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On intra-regular ordered hypersemigroups

Niovi Kehayopulu

Abstract. We present a structure theorem referring to the decomposition of ordered hypersemi-

groups into simple components. For an intra-regular ordered hypersemigroup H, the very simple

form of its principal �lters leads to a characterization of H as a semilattice of simple hypersemi-

groups; that is as an ordered hypersemigroup for which there exists a semilattice congruence

σ such that (x)σ is a simple subhypersemigroup of H for every x ∈ H. This is equivalent to

saying that H is a union of simple subhypersemigroups of H. In addition, an ordered hyper-

semigroup H is intra-regular and the hyperideals of H form a chain if and only if it is a chain of

simple hypersemigroups. On this occasion, some further results related to intra-regular ordered

hypersemigroups have been also given.

1. Introduction and prerequisites

The concept of the hypergroup introduced by the French Mathematician F. Marty
at the 8th Congress of Scandinavian Mathematicians in 1933 is as follows: An
hypergroup is a nonempty set H endowed with a multiplication xy such that
(i) xy ⊆ H; (ii) x(yz) = (xy)z; (iii) xH = Hx = H for every x, y, z in H. I
searched, as far as I now is not possible to �nd the Proceedings of that Conference
now, so for this de�nition (of the hypergroup) I will refer to Mittas [7]; and then
the de�nitions of the hypersemigroup and the ordered hypersemigroup follows
at a natural way. The �rst researchers who investigate hypergroups using the
de�nition given by Marty were Mittas and Corsini [1, 6]. Since Marty introduced
this concept, hundreds of papers on hyperstructures appeared using the de�nition
given by Marty; and in the recent years, many groups in the world investigate the
hyperstructures in research programs based on this de�nition. We will mention
only few papers related to hypersemigroups in the References such as [1, 2, 6 � 9].

An interesting problem in the theory of ordered hypersemigroups is to describe
the type of ordered hypersemigroups that are decomposable into left (right) simple
or simple components. It is a di�cult problem especially for the case of right (left)
simple ordered hypersemigroups. In the present paper we managed to solve the
problem just for the intra-regular ordered hypersemigroups, showing that the intra-
regular ordered hypersemigroups are decomposable into simple components, and
we hope that it will be a starting point for the investigation of the type of ordered
hypersemigroups that are decomposable into right or left simple components. We
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prove that every intra-regular ordered hypersemigroup H is a semilattice of simple
subhypersemigroups, that is for every intra-regular ordered hypersemigroup there
exists a semilattice congruence σ on H such that the class (x)σ is a simple sub-
hypersemigroup of H for every x ∈ H � and so H is the union of these classes; in
other words any intra-regular ordered hypersemigroup is decomposable into sim-
ple components. And, conversely, every ordered hypersemigroup that is a union
of simple subhypersemigroups is intra-regular. In addition, an ordered hypersemi-
group H is intra-regular and the hyperideals of H form a chain, if and only if H is
a chain of simple hypersemigroups. On this occasion, some further related results
concerning the intra-regular ordered hypersemigroups have been also given. We
prove, for example, that for an intra-regular ordered hypersemigroup H, the set
{(x)N | x ∈ H} coincides with the set of all maximal simple subhypersemigroups
of H; and an ordered hypersemigroup H is intra-regular and the hyperideals of H
form a chain if and only if the hyperideals of H are prime. As an application of the
results of the present paper, the corresponding results on hypersemigroup (without
order) can be obtained, and this is because every hypersemigroup endowed with
the equality relation = is an ordered hypersemigroup.

For the sake of completeness, we give the following de�nitions: Let (H, ◦,6)
be an ordered hypersemigroup. For a subset A of H we denote by (A] the subset
of H de�ned by (A] := {t ∈ H | t 6 h for some h ∈ A}. A nonempty subset I of
H is called a right (resp. left) hyperideal of H if (1) I ◦H ⊆ I (resp. H ◦ I ⊆ I)
and (2) if a ∈ I and b ∈ H such that b 6 a, then b ∈ I, that is (I] = I; it is called
an hyperideal of H if it is both a right and a left hyperideal of H. A nonempty
subset F of H is called an hyper�lter of H if (1) if a, b ∈ F , then a ◦ b ⊆ F . (2) if
a, b ∈ H such that a ◦ b ⊆ F , then a ∈ F and b ∈ F . (3) For every a, b ∈ H, either
a ◦ b ⊆ F or (a ◦ b) ∩ F = ∅. (4) if a ∈ F and H 3 b > a, then b ∈ F ; that is F
is a subhypersemigroup of H satisfying the relations (2 )� (4). This is equivalent
to saying that for any a, b ∈ H such that (a ◦ b) ∩ F 6= ∅, we have a, b ∈ F and
the property (4) given above is satis�ed. An equivalence relation σ on H is called
congruence if (a, b) ∈ σ implies (a ◦ c, b ◦ c) ∈ σ and (c ◦ a, c ◦ b) ∈ σ for any
c ∈ H; in the sense that for any u ∈ a ◦ c and any v ∈ b ◦ c we have (u, v) ∈ σ
and for any u ∈ c ◦ a and any v ∈ c ◦ b we have (u, v) ∈ σ. A congruence σ on
H is called semilattice congruence if, for any a, b ∈ H we have (a, a ◦ a) ∈ σ and
(a ◦ b, b ◦ a) ∈ σ; in the sense that for every u ∈ a ◦ a we have (a, u) ∈ σ and for
every u ∈ a ◦ b and every v ∈ b ◦ a we have (u, v) ∈ σ. A semilattice congruence
σ on (H, ◦,6) is called complete if a 6 b implies (a, a ◦ b) ∈ σ; in the sense that
if u ∈ a ◦ b, then (a, u) ∈ σ. An ordered hypersemigroup H is called simple if
for every hyperideal A of H we have A = H, that is if H is the only hyperideal
of H. We denote by N the semilattice congruence on H de�ned by aN b if and
only if N(a) = N(b), where N(a) is the principal hyper�lter of H. An ordered
hypersemigroup H is called a semilattice of simple hypersemigroups if there exists
a semilattice congruence σ of H such that the σ-class (x)σ of H containing x is a
simple subhypersemigroup of H for every x ∈ H. This is equivalent to saying that
there exists a semilattice (Y, ·) and a nonempty family {Hα | α ∈ Y } of simple
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subhypersemigroups of H such that (1) Hα ∩Hβ = ∅ for every α, β ∈ Y , α 6= β;
(2) H =

⋃
{Hα | α ∈ A}; (3) Hα ◦Hβ ⊆ Hαβ for every α, β ∈ Y .

An ordered hypersemigroup H is called intra-regular if for every a ∈ H there
exist x, y ∈ H such that a 6 x ◦ a2 ◦ y; equivalently a ∈ (H ◦ a2 ◦ H] for every
element a of H or A ⊆ (H ◦A2 ◦H] for every nonempty subset A of H. For further
information we refer to [3, 4].

2. Main results

Lemma 2.1. [4, Proposition 2.4] For an ordered hypersemigroup H the relation

N is a complete semilattice congruence on H.

Lemma 2.2. An ordered hypersemigroup (H, ◦,6) is intra-regular if and only if,

for every x ∈ H, we have N(x) = {y ∈ H | x ∈ (H ◦ y ◦H]}.
Proof. (⇒). Let x ∈ H and T := {y ∈ H | x ∈ (H ◦ y ◦ H]}. The set T is an
hyper�lter of H containing x. In fact: T is a nonempty subset of H containing
the element x as x ∈ (H ◦x2 ◦H] ⊆ (H ◦x◦H]. Let a, b ∈ T. Since x ∈ (H ◦a◦H]
and x ∈ (H ◦ b ◦H], we have

x ∈ (H ◦ x2 ◦H] ⊆
(
H ◦ (H ◦ b ◦H] ◦ (H ◦ a ◦H] ◦H

]
=
(
(H] ◦ (H ◦ b ◦H] ◦ (H ◦ a ◦H] ◦ (H]

]
⊆
(
(H ◦ (H ◦ b ◦H) ◦ (H ◦ a ◦H) ◦H]

]
=
(
H ◦ (H ◦ b ◦H) ◦ (H ◦ a ◦H) ◦H

]
⊆
(
H ◦ (b ◦H ◦ a) ◦H

]
⊆

(
H ◦

(
H ◦ (b ◦H ◦ a)2 ◦H

]
◦H

]

=

(
(H] ◦

(
H ◦ (b ◦H ◦ a)2 ◦H

]
◦ (H]

]

⊆

((
H2 ◦ (b ◦H ◦ a)2 ◦H2

]]
=
(
H2 ◦ (b ◦H ◦ a)2 ◦H2

]
⊆
(
H ◦ (b ◦H ◦ a)2 ◦H

]
=
(
H ◦ (b ◦H ◦ a) ◦ (b ◦H ◦ a) ◦H

]
⊆
(
H ◦ (a ◦ b) ◦H

]
,
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and so a◦b ⊆ T . If a, b ∈ H such that a◦b ⊆ T , then x ∈ (H◦a◦b◦H] ⊆ (H◦a◦H],
similarly x ∈ (H ◦ b ◦H] and so a, b ∈ T . Moreover, for any a, b ∈ H we clearly
have a ◦ b ⊆ T or (a ◦ b) ∩ T = ∅. If a ∈ T and b ∈ H such that b > a, then
x ∈ (H ◦ a ◦H] ⊆ (H ◦ b ◦H] and so b ∈ T . Let now F be an hyper�lter of H such
that x ∈ F and let y ∈ T . Since x ∈ (H ◦ y ◦ H], we have F 3 x 6 t ◦ y ◦ h for
some t, h ∈ H. Then we have t ◦ y ◦ h ⊆ F and then y ∈ F .

(⇐). Let x ∈ H. Since x ∈ N(x) and N(x) is a subhypersemigroup of H, we
have x ◦ x ⊆ N(x), then we have x ∈ (H ◦ x2 ◦H] and so H is intra-regular.

Theorem 2.3. Let H be an ordered hypersemigroup. If H is intra-regular, then it

is a semilattice of simple hypersemigroups. Conversely, if H is a union of simple

subhypersemigroups of H, then it is intra-regular.

Proof. Let H be intra-regular. The set (x)N is a simple subhypersemigroup of H
for every x ∈ H. In fact: Let x ∈ H. Since N is a semilattice congruence on H,
(x)N is a subhypersemigroup of H. Let I be an hyperideal of (x)N and y ∈ (x)N .
Let z ∈ I (I 6= ∅). Since z ∈ (x)N , we have (z)N = (x)N . Since N is a semilattice
congruence on H, we have (z5)N = (z)N . On the other hand, (z5)N = (H ◦z3◦H].
Indeed:

t ∈ (z5)N ⇒ (t, z5) ∈ N ⇒ N(t) = N(z5)⇒ z5 ∈ N(t)

⇒ t ∈ (H ◦ z5 ◦H] ⊆ (H ◦ z3 ◦H].

Since y ∈ (x)N , we have y ∈ (H ◦ z3 ◦H]. Thus we have

(z)N 3 y 6 a ◦ z3 ◦ b = (a ◦ z) ◦ z ◦ (z ◦ b) for some a, b ∈ H.

It is enough to prove that a ◦ z, z ◦ b ⊆ (x)N . Then, since z ∈ I and I is an
hyperideal of (x)N , we have (a ◦ z) ◦ z ◦ (z ◦ b) ⊆ I and so y ∈ I. In fact, we have

a ◦ z ⊆ (a ◦ z)N : = (a)N ◦ (z)N = (a)N ◦ (y)N
= (a)N ◦ (y ◦ a ◦ z3 ◦ b)N (since y 6 a ◦ z3 ◦ b)
= (y ◦ a ◦ z3 ◦ b)N (since N is a semilattice congruence)

= (y)N = (x)N

and

z ◦ b ⊆ (z ◦ b)N : = (z)N ◦ (b)N = (y)N ◦ (b)N = (y ◦ a ◦ z3 ◦ b)N ◦ (b)N
= (y ◦ a ◦ z3 ◦ b)N = (y)N = (x)N .

ThereforeH is a semilattice of simple hypersemigroups; as so it is a union of simple
subhypersemigroups of H.

For the converse statement, suppose H =
⋃
{Hα | α ∈ A} where Hα is a simple

subhypersemigroup of H for every α ∈ A. Let now x ∈ H. Then x ∈ Hα for some
α ∈ A. On the other hand, the set (H ◦x2◦H]∩Hα is an hyperideal of Hα. Indeed,
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this is a nonempty subset of Hα as x4 ⊆ (Hx2H] and x4 ⊆ Hα and moreover we
have(

(H ◦ x2 ◦H] ∩Hα

)
◦Hα ⊆ (H ◦ x2 ◦H] ◦Hα ∩H2

α

⊆ (H ◦ x2 ◦H] ◦H ∩Hα ⊆ (H ◦ x2 ◦H] ∩Hα

since (H ◦ x2 ◦H] is an hyperideal of H. Also,

Hα ◦
(
(H ◦ x2 ◦H] ∩Hα

)
⊆ Hα ◦ (H ◦ x2 ◦H] ∩H2

α

⊆ H ◦ (H ◦ x2 ◦H] ∩Hα ⊆ (H ◦ x2 ◦H] ∩Hα.

Let now y ∈ (H ◦ x2 ◦H] ∩Hα and z ∈ Hα such that z 6 y. Since H 3 z 6 y ∈
(H ◦ x2 ◦H] and (H ◦ x2 ◦H] is an hyperideal of H, we have z ∈ (H ◦ x2 ◦H] and
thus z ∈ (H ◦ x2 ◦ H] ∩ Hα. Since Hα is a simple subhypersemigroup of H, we
have (H ◦ x2 ◦H] ∩Hα = Hα. Since x ∈ Hα, we get x ∈ (H ◦ x2 ◦H] and so H is
intra-regular.

For an ordered hypersemigroup H and a semilattice congruence σ on H, we
denote by ��" the order on the hypersemigroup H/σ de�ned by

(x)σ � (y)σ ⇔ (x)σ = (x ◦ y)σ.

An ordered hypersemigroup H is called a chain of simple hypersemigroups if
there exists a semilattice congruence σ on H such that the class (x)σ is a simple
subhypersemigroup of H for every x ∈ H and (H/σ,�) is a chain.

In the following, when we say that the hyperideals ofH form a chain we suppose
them endowed with the inclusion relation �⊆".

A nonempty subset T of an hypersemigroup H is said to be prime if for any
nonempty subsets A,B of H such that A ◦ B ⊆ T , we have A ⊆ T or B ⊆ T ;
equivalently, for any elements a, b of T such that a◦ b ⊆ T , we have a ∈ T or b ∈ T
[5].

Lemma 2.4. [5, Corollary 24] If H is an ordered hypersemigroup, then the hyper-

ideals of H are prime if and only if they form a chain and H is intra-regular.

Lemma 2.5. Let H be an ordered hypersemigroup. If H is intra-regular and the

hyperideals of H form a chain, then for every x, y ∈ H, we have

x ∈ (H ◦ x ◦ y ◦H] or y ∈ (H ◦ x ◦ y ◦H] (∗)

The converse statement also holds.

Proof. Let H be intra-regular and the hyperideals of H form a chain. Then, by
Lemma 2.4, the hyperideals of H are prime. Since (H ◦ x ◦ y ◦H] is an hyperideal
of H and x2 ◦y2 ⊆ (H ◦x◦y◦H], we have x2 ⊆ (H ◦x◦y◦H] or y2 ⊆ (H ◦x◦y◦H]
and then we have x ∈ (H ◦ x ◦ y ◦H] or y ∈ (H ◦ x ◦ y ◦H].
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For the converse statement, suppose the relation (∗) is satis�ed. To prove that
H is intra-regular, by Lemma 2.4, it is enough to prove that the hyperideals of H
are prime. For this purpose, let I be an hyperideal of H and a, b ∈ H such that
a◦b ⊆ I. Since a, b ∈ H, by hypothesis, we have a ∈ (H◦a◦b◦H] or b ∈ (H◦a◦b◦H].
If a ∈ (H ◦ a ◦ b ◦H] then, since a ◦ b ⊆ I, we have a ∈ (H ◦ I ◦H] ⊆ (I] = I and
so a ∈ I. If b ∈ (H ◦ I ◦H], then b ∈ (H ◦ I ◦H ⊆ (I] = I and so b ∈ I and the
proof is complete.

Theorem 2.6. An ordered hypersemigroup H is intra-regular and the hyperideals

of H form a chain if and only if H is a chain of simple hypersemigroups

Proof. (⇒). Since H is intra-regular, the relation N is a semilattice congruence
on H (see the proof of Theorem 2.3), and the class (x)N is a simple subhyper-
semigroup of H for every x ∈ H. Let now (x)N , (y)N ∈ S/N . By hypothesis and
Lemma 2.5, we have x ∈ (H ◦x◦y◦H] or y ∈ (H ◦x◦h◦H]. Let x ∈ (H ◦x◦y◦H].
Since N(x) 3 x 6 t ◦ x ◦ y ◦ h for some t, h ∈ H, we have x ◦ y ⊆ N(x), thus
N(x ◦ y) ⊆ N(x). Let y ∈ (H ◦ x ◦ h ◦H]. Since N(y) 3 y 6 z ◦ x ◦ y ◦ k for some
z, k ∈ H, we have x ◦ y ⊆ N(y) and then N(x ◦ y) ⊆ N(y). On the other hand,
x◦y ⊆ N(x◦y) implies x, y ∈ N(x◦y), then N(x) ⊆ N(x◦y) and N(y) ⊆ N(x◦y).
Hence we obtain N(x ◦ y) = N(x) or N(x ◦ y) = N(y), Thus (x)N = (x ◦ y)N or
(y)N = (x ◦ y)N = (y ◦ x)N , that is (x)N � (y)N or (y)N � (x)N .

(⇐). Let σ be a semilattice congruence on H such that (x)σ is a simple
subhypersemigroup of H for every x ∈ H and let (S/σ,�) be a chain. We have to
prove that H is intra-regular and the hyperideals of H form a chain. By Lemma
2.4, it is enough to prove that the hyperideals of H are prime. Let I be an
hyperideal of H and a, b ∈ H such that a ◦ b ⊆ I. The set (a ◦ b)σ ∩ I is an
hyperideal of (a ◦ b)σ. Indeed: it is a nonempty subset of (a ◦ b)σ as a ◦ b ⊆ (a ◦ b)σ
and a ◦ b ⊆ I; and we also have(

(a ◦ b)σ ∩ I
)
◦(a ◦ b)σ ⊆ (a ◦ b)2σ ∩ I◦ (a ◦ b)σ ⊆ (a ◦ b)σ ∩ I◦H ⊆ (ab)σ ∩ I

and

(a ◦ b)σ◦
(
(a ◦ b)σ∩I

)
⊆(a ◦ b)2σ ∩ (a ◦ b)σ ◦I⊆(a ◦ b)σ ∩ S ◦I ⊆ (a ◦ b)σ∩I.

Let now x ∈ (a ◦ b)σ ∩ I and y ∈ (a ◦ b)σ such that y 6 x. Since H 3 y 6 x ∈ I
and I is an hyperideal of H, we have y ∈ I, and so y ∈ (a ◦ b)σ ∩ I. By hypothesis,
(a ◦ b)σ is a simple subhypersemigroup of H, so we have (a ◦ b)σ ∩ I = (a ◦ b)σ.
Again by hypothesis, we have (a)σ � (b)σ or (b)σ � (a)σ. If (a)σ � (b)σ, then
(a)σ = (a ◦ b)σ, then (a)σ ∩ I = (a)σ and so a ∈ I. If (b)σ � (a)σ then, since σ is a
semilattice congruence on H, we have (b)σ = (b◦a)σ = (a◦b)σ, then (b)σ∩I = (b)σ
and so b ∈ I.

Proposition 2.7. If H is an intra-regular ordered hypersemigroup then, for any

x, y ∈ H, we have (H ◦ x ◦ y ◦H] = (H ◦ x ◦ y ◦H].
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Proof. Since H is intra-regular, we have

x ◦ y ⊆
(
H ◦ (x ◦ y)2 ◦H

]
= (H ◦ x ◦ y ◦ x ◦ y ◦H]

⊆ (H2 ◦ y ◦ x ◦H2] ⊆ (H ◦ y ◦ x ◦H].

Then we have

H ◦ x ◦ y ◦H ⊆ H ◦ (H ◦ y ◦ x ◦H] ◦H

= (H] ◦ (H ◦ y ◦ x ◦H] ◦ (H] ⊆
(
(H2 ◦ y ◦ x ◦H2]

]
= (H2 ◦ y ◦ x ◦H2] ⊆ (H ◦ y ◦ x ◦H],

from which (H ◦x◦ y ◦H] ⊆
(
(H ◦ y ◦x◦H]

]
= (H ◦ y ◦x◦H]. By symmetry, in a

similar way we prove that (H ◦ y ◦x ◦H] ⊆ (H ◦x ◦ y ◦H], and equality holds.

Proposition 2.8. For an intra-regular ordered hypersemigroup H, the set of all

(x)N such that x ∈ H, coincides with the set of all maximal simple subhypersemi-

groups of H.

Proof. Let x ∈ H. Then (x)N is a maximal simple subhypersemigroup of H. In
fact: First of all, since H is intra-regular, the set (x)N is a simple subhypersemi-
group of H (see the proof of Theorem 2.3). Let now T be a simple subhypersemi-
group of H such that T ⊇ (x)N . Then T = (x)N . Indeed: Let y ∈ T . Since
x ∈ T , the set (H ◦ x ◦H] ∩ T is an hyperideal of T . Since T is simple, we have
(H ◦x◦H]∩T = T . Since y ∈ T , we have y ∈ (H ◦x◦H]. Since H is intra-regular
and y ∈ H ◦ x ◦ H, by Lemma 2.2, we have x ∈ N(y) and so N(x) ⊆ N(y).
Similarly, since y ∈ T , the set (H ◦ y ◦ H] ∩ T is an hyperideal of T . Since T is
simple, we have (H ◦ y ◦ H] ∩ T = T . Since x ∈ T , we obtain x ∈ (H ◦ y ◦ H]
and then, by Lemma 2.2, we get y ∈ N(x) and so N(y) ⊆ N(x). Thus we have
N(x) = N(y), that is y ∈ (x)N . Therefore we have T ⊆ (x)N and so T = (x)N .

For the converse statement, let T be a maximal simple subhypersemigroup of
H. Then there exists x ∈ H such that T = (x)N . Indeed: Take an element x ∈ T
(T 6= ∅). In a similar way as in the case above, we prove that T ⊆ (x)N . Since
H is intra-regular, the class (x)N is a simple subhypersemigroup of H. Since T is
a maximal simple subhypersemigroup of H, we have T = (x)N and the proof is
complete.

We wrote this paper at the usual way, and we will come back to this paper in
a forthcoming paper.

I would like to thank the anonymous referee for his/her time to read the paper
carefully and the quick reply.
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