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Uni�ed method for de�ning �nite

associative algebras of arbitrary even dimensions

Nikolay Moldovyan

Abstract. There is introduced a general method for de�ning �nite associative algebras of

arbitrary even dimension. The method consists in de�ning the multiplication operation in the

�nite vector space of even dimension with using some uni�ed basis vector multiplication table.

In the cases m = 2 and m = 4 the constructed algebras are commutative rings. In the cases

m > 6 the algebras are non-commutative rings. Finite non-commutative associative algebras

of dimension greater or equal to 6 are useful for de�ning discrete logarithm problem in hidden

cyclic group which is attractive as primitive of the post-quantum cryptographic algorithms and

protocols.

1. Introduction

One of the actual problems in the area of cryptography relates to construction of
the post-quantum public-key cryptoschemes [2, 10].

The computational di�culty of the discrete logarithm problem (DLP) in hid-
den cyclic group de�ned in a �nite non-commutative algebra was proposed as
primitive for designing post-quantum cryptoschemes [5, 7, 9]. However, it has
been shown in [1] that for the known implementations of mentioned hard problem
the last can be reduced to DLP in �nite �elds. Therefore, to provide high secu-
rity (against cryptanalysis with using quantum computers) of the cryptoschemes
based on computational di�culty of DLP in hidden group one should de�ne the last
problem in some other �nite non-commutative associative algebras (FNAAs) [1].
Unfortunately, in the literature few m-dimensional FNAAs are presented for cases
m = 2 [3], m = 3 [4], m = 4 [5], and m = 8 [6].

In this paper, a uni�ed method for de�ning FNAAs of arbitrary even dimen-
sion m > 6 is introduced. The method consists in de�ning the multiplication
operation in the m-dimensional vector space by using basis vector multiplication
table (BVMT) of some general type. The proposed BVMT de�nes an operation
for multiplying the vectors in all cases of the even dimension m. It is shown that
this operation is associative, non-commutative for m > 6 and commutative for
m = 2 and m = 4.
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2. De�ning FNAAs of even dimensions

Suppose e0, e1, ... em−1 are m formal basis vectors and ao, a1, . . . am−1 ∈ GF (pd)
(where p > 2 is a prime number and d > 1 is a natural number) are coordinates
of the vector A that is represented in the following two forms:

A = a0e0 + a1e1 + · · ·+ am−1em−1;

A = (a0, a1, . . . , am−1) .

Terms aiei, where i = 0, 1, . . . ,m− 1, are called components of the vector.
Addition of two vectors A =

∑m−1
i=0 aiei and B =

∑m−1
j=0 bjej is de�ned in the

usual form by

A+B =

m−1∑
i=0

(ai + bi) ei.

Note that + denotes the addition operation in the m-dimensional vector space and
the addition operation in the �eld GF (pd).

The multiplication operation ◦ of two m-dimensional vectors A and B as ele-
ments of some �nite associative algebra is de�ned with the following formula

A ◦B =

(
m−1∑
i=0

aiei

)
◦

m−1∑
j=0

bjej

 =

m−1∑
j=0

m−1∑
i=0

aibjei ◦ ej , (1)

where the product ei◦ej for all possible pairs of the values i and j is to be replaced
by some one-component vector in accordance with the BVMT shown in Table 1,
where µ ∈ GF (pd) is some �xed value called structural coe�cient, assuming that
the left basis vector ei de�nes the row and the right one ej de�nes the column.
Thus, the intersection of the ith row and jth column gives the value of the product
ei ◦ ej .

The structure of the Table 1 is described as follows. For every even value i the
ith row represents result of the left rotation of the initial row (e0, e1, . . . , em−1)
by i positions. The (i + 1)th row represents result of the right rotation of the
sequence of the single-component vectors µe0, em−1, µem−2, . . . , µe2, e1 by i + 1
positions, where the structural coe�cient µ is written at the basis vectors having
even numbers.

For all pairs of integers i, j ∈ {0, 1, , . . . ,m − 1} Table 1 de�nes the following
simple formula for product of the basis vectors ei and ej :

ei ◦ ej =


ei+j , for even i

ei−j , for odd i and even j

µei−j , for odd i and odd j

(2)

It is supposed that in formula (2) addition and subtraction are performed
modulo m. Using (1) and (2) one can easily prove the following statement.
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Proposition 2.1. The multiplication operation de�ned by Table 1 is associative.

Proof. Using formula (1) for product of three vectors A, B, and C =
∑m−1

k=0 ckek
one can get the following

(A ◦B) ◦ C =

m−1∑
i=0

m−1∑
j=0

m−1∑
k=0

aibjck (ei ◦ ej) ◦ ek;

A ◦ (B ◦ C) =

m−1∑
i=0

m−1∑
j=0

m−1∑
k=0

aibjckei ◦ (ej ◦ ek) .

(3)

Thus, it is su�cient to show that for arbitrary possible triple (i, j, k) the fol-
lowing formula holds

(ei ◦ ej) ◦ ek = ei ◦ (ej ◦ ek) . (4)

We have the following cases.
Case 1: each one of the values i and j is even (k is even or odd). Then from

(2) one gets
(ei ◦ ej) ◦ ek = ei+j ◦ ek = ei+j+k;

ei ◦ (ej ◦ ek) = ei ◦ ej+k = ei+j+k.

Case 2: the value i is even and the each of the values j and k is odd.

(ei ◦ ej) ◦ ek = ei+j ◦ ek = µei+j−k;

ei ◦ (ej ◦ ek) = ei ◦ (µej−k) = µei+j−k.

Case 3: each one of the values i and k is even and the values j is odd.

(ei ◦ ej) ◦ ek = ei+j ◦ ek = ei+j−k;

ei ◦ (ej ◦ ek) = ei ◦ ej−k = ei+j−k.

Case 4: every one of the values i, j, and k is odd .

(ei ◦ ej) ◦ ek = µei−j ◦ ek = µei−j+k;

ei ◦ (ej ◦ ek) = ei ◦ (µej−k) = µei−j+k.

Case 5: each one of the values i and j is odd and the value k is even.

(ei ◦ ej) ◦ ek = µei−j ◦ ek = µei−j+k;

ei ◦ (ej ◦ ek) = ei ◦ ej−k = µei−j+k.

Case 6: the value i is odd and each one of the values j and k is even.

(ei ◦ ej) ◦ ek = ei−j ◦ ek = ei−j−k;

ei ◦ (ej ◦ ek) = ei ◦ ej+k = ei−j−k.
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Case 7: each one of the values i and k is odd and the value j is even.

(ei ◦ ej) ◦ ek = ei−j ◦ ek = µei−j−k;

ei ◦ (ej ◦ ek) = ei ◦ ej+k = µei−j−k.

Thus, in all cases formula (4) is valid and therefore, Proposition 2.1 holds.

Proposition 2.2. The vector U = (u0, u1, . . . , ui, . . . , um−1) , where u0 = 1 and

ui = 0 for i = 1, 2, . . . ,m − 1, is the bi-side unit of the m-dimensional �nite

associative algebra in which the multiplication operation is de�ned by Table 1.

Proof. Using formula (1) for products A ◦ U and U ◦ A, where A is an arbitrary
vector of the m-dimensional FNAA, one can get

A ◦ U =

m−1∑
i=0

m−1∑
j=0

aiuj (ei ◦ ej) =

m−1∑
i=0

0∑
j=0

aiuj (ei ◦ ej) =

m−1∑
i=0

aiu0ei±0 = A;

U ◦A =
m−1∑
i=0

m−1∑
j=0

uiaj (ei ◦ ej) =

0∑
i=0

m−1∑
j=0

u0aj (e0 ◦ ej) =

m−1∑
j=0

ajej = A.

Thus, A ◦ U = U ◦A = A.

Table 1: The BVMT for de�ning m-dimensional FNAA (addition and subtraction
is performed modulo m; the value i is even; j is odd)

◦ e0 e1 e2 ... ej ... em−1
e0 e0 e1 e2 ... ej ... em−1
e1 e1 µe0 em−1 ... µe1−j ... µe2
... ... ... ... ... ... ... ...
ei ei ei+1 ei+2 ... ei+j ... ei+m−1

ei+1 ei+1 µei ei−1 ... µei+1−j ... µei+1−(m−1)
... ... ... ... ... ... ... ...

em−1 em−1 µem−2 em−3 ... µej−(m−1) ... µe0

It is easy to see that for the cases m = 2 and m = 4 Table 1 de�nes �nite
algebras with commutative multiplication operation. For even dimensions m > 6
the de�ned �nite algebras are non-commutative. Indeed, in a general case the
operation ◦ is non-commutative. For example, for even i and odd j we have

ei ◦ ej = ei+j ;

ej ◦ ei = ej−i.

In the case of 4-dimensional vectors one can de�ne FNAAs insetting some addi-
tional structural coe�cient equal to p − 1 in several cells of the BVMT as it is
shown in Table 2 for the following variants:
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Table 2: De�ning the 4-dimensional FNAAs

◦ e0 e1 e2 e3
e0 e0 e1 e2 e3
e1 e1 τµe0 τεe3 εµe2
e2 e2 σe3 σe0 e1
e3 e3 στµe2 σετe1 εµe0

i) ε = p− 1; τ = σ = 1,
ii) σ = p− 1; τ = ε = 1,
iii) τ = p− 1; ε = σ = 1, and
iv) σ = µ = p− 1; τ = ε = 1.

Note the last case represents the �nite algebra of quaternions [7].

3. Some properties of the 6-dimensional FNAAs

In the case m = 6 the vector equation

A ◦X = E

can be reduced to the following system of six linear equations with unknowns
x0, x1, x2, x3, x4, x5 ∈ GF (pd) :

a0x0 + µa1x1 + a4x2 + µa3x3 + a2x4 + µa5x5 = 1

a1x0 + a0x1 + a3x2 + a4x3 + a5x4 + a2x6 = 0

a2x0 + µa3x1 + a0x2 + µa5x3 + a4x4 + µa1x5 = 0

a3x0 + a2x1 + a5x2 + a0x3 + a1x4 + a4x5 = 0

a4x0 + µa5x1 + a2x2 + µa1x3 + a0x4 + µa3x5 = 0

a5x0 + a4x1 + a1x2 + a2x3 + a3x4 + a0x5 = 0

(5)

If the determinant ∆A of the system (5) is not equal to zero, then the vector A
is invertible and its inverse value A−1 can be computed as a solution of (5). If
∆A = 0, then the vector A is non-invertible one.

If the vector A is invertible, then the sequence A,A2, ..., Ai, ... (for i = 1, 2, 3, ...)
is periodic and for some two integers h and z > h we have Ah = Az and Az =
Az−h◦Ah = Ah◦Az−h, i.e., for some minimum integer ω (called order of the vector
V ) the equality Aω = E holds. From the last formula one can get A−1 = Aω−1.

The performed computational experiments have shown that in the 6-dimensional
FNAA de�ned over the ground �eld GF (p) for di�erent values p the invertible vec-
tors have orders that divide the value

p2 − 1 = (p− 1)(p+ 1).
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For de�ning the DLP in hidden group [5] there are to be used FNAAs that contain
elements having su�ciently large prime order. Besides, as it was shown in [6]
for designing cryptoschemes base on the DLP in a hidden group one should use
vectors order of which does not divide the value p − 1. To satisfy the mentioned
requirements one can choose primes p such that the divisor q = p+1

2 is prime. The
following example illustrate the last fact:

p = 134308781033319330362776166404271867531448198177182217544

8157873325740229551204472554965682845532836768511501;

q = 671543905166596651813880832021359337657240990885911087724

078936662870114775602236277482841422766418384255751.

We propose the following modi�cation of the DLP in hidden group, which is
described by the following formula for computing the public key:

Y = V ω−s ◦Nx ◦ V s, (6)

where V is some invertible vector having order equal to ω = p2 − 1; N is some
non-invertible vector having local order equal to the value q|p + 1; the pair of
integers (s, x) is the private key.

The notion of the local order is connected with the notion of the local unit
element E′ such that: i) E′ 6= E and ii) E′ ◦ N = N ◦ E′ = N. The performed
experiments have shown that in the considered 6-dimensional FNAA there exist
non-invertible vectors N ′ having local order equal to the value p2 − 1. Using such

vectors one can easily compute the vectors N = N ′
p2−1

q that have the required
order q|(p+ 1).

A computationally e�cient method for generating non-invertible vectors can
be proposed on the base of consideration of the value of the main determinant ∆
of the system (5). One can derive the following formula for the determinant ∆ :

∆ =
1

4
((a0 + a2 + a4)

2 − µ (a1 + a3 + a5)
2
)×

× ((a0 − a2)
2

+ (a0 − a4)
2

+ (a2 − a4)
2−

− µ (a1 − a3)
2 − µ (a1 − a5)

2 − µ (a3 − a5)
2
)2

(7)

A vector N = (a0, a1, a2, a3, a4, a5) is non-invertible if its coordinates satisfy the
condition ∆ = 0. The expression (7) shows that two di�erent subsets of non-
invertible vectors are contained in the considered FNAA. The �rst subset includes
the vectors satisfying the condition

(a0 + a2 + a4)
2

= µ (a1 + a3 + a5)
2
. (8)

The second subset includes the vectors satisfying condition

(a0 − a2)
2

+ (a0 − a4)
2

+ (a2 − a4)
2

= µ
(

(a1 − a3)
2

+ (a1 − a5)
2

+ (a3 − a5)
2
)
.
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From the equation (8) one obtains that: if the structural coe�cient µ is a
quadratic non-residue modulo p, then the �rst subset contains only the zero vector
(0, 0, 0, 0, 0, 0).

If the value µ is a quadratic residue modulo p, then a non-invertible vector
N1 = (a0, a1, a2, a3, a4, a5) contained in the �rst subset can be found as follows:

1. Generate random values a1, a2, a3, a4, a5 ∈ GF (p).

2. Compute the value g = µ (a1 + a3 + a5) mod p.

3. Compute the value a0 = g − a2 − a4 mod p.

If the value µ is a quadratic non-residue modulo p, then a non-invertible vector
N2 = (a0, a1, a2, a3, a4, a5) contained in the second subset can be found as follows:

1. Generate random values a1, a2, a3, a4, a5 ∈ GF (p).

2. Compute the value h = µ
(

(a1 − a3)
2

+ (a1 − a5)
2

+ (a3 − a5)
2
)

mod p.

3. Compose the quadratic equation

z2 − z(a2 + a4) +
h+ (a2 − a4)

2
+ a22 + a24

2
≡ 0 mod p. (9)

(with the unknown value z) and compute discriminant of the equation (9):

d =

(
a2 + a4

2

)2

− h+ (a2 − a4)
2

+ a22 + a24
2

.

4. If d is a quadratic residue modulo p, then compute one of the roots of the
equation (9): z0 = a2+a4

2 −
√
d. Otherwise go to step 1.

5. Take the value z0 as the value a0, i.e., a0 = z0.

4. Conclusion

A general method for de�ning FNAAs for arbitrary even dimensionm > 6 has been
introduced. The method also provides construction of �nite associative algebras
for cases m = 2 and m = 4, however the algebras are commutative in those
cases. In the case of de�ning �nite associative algebra over 4-dimensional vector
space, the non-commutativity of the multiplication operation can be obtained by
insetting a structural coe�cient equal to p−1 in some cells of the proposed general
BVMT. As a particular case we have the �nite algebra of quaternions.

In the cases m > 6 the algebras are non-commutative rings with a global bi-
side unit. The �nite algebras of the dimensions m = 6 and m = 8 are useful as
carriers of the discrete logarithm problem in a hidden cyclic group. A modi�cation
of the DLP in hidden group has been given, in which non-invertible elements of
the FNAA are used. In the case of the 6-dimensional FNAA methods for �nding
non-invertible vectors have been proposed. Detailed investigation of the properties
of the 6- and 8-dimensional FNAAs appear to be a topic of an individual study.
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