
Quasigroups and Related Systems 26 (2018), 211− 216

On the extension of continuous homomorphisms

of topological n-ary semigroups

Wieslaw A. Dudek and Vladimir V. Mukhin

Abstract. We prove that each continuous homomorphism from a topological n-ary semigroup

X into a topological binary semigroup Y can be extended to a continuous homomorphism from

the free covering semigroup of X into a semigroup Y .

1. Introduction

Topologies of n-ary semigroups are studied by many authors in various directions.
One of such directions is investigation of characters of n-ary semigroups, i.e., homo-
morphisms of topological n-ary semigroups into a multiplicative group of complex
numbers with a module equal to 1 and natural topology (see for example [9]).
The second direction is investigation of topologies induced by families of some
functions such as deviations, for example [8]. The third important direction is
investigation of the possibility of embedding of topological n-ary semigroups into
binary topological semigroups and groups or �nding a way to describe topological
n-ary semigroups using other known topological structures (cf. [10]).

In [3, 4, 5, 6] various constructions of topologies for a universal covering semi-
group of a topological n-ary semigroup was proposed. In the case on n-ary groups
the topology of the covering group and the topology of retracts of n-ary groups,
i.e., binary groups obtained from an n-ary group by blocking in an n-ary operation
n−2 inner elements, are strongly connncted with a topology of initial n-ary group
(cf. [2] and [7]). In the case of semigroups, this relationship is not so strong.

In this paper, we consider continuous homomorphisms of topological n-ary
semigroups into topological semigroups. It is known that every n-ary semigroup
S can be considered as a subset of a binary semigroup S∗ that is stable with
respect to the multiplication of n elements in S∗ (such binary semigroup is called
enveloping or covering semigroup of an n-ary semigroup S).

Questions naturally arise about the possibility of extending a continuous ho-
momorphism of an n-ary semigroup S into binary semigroup G to a continuous
homomorphism of its covering semigroup S∗ into G. The answers to these ques-
tions are devoted to the proposed work.

2010 Mathematics Subject Classi�cation: 20N15, 22A15, 22A30
Keywords: Covering (enveloping) semigroup, universal covering semigroup, free covering
semigroup, n-ary semigroup, topological n-ary semigroup.



212 W. A. Dudek and V. V. Mukhin

2. Preliminaries

The terminology of this work is the same as in [5] and [6].

Recall that a non-empty set X with an associative n-ary operation [ ] is called
an n-ary semigroup. The result of application of [ ] to the sequence x1, x2, . . . , xn
is denoted by [xn1 ].

A binary semigroup (S, ·) is called a covering semigroup for an n-ary semi-
group (X, [ ]), if S ⊆ X and [xn1 ] = x1x2 . . . xn for all x1, x2, . . . , xn ∈ X and S
is generated by X. If, in addition, the sets X,X(2), . . . , X(n−1), where X(k) =
{x1x2 · · ·xk : x1, . . . , xk ∈ X} are disjoint and their union gives S, then (S, ·)
is called the universal covering semigroup of an n-ary semigroup (X, [ ]). Such
covering semigroup there exists for each n-ary semigroup [4].

A mapping f : X → Y is called a homomorphism of an n-ary semigroup (X, [ ])
into a binary semigroup (Y, ∗) if f([xn1 ]) = f(x1) ∗ f(x2) ∗ . . . ∗ f(xn) is valid for
all x1, . . . , xn ∈ X. We say that (X, [ ], τ) is a topological n-ary semigroup, if
(X, [ ]) is an n-ary semigroup and (X, τ) is a topological space such that the n-ary
operation [ ] is continuous in all variables together.

3. Results

Theorem 1. Let f : X → Y be a homomorphism of an n-ary semigroup (X, [ ])
into a binary semigroup (Y, ∗) and let (S, ·) be the universal covering semigroup of

(X, [ ]). If in a subsemigroup of (Y, ∗) generated by f(X) there is a left or right

cancellative element f(a), then f can be uniquely extended to a homomorphism

from (S, ·) into (Y, ∗).

Proof. Let x ∈ S. Then, x = x1x2 · · ·xk for some x1, . . . , xk ∈ X and 1 6 k < n.
If f can be extended to the homomorphism fS from (S, ·) into (Y, ∗), then f(x) =
f(x1) ∗ f(x2) ∗ . . . ∗ f(xk). Hence this extension is unique, if it exists.

We show that the above equality de�nes a mapping from S to Y . To do this,
it su�ces to show that if x1x2 · · ·xk = y1 ∗ y2 ∗ . . . ∗ ym, where 1 6 k,m < n and
all xi, yj are from X, then

f(x1) ∗ f(x2) ∗ . . . ∗ f(xk) = f(x1) ∗ f(x2) ∗ . . . ∗ f(xm).

Let an element f(a), where a ∈ X, be left cancellative in a subsemigroup of
a semigroup (Y, ∗) generated by the set f(X). Then k = m and, consequently,
an−kx1x2 · · ·xk = an−ky1y2 · · · yk. Thus f([an−kxk1 ]) = f([an−kyk1 ]). Therefore,

f(a)n−k ∗ f(x1) ∗ . . . ∗ f(xk) = f(a)n−k ∗ f(y1) ∗ . . . ∗ f(yk).

Since f(a) is left cancellative, the last implies f(x1)∗. . .∗f(xk) = f(y1)∗. . .∗f(yk).
This proves that fS is correctly de�ned. Obviously, fS is an extension of the
homomorphism f to the mapping from (S, ·) to (Y, ∗).
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Let x, y ∈ S. Then x = x1x2 · · ·xk and y = y1y2 · · · ym for some xi, yj ∈ X
and 1 6 k,m < n. If k +m < n, then

fS(xy) = f(x1) ∗ . . . ∗ f(xk) ∗ f(y1) ∗ . . . ∗ f(ym) = fS(x) ∗ fS(y).

In the case k +m = n, we have

fS(xy) = fS([xk1y
m
1 ]) = f(x1) ∗ . . . ∗ f(xk) ∗ f(y1) ∗ . . . ∗ f(ym) = fS(x) ∗ fS(y).

Now, if k +m > n, then

fS(xy) = fS([xk1y
n−k
1 ]yn−k+1 · · · ym) = fS([xk1y

n−k
1 ]) ∗ fS(yn−k+1 · · · ym)

= f(x1) ∗ . . . ∗ f(xk) ∗ f(y1) ∗ . . . ∗ f(ym) = fS(x) ∗ fS(y.)

So, fS is a homomorphism from (S, ·) into (Y, ∗).
For a right cancellative elenent the proof is analogous.

In [6], the topology τS on (S, ·) was constructed using the following construc-
tion. On a free semigroup F =

⋃∞
k=1X

k we consider the relation Ω de�ned by

(x1, x2, . . . , xp)Ω(y1, y2, . . . , ym)⇐⇒ x1x2 · · ·xp = y1y2 · · · ym.

This relation is a congruence. The mapping ϕ from a quotient semigroup F/Ω
into S which the equivalence class of an element (x1, x2, . . . .xp) ∈ F transforms
into an element x1x2 · · ·xp ∈ S, is an isomorphism of semigroups F/Ω and S.

Let τ be a topology on X, τk � a topology on the Cartesian product Xk that
is the product of topologies on factors, τF � a topology on F that is the sum of
the topologies τk, k = 1, 2, . . .

Using the mapping ϕ we transfer the factor topology on F/Ω onto (S, ·) and
denote it by τS . If π is a canonical mapping from F to F/Ω, then the topology
τS is characterized as the strongest of the topologies on S for which the mapping
ϕ ◦ π is continuous.

In [6], it was shown that if (X, [ ], τ) is a topological n-ary semigroup, then the
topological space (X, τ) is a topological subspace of (S, τS).

Theorem 2. Let f be a continuous homomorphism from a topological n-ary semi-

group (X, [ ], τ) into a topological binary semigroup (Y, ∗, τY ) and let (S, ·, τS) be

the universal covering semigroup of the n-ary semigroup (X, [ ]) endowed with the

topology τS described above. If f can be extended to a homomorphism from (S, ·)
to (Y, ∗), then this extension is a continuous mapping.

Proof. Let a homomorphism f be extend to a homomorphism from (S, ·) to (Y, ∗).
From the proof of Theorem 1 it follows that this extension is representable in the
form fS . If x = (x1, x2, . . . , xp) ∈ F , then g(x) = f(x1) ∗ f(x2) ∗ . . . ∗ f(xp)
is a continuous mapping from F to Y. Moreover, we also have fS(ϕ(π(x))) =
f(x1) ∗ f(x2) ∗ . . . ∗ f(xp) = g(x).

From the properties of the �nal topology it follows that the homomorphism fS
is a continuous mapping (cf. [1]). This completes the proof.
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Let (X, [ ]) be an n-ary semigroup and let α = (a1, . . . , ap), β = (b1, . . . , bq) be
elements of F =

⋃∞
k=1X

k. We put α#β if and only if there are (d1, d1, . . . , dt) ∈ F
and two sequences of natural numbers k1<k2<. . .<kp = t, m1< m2<. . .<mq = t
such that

a1 = [d1 . . . dk1
], a2 = [dk1+1 . . . dk2

], . . . ap = [dkp−1+1 . . . dkp
]

and

b1 = [d1 . . . dm1
], b2 = [dm1+1 . . . dm2

], . . . qp = [dmq−1+1 . . . dmq
].

The relation # is re�exive and symmetric on F . Its transitive closure ≈ is
a congruence on F . A factor semigroup F/# is called a free covering semigroup

of (X, [ ]) and is denoted by F̂ . By ? is denoted a binary operation on F̂ . The

equivalence class of α ∈ F is denoted by α̂. The topology on F̂ is constructed in
the same way as in [5].

Let ϕ be the canonical mapping F onto F̂ . The subset ϕ(X) of F̂ is stable with
respect to the n-th iteration of ? and it is isomorphic to (X, [ ]). So, ϕ(X) can be

identi�ed with X. Thus F̂ can be represented as a union of pairwise disjoint sets
F̂ = X1 ∪X2 ∪ . . .∪Xn−1, where X1 = ϕ(X) = X, Xi = ϕ(Xi) = X ?X ? . . . ?X
(i-times), i = 2, 3, . . . , n− 1.

Theorem 3. Every homomorphism of an n-ary semigroup (X, [ ]) into a binary

semigroup (Y, ∗) can be extended to a homomorphism from a free covering semi-

group of (X, [ ]) into (Y, ∗).

Proof. Let f : X → Y be a homomorphism of an n-ary semigroup (X, [ ]) into

a binary semigroup (Y, ∗). Let γ̂ ∈ F̂ , where γ = (x1, x2, . . . , xp) ∈ F . De�ne

fF̂ : F̂ → Y by putting fF̂ (γ̂) = f(x1) ∗ f(x2) ∗ . . . ∗ f(xp). To show that fF̂ is a

homomorphism consider an arbitrary δ̂ ∈ F̂ such that δ = (y1, y2, . . . , yq) ∈ F and
γ#δ. Then there are (d1, d2, . . . , dt) ∈ F and two sequences of natural numbers
k1, k2 < . . . < kp = t, m1 < m2 < . . .mq = t such that

x1 = [d1 . . . dk1
], x2 = [dk1+1 . . . dk2

], . . . xp = [dkp−1+1 . . . dkp
]

and

y1 = [d1 . . . dm1
], y2 = [dm1+1 . . . dm2

], . . . yq = [dmq−1+1 . . . dmq
].

Since f : X → Y is a homomorphism, we have

fF̂ (γ̂) = f(x1) ∗ f(x2) ∗ . . . ∗ f(xp) = f([dk1
1 ]) ∗ f([dk2

k1+1]) ∗ . . . ∗ f([d
kp

kp−1+1])

= f(d1) ∗ f(d2) ∗ . . . ∗ f(dkp
) = f([dm1

1 ]) ∗ f([dm2
m1+1]) ∗ . . . ∗ f([d

mq

mq−1+1])

= f(y1) ∗ f(y2) ∗ . . . ∗ f(yq) = fF̂ (δ̂).

But the relation ≈ is a transitive closure of the relation #, so we have fF̂ (α̂) =

fF̂ (β̂) for all α̂, β̂ ∈ F̂ such that α̂ = β̂. This means that the mapping fF̂ is
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correctly de�ned. Obviously, fF̂ is a homomorphism and it is an extension of
f .

Let (X, [ ], τ) be a topological n-ary semigroup, τk � a topology on the Cartesian
product Xk that is a product of topologies on factors, τF � a topology on F that
is the sum of the topologies τk, k = 1, 2, . . ., τS � the factor topology on F̂ . If π
is a canonical mapping from F to F̂ , then the topology τS is characterized as the
strongest of the topologies on F̂ for which the mapping π is continuous.

In [5], it was shown that if (X, [ ], τ) is a topological n-ary semigroup, then

(X, τ) is a topological subspace of (F̂ , τs).

Theorem 4. Let f be a continuous homomorphism from a topological n-ary semi-

group (X, [ ], τ) into a topological binary semigroup (Y, ∗, τy). Then f can be ex-

tended to a continuous homomorphism from the free covering semigroup (F̂ , ∗, τS)
of (X, [ ], τ) into (Y, ∗, τY ).

Proof. From the proof of Theorem 3 it follows that the extension of f to a homo-
morphism from (F̂ , ∗, τs) to (Y, ∗, τy) exists and has the form fF̂ .

If x = (x1, x2, . . . , xp) ∈ F , then g(x) = f(x1)∗f(x2)∗. . .∗f(xp) is a continuous
mapping from F into Y and fF̂ (π(x)) = f(x1) ∗ f(x2) ∗ . . . ∗ f(xp) = g(x).

From the properties of the �nal topology it follows that the homomorphism fF̂
is a continuous mapping (cf. [1]). The theorem is proved.
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