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Maximal non-commuting set in finite odd order

metacyclic p-group
Pradeep Kumar

Abstract. Let G be a finite group and W be a subset of G. If ab # ba for any two distinct
elements a and b in W, then W is said to be a non-commuting set. Further, if |W| > |X| for
any other non-commuting set X in G, then W is said to be a maximal non-commuting set.
Fouladi and Orfi determined in [3] the size of maximal non-commuting sets in finite non-abelian

metacyclic p-groups. Below we give an elementary proof of this result.

1. Introduction

Let G be a finite group and W be a subset of G. If for any two distinct elements
a,b € W, [a,b] = a~'b~lab # 1, then W is said to be a non-commuting set.
The size of a maximal non-commuting set is denoted by w(G). Also w(G) is
known as the clique number of the non-commuting graph of a finite group G. The
non-commuting graph of a finite group G with the center Z(G) is a graph with
vertex set G\Z(G) and two vertices are joined if and only if they do not commute.
Moreover, w(G) is related to the index of Z(G). Namely, as proved Pyber [7], there
is a constant ¢ such that |G : Z(G)| < ¢*(9). By a famous result of Neumann |6],
answering Erdds’s question, the finiteness of w(G) is equivalent to the finiteness
of the factor group G/Z(G). More interesting results on w(G) one can find in
[1, 3, 4].

In this paper, we give an elementary proof of the theorem of Fouladi and Orfi
for finite non-abelian metacyclic p-groups, i.e., finite non-abelian p-groups G with
a cyclic normal subgroup H such that the factor group G/H is also cyclic.

2. Preliminaries

We will start with the basic facts that will be needed later.

Lemma 1. (cf. [4]) Let G be a group and W be a non-commuting set in G such

that G = |J Cg(a) and Cg(a) is abelian for each a € W. Then W is a mazimal
acW

non-commuting set in G, and w(G) = |W/|.
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Proposition 1. (cf. [2, Proposition 1]) Let n be a natural number and p be a
prime number. Let V,(n) denote the exact power of p dividing n. If k = 1(mod p)
and p > 2, then Vy(n) = V,(1+ k+k*+ -+ k"7 1).

Lemma 2. Let k = 1(modp), 1 <t < p' and p be an odd prime number. Then
1+k+k2+E +- + k1 = 0(modp') if and only if t = p'. Moreover, if
ged(t,p) =1, then ged(1 +k+---+ k=1 p) = 1.

Proof. This follows from Proposition 1. O

Let G be a finite odd order non-ablelian metacyclic p-group and (a) be a cyclic
subgroup generated by element a € G. Further, suppose a is such that {(a) < G
and G/(a) is cyclic. Then there exists an element b € G and a number k£ > 1
such that G = (b,a) and b~'ab = a*. Every element of G can be written in the
form b’a’ for i,j > 0. For more details see [8]. Let v2(G) denote the commutator
subgroup of the group G. With above notation, we have the following two lemmas:

Lemma 3. (cf. [3, Lemma 2.1])

1. k = 1(mod p).

2. Any two arbitrary elements g1 = b’a’ and g2 = b°a” in G commute if and only
f(l+k+k 4+ i=Q+k+k2 4+ 4+ k7 )r(mod |12 (G)|), where
i,5,7,5 >0 and take 1L + k+--- + k"1 =0 forn =0.

3. (bai)" = brai (kR for i > 1.

Lemma 4. (cf. [5]) If |1(G)| = p', then Z(G) = (b, a?').

3. Construction of a maximal non-commuting set

We will construct a maximal non-commuting set by a method used in [4].

Let G = (b,a), where b~'ab = a*, be a non-abelian metacylic p-group of a
finite odd order and |y2(G)| = p.

We will construct a non-commuting set X in G. It is clear that the elements
of X are contained in distinct non-trivial cosets of Z(G) in G. By Lemma 4, we

have
pl—1

G:Z(G)UAlLJAQU( U AS,S)»

s=1

1. l_q . l_q .
where A; = /] b Z(G), Ay = U, a'Z(G) and A3, = J}_| b%a’Z(G) for
1<s< pl — 1.

It is evident that any two elements of A,,,, m = 1,2, commute with each other,
so X can contain at most one element from each A,,, m = 1,2. We have that
ba # ab. So, take b € Ay and a € A in the set X. Now, we determine the possible
choices of elements from A3 s that can be included in the set X.

Suppose, s = 1. Then [ba’,a] = 1 if and only if 1 = 0(mod p') (Lemma 3), that
is not possible. Again, ba’ commutes with b if and only if i = 0(mod p') (Lemma
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3). Thus, for i € {1,2,...,p' — 1}, ba’ does not commute with a,b. Further, if
[ba’,ba"] = 1, then i = r(mod p') (Lemma 3). Thus, X can contain at most p' — 1
elements from Az ;. Now take subset {ba’ | 1 < i < p! — 1} from Aj; in the set
X. Thus S; = {b,a,ba’ | 1 <i<pl -1} C X.

Now, suppose ged(s,p') = 1 and s # 1. By Lemma 3, [b%a’,ba"] = 1 if and
only ifi = r(1+k-+k%+---+k* 1) (modp'). Since, by Lemma 2, gcd(1+k+---+
k5=, p') = 1, so the last congruence has a solution r € {1,2,...,p" —1}. Thus for
each b%a’ € A3 ¢ there exists 7 € {1,2,...,p' — 1} such that [b*a’,ba"] = 1. So, X
does not contain any element from As; ; in this case.

Again, take s = p®, 1 < a <1 — 1. We have [0?"a’,b”"a’] = 1 if and only if
i(l+k+-+ k") =41+k+---+ k" ") (modp') (Lemma 3). By Lemma
2, there exists a positive integer k1 such that 1+ k + --- + kP"~1 = p®k;, with
ged(ky,p) = 1. Thus b*”a’ commutes with b*"a’ if and only if i = j(mod p'~®).
Again [0P"a’, b ai] = 1 for 0 < B < a— 1 if and only if i(1+ k4 --- + k2" ~1) =
JA +k+ - + kP ") (modp') (Lemma 3). By Lemma 2, there exist positive
integers k; and ky such that 1 +k + - + kP"~1 = p®k;, with ged(ky,p) = 1 and
Lkt -+ 1= pPky, with ged(ko, p) = 1. Thus 7" @’ commutes with v’ qd
if and only if ikop”® = jk1p®(modp'). The last congruence is equivalent to iky =
jk1p®=B(mod p!=#). Thus if [b*" a?, b?” a?] = 1, then p~#|i. Further, for given a, 3
and 4 such that p®~A|i, the equation ikyp® = jk1p®(modp') has a solution j, that
is given «, 3, we can find some j such that [b?"a’,b?”a9] = 1. Thus, if we choose
b4’ € Aspe such that pli, then there exists j such that b*" @/ commutes with
b*a’. Clearly, in Ula_zl1 Az o, theset So = {bPa’ |pti, 1 <i<p™ 1< a<i-1}
is non-commuting and its elements do not commute with any element of S7. Thus,
S1USy C X.

Further, take s = mp® for fixed « with gcd(m,p) = 1 and m # 1. Take an
arbitrary element b™?"a* € A3 mpe. Now for p 1, [b™P%a?, bP" a"] = 1 if and only
ifr(14+k4---+&™" "D =i(1+k+---+kP" ") (mod p') (Lemma 3). By Lemma
2, there exist positive integers k; and &’ such that 1+ k 4+ --- + kP" 1 = p®ky,
with ged(ki,p) = L and 1+ k4 --- + k™" ! = k'p®, with ged(k’,p) = 1. Thus
the last congruence is equivalent to 7k’ = ik; (mod p!~®). Since, ged(k’, p'=%) =1,
so for a given i, there exists r € {1,2,...,p!~*} such that rk’ = ik;(mod p'~®).
Also pti, so ptr. Thus b commutes with b*°a” € X. Now, assume i = t'p°,
ged(t',p) =1 and 1 < e < a. By Lemma 3, [b™"a'?" ?" “¢"] = 1 if and only
if t'pe(14+k+k2 4+ +E" "D =r(Q+k+E 4+ -+ k"1, We have
IT+k+k+- kP =p* < kgand 1 +k+ K2+ + k™1 = pop/,
where p { ks and p t k. Thus [b™ P b*" “a"] = 1 if and only if t'ks =
rk’(mod p'=%). Since ged(k’,p'~®) = 1, so the last congruence has the solution
re{1,2,...,p/"}. Since ptr, so b™"a!'?" commutes with " ‘a” € X. Again
fori =1t'p®, a < e <l—1and ged(t, p) = 1,b™""a* commutes with some ba” € X.
Indeed, if 5?"a!'"?* commutes with ba”, then r(14+k+- - -+k™" 1) = ¢/p¢(mod p'),
that is equivalent to rk’ = t'p*~*(mod p!~®). The last congruence has a solution
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r € {1,2,...,p" = 1}. So, in this case X does not contain any element from As ;.

Thus,

X = {b,alu{ba’ |1 <i <p'=1}u{b""a’ | pti,1 <i<p~and1 < a <I1-1}
is a non-commuting set in G.

Now, by Lemma 3, it is easy to deduce that Cg(a) = (a, pr> and C¢(b)
(a?,b). Thus, Cg(a) and Cg(b) are abelian. Consider b a’ with p {4, 1 < i <
p~®and 1 < a <1—1. Since p{i, G = (b,""a’). Thus, Ce(b?"a’) = (bpaai,bpl>
is abelian. Now for i € {1,2,...,p! — 1}, by Lemma 3, we have

Cgba®) = {b"a* € G |i(l+k+---+k"1) = s(modp)), 1 <r < o(b)},
= {brgi Ok | < < o(h), ¢ € 7,

= {(ba")"a”" | 1 < r < o(b)} = (ba', Z(G)).

Obviously, Cg(ba') is abelian. Moreover, from the construction of X it follows
that G = UzexCeq(x). Thus by Lemma 1, X is a maximal non-commuting set

and the size of X is equal to
-1

X[ =141+ -1+ o) =p +p',
a=1

where ¢(n) is Euler’s function. Hence, we can conclude the following theorem.

Theorem 1. (Fouladi and Orfi) The size of a mazimal non-commuting set in
a finite non-abelian metacyclic p-group G, p > 2 is p' + p'=%, where |2(G)| = p'.
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