus e 6 em 6 fnx = f(fn−1x), which implies that
e 6 fs1 for some s1 ∈ S1. Similarly we obtain that e 6 s2f, f 6 es3, f 6 s4e
with s2, s3, s4 ∈ S1. Hence eHf .

(4)⇒ (5): This implication is obvious.

(5) ⇒ (6): Assume (5) holds and let a, b ∈ S. Since S is π-regular, am 6
amsam and bn 6 bntbn for some s, t ∈ S and m,n ∈ N. Since ams, bnt, sam, tbn ∈
E6(S) and ordered idempotents of S are H-unique, there exists x, y ∈ S1 such
that ams 6 bntx and sam 6 ytbn. Hence am 6 amsam 6 (ams)am(sam) 6
bntxamytbn and thus am ∈ (bSb], which shows that S is t-Archimedean with an
ordered idempotent.

(6) ⇒ (3): Assume S is t-Archimedean, e ∈ E6(S) and a, b ∈ S. Since S is t-
Archimedean, am 6 ese for some m ∈ N and s ∈ S. Furthermore, since e ∈ E6(S)
and S is t-Archimedean, for some x, y ∈ S we have e 6 bamxbam and e 6 ambyamb.
Hence am 6 ese 6 (bamxbam)s(ambyamb), and thus am ∈ (bamSamb].

(3) ⇒ (2): Assume (3) and let a, b ∈ S. Then am 6 bamsamb for some
m ∈ N and s ∈ S. Hence am 6 bamsamb 6 b(bamsamb)samb = b2am(samb)2 6
b2(bamsamb)(samb)2 = b3am(samb)3 6 · · · . Continuing in this way we obtain
am 6 bm+1am(samb)m+1 and thus am ∈ (bm+1Sb]. Hence (2) holds by [3, Corol-
lary 5.2].

(2)⇒ (1): This implication is obvious.

Corollary 3.5. Every π-t-simple ordered semigroup is a nil-extension of a com-

pletely regular ordered semigroup.

Proof. The result follows from Theorems 2.1 and 3.4.

Theorem 3.6. An ordered semigroup S is a π-t-simple ordered semigroup if and

only if S is weakly commutative and Archimedean with an H-unique ordered idem-

potent.

Proof. First suppose that S is a weakly commutative and Archimedean ordered
semigroup with an H-unique ordered idempotent e. Then e 6 e(e2)e. Therefore
e ∈ Intra(S) so that Intra(S) 6= φ. Then S is a nil-extension of a simple ordered
semigroup K by Theorem 3.5 of [3]. Let a ∈ K. Since K is simple, a 6 xa3y for
some x, y ∈ K. Then a 6 xa3y 6 (xa)a(ay) 6 (xa)2a(ay)2 6 . . . 6 (xa)ra(ay)r

for every r ∈ N. Since S is weakly commutative, there exist m,n ∈ N such
that (xa)m ∈ (aSx] and (ay)n ∈ (ySa]. Thus there exist z, w ∈ S such that
(xa)mn 6 azx and (ay)mn 6 ywa. Hence a 6 (xa)mna(ay)mn 6 azxaywa. Since
K is an ideal of S, it follows that zxayw ∈ K and thus a ∈ (aKa]. Hence K is a
regular ordered semigroup.

Let e, f ∈ E6(K). Then by given condition eHf in S. Since K is an ideal of S,
it is evident that eHf in K also. Therefore K is a t-simple ordered semigroup by
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Theorem 2.2 and S is a nil-extension of the t-simple ordered semigroup K. Hence
S is a π-t-simple ordered semigroup by Theorem 3.4.

Conversely suppose that S is a π-t-simple ordered semigroup and H is a t-
simple ordered subsemigroup of S such that for every x ∈ S, xm ∈ H for some
m ∈ N. Let a, b ∈ S. Then (ab)m, (ba)n ∈ H for some m,n ∈ N. Since H is a
t-simple ordered semigroup, (ab)m ∈ ((ba)nH(ba)n] ⊆ ((ba)nS(ba)n]
⊆ (bSa]. Thus S is weakly commutative.

Also ap, bq ∈ H for some p, q ∈ N. Since H is a t-simple ordered subsemigroup,
we have ap 6 xbq = xbbq−1 for some x ∈ S. Therefore, ap ∈ (SbS] for some
p ∈ N, which shows that S is Archimedean. Also there is an H-unique ordered
idempotent by Theorem 3.4.

Lemma 3.7. Let S be a completely π-regular ordered semigroup. Then for every

a ∈ S there exist e ∈ E6(S) and m ∈ N such that am 6 ame, am 6 eam,
e 6 zam, and e 6 amz for some z ∈ S, that is am ∈ Ge.

Proof. Let S be a completely π-regular ordered semigroup. Let a ∈ S. Then there
exists x ∈ S such that am 6 a2mxa2m for some m ∈ N. Let e = a2mxa2mxa2m.
Then we have e = a2mxa2mxa2m 6 a2mxamamxa2m 6 (a2mxa2mxa2m)amxa2m 6
e(a2mxa2mxa2m) = e2. Therefore e ∈ E6(S).

Now am 6 a2mxa2m 6 am(a2mxa2mxa2m) = ame and am 6 a2mxa2m 6
(a2mxa2mxa2m)am = eam. Also e = a2mxa2mxa2m 6 (a2mxa2mxa2mxa2m)am

and likewise e 6 am(a2mxa2mxa2mxa2m). Denote z = a2mxa2mxa2mxa2m. Then
e 6 zam and similarly e 6 amz. Thus am ∈ Ge . This completes the proof.

In the above lemma, it should be noted that z = a2mxa2mxa2mxa2m 6
a2mxa2mxa2mxa3mxa2m = zamxa2m 6 za2mxa2mxa2m = ze. Similarly z 6 ez.
This shows that z ∈ Ge.

Lemma 3.8. Let S be a completely π-regular ordered semigroup. Then the fol-

lowing statements hold in S:

(1) For every e ∈ E6(S), Ge ⊆ H(e).

(2) For every a ∈ S, there are e ∈ E6(S) and m ∈ N such that am ∈ H(e).

Proof. (1): Let x ∈ Ge. Then x 6 xe, x 6 ex, e 6 xz, e 6 zx for some z ∈ S.
Hence xHe that is x ∈ H(e). Therefore Ge ⊆ H(e).

(2): This follows from Lemma 3.7.

The following theorem is an extension of Corollary 5.3 of [3], that enables one
to see the complete semilattice decomposition of π-t-simple ordered semigroups by
their ordered idempotents.

Theorem 3.9. Let S be an ordered semigroup. Then the following conditions are

equivalent:
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(1) S is a complete semilattice of π-t-simple ordered semigroups;

(2) S is completely π-regular and for every a, b ∈ S there is e ∈ E6(S) such that

ab, brar ∈
√
H(e) for any r ∈ N;

(3) for all a, b ∈ S there exists n ∈ N such that (ab)n ∈ (b2nSa2n].

Proof. (1) ⇒ (2): Let S be a complete semilattice Y of π-t-simple ordered semi-
groups {Sα}α∈Y . By Theorem 3.4 all the semigroups Sα are completely π-regular
and thus so is S. Let a, b ∈ S. Then a ∈ Sα and b ∈ Sβ for some α, β ∈ Y . For any
r ∈ N we have that ar ∈ Sα and br ∈ Sβ , and thus ab, brar ∈ Sαβ . From Theorem
3.4 it follows that Sαβ contains an ordered idempotent e which is H-unique in
Sαβ . By Lemma 3.8 (applied to the semigroup Sαβ) there exists m ∈ N such that
(ab)m ∈ H(e) and, by the same lemma, for any r ∈ N there exists n ∈ N such that
(brar)n ∈ H(e). Thus ab, brar ∈

√
H(e).

(2) ⇒ (3): Suppose that the condition (2) holds in S. Let a, b ∈ S. Since S
is completely π-regular, there exists n ∈ N such that (ab)n 6 (ab)2nx(ab)2n for
some x ∈ S. By given condition there is e ∈ E6(S) such that ab, brar ∈

√
H(e)

for all r ∈ N. This implies (ab)s, (brar)t ∈ H(e) for some s, t ∈ N. Tak-
ing r = 2n we have, (ab)s, (b2na2n)t ∈ H(e) . Now (ab)s 6 y1(b

2na2n)t 6
y1(b

2na2n)t−1b2na2n and (ab)s 6 (b2na2n)tz1 6 b2na2n(b2na2n)t−1z1 for some
y1, z1 ∈ S1. Therefore we have (ab)s 6 yb2na2n and (ab)s 6 b2na2nz for y =
y1(b

2na2n)t−1, z = (b2na2n)t−1z1 ∈ S1. Also we have (ab)n 6 (ab)2nx(ab)2n. If
s 6 n, then (ab)n 6 (ab)2nx(ab)2n 6 (ab)n+su(ab)n+s 6 (ab)s(ab)nu(ab)n(ab)s 6
b2na2nz(ab)nu(ab)nyb2na2n for some u ∈ S. Therefore (ab)n ∈ (b2nSa2n]. If s ≥ n,
then (ab)n 6 (ab)2nx(ab)2n 6 (ab)3nx(ab)2nx(ab)2nx(ab)3n 6 · · · and thus for any
k ∈ N there exists w ∈ S such that (ab)n 6 (ab)k+nw(ab)k+n . By taking k = s
and proceeding as in the previous case we get (ab)n ∈ (b2nSa2n].

(3)⇒ (1): Suppose that the condition (3) holds in S. Then for all a, b ∈ S there
exists n ∈ N such that (ab)n ∈ (b2nSa2n] ⊆ (bSa]. Thus S is weakly commutative.
Taking b = a we can prove that S is π-regular. Hence S is a complete semilattice
of π-t-simple ordered semigroups, by [3, Corollary 5.3].
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