Planar and outerplanar indices of zero divisor graphs of partially ordered sets

Zahra Barati

Abstract. For poset P with the least element 0, the zero divisor graph of P, denoted by $\Gamma(P)$, is an undirected graph with vertex set $Z^*(P)$ and, for two distinct vertices x and y, x is adjacent to y in $\Gamma(P)$ if and only if $\{x, y\}^{\ell} = \{0\}$. In this paper, we study the planar and outerplanar indices of $\Gamma(P)$ and completely investigate these indices of $\Gamma(P)$ when Atom(P) is finite.

1. Introduction

In 1988, the concept of a zero divisor graph was introduced by Beck in [3]. For a commutative ring R with identity, he defined $\Gamma(R)$ to be the graph whose vertices are elements of R and in which two vertices x and y are adjacent if and only if xy = 0. In [2], Anderson and Livingston introduced and studied the zero divisor graph whose vertices are the non-zero zero divisors of R. Recently, there has been considerable researches done on associating graphs with algebraic structures (e.g. [6], [10] and [13]).

In [8], Halaš and Jukl introduced the zero-divisor graphs of posets. For all $x, y \in P$, let $\{x, y\}^{\ell}$ denote the set of lower bounds for the set $\{x, y\}$. They defined the zero divisor graph as a simple graph with vetex set consist of all the elements of P and two distinct vertices x and y are adjacent if and only if $\{x, y\}^{\ell} = \{0\}$. Since the vertex 0 is adjacent to all other vertices, the authors in [1], omit 0 from the vertex set of this graph and denoted this graph by $G^*(P)$. They studied some properties of $G^*(P)$ and investigated when $G^*(P)$ is planar. Recently, a different method of associating a zero-divisor graph to a poset P was proposed by Lu and Wu in [12]. The graph defined by them is slightly different from the one defined in [8] and [1]. The vertex set of the graph defined in [12] consists of all non-zero zero divisors of P.

In this paper, we deal with zero divisor graphs of posets based on the terminology of [12]. An element $x \in P$ is called a *zero divisor* of P if there exists $y \in P^*$ such that $\{x, y\}^{\ell} = \{0\}$. We denote the set of zero divisors of P by Z(P) and we consider $Z^*(P) := Z(P) \setminus \{0\}$. The zero divisor graph of P, denoted by $\Gamma(P)$, is the graph obtained by setting all the elements of $Z^*(P)$ to be the vertices and defining distinct vertices x and y to be adjacent if and only if $\{x, y\}^{\ell} = \{0\}$. In

²⁰¹⁰ Mathematics Subject Classification: 05C10, 06A07.

 $^{{\}sf Keywords:} \ {\tt partially \ ordered \ set, \ planar \ index, \ outerplanar \ index, \ zero \ divisor \ graph.$

[9], the authors studied the planarity of the line graph of the graph $\Gamma(P)$. In this paper, we continue their work and we study the planarity of iterated line graphs of the graph $\Gamma(P)$. In Section 2, we study the planar index of the iterated line graphs of the zero divisor graph of P. We give a full characterization of all zero divisor graphs with respect to planar index. Also, we study the outerplanarity of iterated line graphs of the graph $\Gamma(P)$. In Section 3, we show that when $\Gamma(P)$ is outerplanar and study the outerplanar index of its iterated line graphs.

We use the standard terminology of graphs [4], and of partially ordered sets [5]. In a partially ordered set (P, \leq) (poset, briefly) with a least element 0, an element a is called an *atom* if $a \neq 0$ and, for an element x in P, the relation $0 \leq x \leq a$ implies either x = 0 or x = a. We use the notation Atom(P) for the set of atoms in P. Assume that S is a subset of P. Then an element x in P is a *lower bound* of S if $x \leq s$ for all $s \in S$. The set of all lower bounds of S is denoted by S^{ℓ} and

$$S^{\ell} := \{ x \in P \mid x \leq s, \text{ for all } s \in S \}.$$

2. Planar index of $\Gamma(P)$

From now on, (P, \leq) is a partially ordered set with the least element 0 and with $Atom(P) = \{a_1, a_2, \ldots, a_n\}$. The following notation was stated in [1].

Notation 1. Let $1 \leq i_1 < i_2 < \ldots < i_k \leq n$. The notation $P_{i_1i_2\ldots i_k}$ stands for the following set:

$$\{x \in P; x \in \bigcap_{s=1}^k \{a_{i_s}\}^u \setminus \bigcup_{j \neq i_1, i_2, \dots, i_k} \{a_j\}^u \}.$$

In [1], the authors showed that no two distinct elements in $P_{i_1i_2...i_k}$ are adjacent in graph $G^*(P)$. Also, if the index sets $\{i_1, i_2, ..., i_k\}$ and $\{j_1, j_2, ..., j_{k'}\}$ of $P_{i_1i_2...i_k}$ and $P_{j_1j_2...j_{k'}}$, respectively, are distinct, then $P_{i_1i_2...i_k} \cap P_{j_1j_2...j_{k'}} = \emptyset$. Moreover

$$P^* = \bigcup_{k=1,1 \le i_1 < i_2 < \dots < i_k \le n}^n P_{i_1 i_2 \dots i_k}.$$

It is easy to see that $P_{12...n}$ is the set of isolated points in $G^*(P)$ and

$$Z^*(P) = \bigcup_{k=1,1 \leq i_1 < i_2 < \dots < i_k \leq n}^n P_{i_1 i_2 \dots i_k} \setminus P_{12 \dots n}.$$

In this section we want to study the planar index of the $\Gamma(P)$. The planar index of the graph G was defined as the smallest k such that $L^k(G)$ is non-planar. We denote the planar index of G by $\xi(G)$. If $L^k(G)$ is planar for all $k \ge 0$, we define $\xi(G) = \infty$. In [7], the authors gave a full characterization of graphs with respect to their planar index.

Theorem 2.1. [Theorem 10, [7]] Let G be a connected graph. Then:

(i) $\xi(G) = 0$ if and only if G is non-planar.

- (ii) $\xi(G) = \infty$ if and only if G is either a path, a cycle, or $K_{1,3}$.
- (iii) $\xi(G) = 1$ if and only if G is planar and either $\Delta(G) \ge 5$ or G has a vertex of degree 4 which is not a cut-vertex.
- (iv) $\xi(G) = 2$ if and only if L(G) is planar and G contains one of the graphs H_i in Figure 1 as a subgraph.
- (v) $\xi(G) = 4$ if and only if G is one of the graphs X_k or Y_k (Figure 1) for some $k \ge 2$.
- (vi) $\xi(G) = 3$ otherwise.

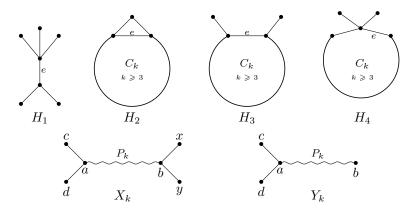


Figure 1

In Section 3 of [1], the planarity of the graph G(P) was studied. In fact, they studied the planarity of $\Gamma(P)$. Since isolated points do not affect planarity, the authors ignored the set $P_{12...n}$ from the vertex set of $G^*(P)$. By using [Section 3, [1]] and Theorem 2.1, we have the following theorem.

Theorem 2.2. Let P be a poset and Atom(P) be a finite set with n elements. Then:

- (a) $\xi(\Gamma(P)) = 0$ if and only if $\Gamma(P)$ is non-planar.
- (b) $\xi(\Gamma(P)) = \infty$ if and only if n = 1 or Z(P) is one of the of Figure 2.

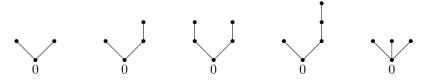


Figure 2

(c) $\xi(\Gamma(P)) = 1$ if and only if

- (c-1) n=2 and one of the following holds:
 - (c-1-1) $|P_1| = 1$ and $|P_2| \ge 5$.

 $(c-1-2) |P_1| = 2 and |P_2| \ge 4.$

(c-2) n=3 and one of the following holds:

- $(c-2-1) \mid \bigcup_{i=1}^{3} P_i \mid = 3 \text{ and } \mid P_{ij} \mid \ge 3 \text{ for some } 1 \le i < j \le 3.$
- $(c-2-2) | \cup_{i=1}^{3} P_i | = 4 \text{ and } |P_{ij}| \ge 2 \text{ for some } 1 \le i < j \le 3.$
- $(c-2-3) |\cup_{i=1}^{3} P_i| = 5, |P_1| = 3 \text{ and } P_{23} = \emptyset.$
- (c-2-4) $|P_1| = |P_2| = 2$, $|P_3| = 1$ and $P_{13} = \emptyset$ or $P_{23} = \emptyset$.
- $(c-2-5) \mid \bigcup_{i=1}^{3} P_i \mid = 6, \mid P_2 \mid = \mid P_3 \mid = 1 \text{ and } P_{23} = \emptyset.$
- $(c-2-6) \mid \bigcup_{i=1}^{3} P_i \mid = 6, \mid P_i \mid = 2 \text{ for all } 1 \leq i \leq 3, \text{ and } P_{ij} = \emptyset \text{ for all } 1 \leq i < j \leq 3.$
- $(c-2-7) \mid \bigcup_{i=1}^{3} P_i \mid \geq 7, \mid P_2 \mid = \mid P_3 \mid = 1 \text{ and } P_{23} = \emptyset.$
- (c-3) n=4 and one of the following holds:
 - $\begin{array}{l} (c\text{-}3\text{-}1) \ | \cup_{i=1}^{4} P_{i}| = 4 \ and \ P_{i'j'} = \emptyset \ whenever \ P_{ij} \neq \emptyset \ for \ all \ 1 \leqslant i < j \leqslant 4 \\ where \ \{i',j'\} = \{1,2,3,4\} \setminus \{i,j\} \ and \ |P_{ij}| \geqslant 1 \ for \ some \ 1 \leqslant i < j \\ j \leqslant 3 \ or \ |P_{ijk}| \geqslant 2 \ for \ some \ 1 \leqslant i < j < k \leqslant 3. \end{array}$
 - $(c-3-2) \mid \bigcup_{i=1}^{4} P_i \mid = 5, \mid P_1 \mid = 2, P_{ij} = \emptyset \text{ for all } 2 \leq i < j \leq 4 \text{ and } P_{234} = \emptyset.$

(d)
$$\xi(\Gamma(P)) = 2$$
 if and only if

- (d-1) n=3 and one of the following holds:
 - $(d-1-1) \mid \bigcup_{i=1}^{3} P_i \mid = 3, \mid P_{ij} \mid \leq 2 \text{ for all } 1 \leq i < j \leq 3 \text{ and one of the sets}$ $P_{ij} \text{ has two elements.}$
 - $(d-1-2) | \bigcup_{i=1}^{3} P_i | = 3, |P_{ij}| \leq 1 \text{ for all } 1 \leq i < j \leq 3 \text{ and two of the sets}$ $P_{ij} \text{ has one elements.}$
 - $(d-1-3) \mid \bigcup_{i=1}^{3} P_i \mid = 4, \mid P_{ij} \mid \leq 1 \text{ for all } 1 \leq i < j \leq 3.$
- (d-2) n = 4, $|\bigcup_{i=1}^{3} P_i| = 4$, $P_{ij} = \emptyset$ for all $1 \le i < j \le 3$ and $|P_{ijk}| \le 1$ for all $1 \le i < j < k \le 3$.
- (e) $\xi(\Gamma(P)) = 3$ if and only if Z(P) is one of the following of Figure 3:

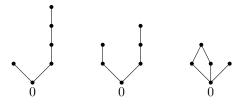


Figure 3

Proof. We know that if $\Gamma(P)$ is non-planar then $\xi(\Gamma(P)) = 0$. Thus we may assume that $\Gamma(P)$ is planar. By [1, Lemma 3.1], if $\Gamma(P)$ is planar, then $n \leq 4$. Now we have the following cases:

CASE 1. n = 1. Note that $\Gamma(P)$ has no edges at all if and only if n = 1. Therefore in this case $\xi(\Gamma(P)) = \infty$.

CASE 2. n = 2. By Corollarly 2.8 of [1], the graph $\Gamma(P)$ is isomorphic to a complete bipartite graph which its parts are P_1 and P_2 . Therefore, by [1, Proposition 3.2], $\Gamma(P)$ is planar if and only if $|P_1| \leq 2$ or $|P_2| \leq 2$. Now, we have the following subcases:

- (2-1) Suppose that $|P_1| = 1$. If $|P_2| \leq 3$, then $\xi(\Gamma(P)) = \infty$. If $|P_2| = 4$, then the line graph of the graph $\Gamma(P)$ is isomorphic to K_4 and so it is planar. Also, the line graph of the $\Gamma(P)$ has H_2 as a subgraph and $L^2(\Gamma(P))$ is planar. Thus $\xi(\Gamma(P)) = 3$. Otherwise $|P_2| \geq 5$. In this situation, $\Delta(\Gamma(P)) \geq 5$. Therefore $\xi(\Gamma(P)) = 1$.
- (2-2) Suppose that P_1 has two elements, say $P_1 = \{a_1, a'_1\}$. If $|P_2| \leq 2$, then $\xi(\Gamma(P)) = \infty$. If P_2 has three elements, say $P_2 = \{a_2, a'_2, a''_2\}$, then the graph $\Gamma(P)$ is isomorphic to $K_{2,3}$. Since $\Delta(\Gamma(P)) = 3$, the line graph of the graph $\Gamma(P)$ is planar. Also, by Figure 4, $L^2(\Gamma(P))$ is planar and $L(\Gamma(P))$ has H_2 as a subgraph. So $\xi(\Gamma(P)) = 3$. Otherwise $|P_2| \geq 4$. Then, by Theorem 2.1, $\xi(\Gamma(P)) = 1$.

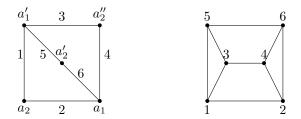
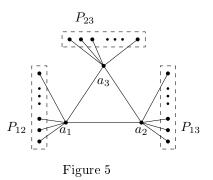


Figure 4: $\Gamma(P)$ and its line graph

CASE 3. n = 3. By [1, Theorem 3.3], we have the following subcases:

(3-1) $|\bigcup_{i=1}^{3} P_i| = 3$. The graph $\Gamma(P)$ is pictured in Figure 5. By Figure 5, if one of the sets P_{12} , P_{13} or P_{23} has at least 3 elements, then $\Delta(\Gamma(P)) \ge 5$. By Theorem 2.1, $\xi(\Gamma(P)) = 1$. Therefore $|P_{ij}| \le 2$ for all $1 \le i < j \le 3$. We can conclude that $L(\Gamma(P))$ is planar. Now, if only one of the sets P_{12} , P_{13} or P_{23} has two elements, then $L(\Gamma(P))$ is planar and $\Gamma(P)$ has H_4 as a subgraph, we have that $\xi(\Gamma(P)) = 2$. If only two of the sets P_{12} , P_{13} or P_{23} has one element, then $L(\Gamma(P))$ is planar and $\Gamma(P)$ has H_3 as a subgraph, we have that $\xi(\Gamma(P)) = 2$. Also, if only one of the sets P_{12} , P_{13} or P_{23} has one element, then $L(L(\Gamma(P)))$ is planar and the line graph of the $\Gamma(P)$ has H_2 as a subgraph and so $\xi(\Gamma(P)) = 3$. If only two of the sets or all of the sets P_{12} , P_{13} or P_{23} has one element, exactly, then $L(\Gamma(P))$ is planar and $\Gamma(P)$ Z. Barati

has H_3 as a subgraph. Hence $\xi(\Gamma(P)) = 2$. At last, if all the sets P_{12} , P_{13} and P_{23} are empty, then $\Gamma(P) \cong C_3$, which implies that $\xi(\Gamma(P)) = \infty$.



(3-2) $|\bigcup_{i=1}^{3} P_i| = 4$. Without loss the generality, we may assume $P_1 = \{a_1, a'_1\}$. With this assumption, $\Gamma(P)$ is the graph which was drawn in Figure 6. By Figure 6, if one the sets P_{12} or P_{13} has at least 2 elements, then $\Delta(\Gamma(P)) \ge 5$. Also, if P_{23} has at least two elements, then $\Gamma(P)$ has a vertex of degree 4 which is not a cut vertex. So $\xi(\Gamma(P)) = 1$. Otherwise $|P_{ij}| \le 1$ for all $1 \le i < j \le 3$. We can conclude that $L(\Gamma(P))$ is planar. Since $\Gamma(P)$ has H_2 as a subgraph, we have that $\xi(\Gamma(P)) = 2$.

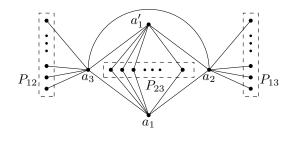


Figure 6

- (3-3) $|\bigcup_{i=1}^{3} P_i| = 5$ and one of the following holds:
 - (3-3-1) One of the sets P_i , say P_1 , has three elements and $P_{23} = \emptyset$. By Figure 7, if one of the sets P_{13} or P_{12} is non-empty, then $\Delta(\Gamma(P)) \ge 5$. So $\xi(\Gamma(P)) = 1$. Now, assume that P_{12} and P_{13} are empty. Since the $\Gamma(P)$ has a vertex of degree 4 which is not a cut vertex, we have that $\xi(\Gamma(P)) = 1$.

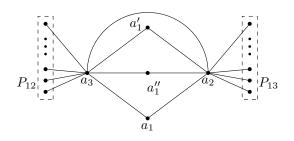


Figure 7

(3-3-2) $|P_i| \leq 2$, for all $1 \leq i \leq 3$, and $P_{13} = \emptyset$ or $P_{23} = \emptyset$. Without loss the generality, we may assume that $P_1 = \{a_1, a_1'\}, P_2 = \{a_2, a_2'\}, P_3 = \{a_3\}$ and $P_{13} = \emptyset$. Now, by Figure 8, if $P_{12} \neq \emptyset$ or $|P_{23}| \geq 2$, then $\Delta(\Gamma(P)) \geq 5$. So $\xi(\Gamma(P)) = 1$. Also, $|P_{23}| = 1$, the graph $\Gamma(P)$ has a vertex of degree 4 which is not a cut vetex. Hence $\xi(\Gamma(P)) = 1$. Otherwise, $P_{12} = \emptyset$ and $P_{23} = \emptyset$. In this case the vertex a_3 has degree 4 and it is not a cut vertex. Hence $\xi(\Gamma(P)) = 1$.

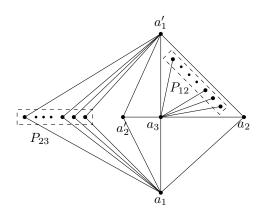


Figure 8

- (3-4) Suppose that $|\bigcup_{i=1}^{3} P_i| = 6$. Now, by Theorem 3.3 of [1], we must consider one of the following cases:
 - (3-4-1) $|P_2| = |P_3| = 1$ and $P_{23} = \emptyset$. In this case we have that $\Delta(\Gamma(P)) \ge 5$ and so $L(\Gamma(P))$ is not planar which implies that $\xi(\Gamma(P)) = 1$.
 - (3-4-2) $|P_i| = 2$ for all i = 1, 2, 3 and $P_{ij} = \emptyset$ for all $1 \le i < j \le 3$. By Figure 9, we can see that $\Gamma(P)$ is a 4-regular graph but none of the vertices is a cut vertex. So $\xi(\Gamma(P)) = 1$.

Z. Barati

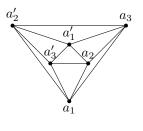


Figure 9

(3-5) At last suppose that $|\bigcup_{i=1}^{3} P_i| \ge 7$. By Theorem 3.3 of [1], since $\Gamma(P)$ is planar, we have that $|P_2| = |P_3| = 1$ and $P_{23} = \emptyset$. In this case $\Delta(\Gamma(P)) \ge 5$. So $\xi(\Gamma(P)) = 1$.

CASE 4. Suppose that n = 4. Now we have the following subcases:

- (4-1) Suppose that $|\cup_{i=1}^{4} P_i| = 4$. Then, by [1, Theorem 3.5], $\Gamma(P)$ is planar if and only if $P_{i'j'} = \emptyset$ whenever $P_{ij} \neq \emptyset$, where $\{i', j'\} = \{1, 2, 3, 4\} \setminus \{i, j\}$. If $|P_{ijk}| \ge 2$ for some $1 \le i < j < k \le 4$ or $|P_{ij}| \ge 2$ for some $1 \le i < j \le 4$, then $\Delta(\Gamma(P)) \ge 5$. So we can conclude that $\xi(\Gamma(P)) = 1$. Now suppose that $|P_{ij}| = 1$ for some $1 \le i < j \le 4$. Then $a_{i'}$ and $a_{j'}$, when $\{i', j'\} = \{1, 2, 3, 4\} \setminus \{i, j\}$, are adjacent to the element of P_{ij} . So the graph $\Gamma(P)$ has a vertex of degree 4 which is not a cut vertex which implies that $\xi(\Gamma(P)) = 1$. Finally, if $P_{ij} = \emptyset$ for all $1 \le i < j \le 4$ and $|P_{ijk}| \le 1$ for all $1 \le i < j < k \le 4$, then $L(\Gamma(P))$ is planar and $\Gamma(P)$ has H_2 as a subgraph. So $\xi(\Gamma(P)) = 2$.
- (4-2) Let $|\bigcup_{i=1}^{4} P_i| = 5$ and $|P_1| = 2$. Then, by [1, Theorem 3.7], $\Gamma(P)$ is planar if and only if $P_{ij} = \emptyset$, for $2 \leq i < j \leq 4$, and $P_{234} = \emptyset$. If $P_{1j} \neq \emptyset$, for some $2 \leq j \leq 4$ or $P_{1jk} \neq \emptyset$ for some $2 \leq j < k \leq 4$, then $\Delta(\Gamma(P)) \geq 5$ and so $\xi(\Gamma(P)) = 1$. Otherwise, $P_{1j} = \emptyset$ for all $2 \leq j \leq 4$ and $P_{1jk} = \emptyset$ for all $2 \leq j < k \leq 4$. In this case, the degree of the vertices a_2 , a_3 and a_4 are 4 and these vertices are not cut vertices. Thus the line graph $\Gamma(P)$ is not planar which implies that $\xi(\Gamma(P)) = 1$.

Corollary 2.3. Let P be a poset with least element 0 and |Atom(P)| = n. Then $\xi(\Gamma(P)) \in \{0, 1, 2, 3, \infty\}$.

3. Outerplanar index of $\Gamma(P)$

In this section, we study the outerplanar index of the zero divisor graph of a poset. An undirected graph is an outerplanar graph if it can be drawn in the plane without crossings in such a way that all of the vertices belong to the unbounded face of the drawing. There is a characterization of outerplanar graphs that says a graph is outerplanar if and only if it does not contain a subdivision of the complete graph K_4 or the complete bipartite graph $K_{2,3}$.

The outerplanar index of a graph G, which is denoted by $\zeta(G)$, is the smallest integer k such that the kth iterated line graph of G is non-outerplanar. If $L^k(G)$ is outerplanar for all $k \ge 0$, we define $\zeta(G) = \infty$. In [11], the authors gave a full characterization of all graphs with respect to their outerplanar index.

Theorem 3.1. Let G be a connected graph. Then:

- (i) $\zeta(G) = 0$ if and only if G is non-outerplanar.
- (ii) $\zeta(G) = \infty$ if and only if G is a path, a cycle, or $K_{1,3}$.
- (iii) $\zeta(G) = 1$ if and only if G is planar and G has a subgraph homeomorphic to $K_{1,4}$ or $K_1 + P_3$ in Figure 10.
- (iv) $\zeta(G) = 2$ if and only if L(G) is planar and G has a subgraph isomorphic to one of the graphs G_2 or G_3 in Figure 10.
- (v) $\zeta(G) = 3$ if and only if $G \in I(d_1, d_2, \dots, d_t)$ where $d_i \ge 2$ for $i = 2, \dots, t-1$, and $d_1 \ge 1$ (Figure 10).

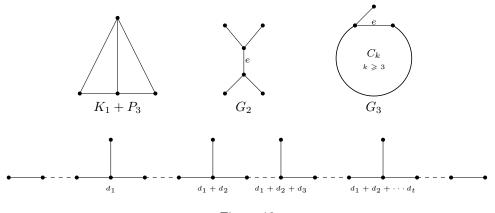


Figure 10

At first, we investigate the outerplanarity of $\Gamma(P)$. We know that the induced subgraph on Atom(P) is a complete graph. So, if $\Gamma(P)$ is outerplanar then $|\operatorname{Atom}(P)| \leq 3$. Thus we must study the cases that $|\operatorname{Atom}(P)|$ is equal to 1, 2 and 3. When $|\operatorname{Atom}(P)| = 1$, the graph $\Gamma(P)$ has no edges at all which implies that $\Gamma(P)$ is an outerplanar graph. In the following proposition, we state the necessary and sufficient condition for outerplanarity of $\Gamma(P)$ when $|\operatorname{Atom}(P)| = 2$.

Proposition 3.2. Suppose that |Atom(P)| = 2. Then $\Gamma(P)$ is outerplanar if and only if one of the following happens:

- (a) one of the sets P_1 and P_2 has one element, exactly.
- (b) $|P_1| = 2$ and $|P_2| = 2$.

Proof. Since $\Gamma(P)$ is a complete bipartite graph, we are done.

Proposition 3.3. Suppose that |Atom(P)| = 3. Then $\Gamma(P)$ is outerplanar if and only if one of the following happens:

- (a) $|\cup_{i=1}^{3} P_i| = 3.$
- (b) $|\cup_{i=1}^{3} P_i| = 4$, $|P_i| = 2$ and $P_{jk} = \emptyset$ for $j, k \in \{1, 2, 3\} \setminus \{i\}$.

Proof. Let $|\operatorname{Atom}(P)| = 3$ and $\Gamma(P)$ is outerplanar. If $|\bigcup_{i=1}^{3} P_i| \ge 5$, then it is not hard to see that $\Gamma(P)$ has a $K_{2,3}$ as a subgraph. So we must investigate the following cases:

- 1. $|\cup_{i=1}^{3} P_i| = 3$. Now, by Figure 5, $\Gamma(P)$ is outerplanar.
- 2. $|\bigcup_{i=1}^{3} P_i| = 4$. In this case one of the sets P_i , say P_1 has two elements, exactly. Suppose that $P_1 = \{a_1, a'_1\}$ and $x \in P_{23}$. Then, by setting $V_1 := \{a_1, a'_1\}$ and $V_2 := \{a_2, a_3, x\}$, we can find a copy of $K_{2,3}$ in the contraction of $\Gamma(P)$. So $\Gamma(P)$ is not outerplanar. Now suppose that P_{23} is empty. Then, by Figure 11, $\Gamma(P)$ is outerplanar.

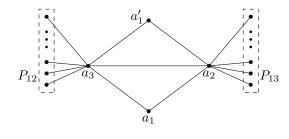


Figure 11

In next theorem, we investigate the outerplanar index of the zero divisor graph of a poset when Atom(P) is a finite set.

Theorem 3.4. Let P be a poset and |Atom(P)| = n. Then:

- (a) $\zeta(\Gamma(P)) = 0$ if and only if $\Gamma(P)$ is non-outerplanar.
- (b) $\zeta(\Gamma(P)) = \infty$ if and only if n = 1 or Z(P) is one of the Figure 2.
- (c) $\zeta(\Gamma(P)) = 1$ if and only if
 - (c-1) n = 2, $|P_1| = 1$ and $|P_2| \ge 4$.

- (c-2) n = 3, $|\cup_{i=1}^{3} P_i| = 3$ and $|P_{ij}| \ge 2$ for some $1 \le i < j \le 3$.
- (c-3) n = 3, $|\bigcup_{i=1}^{3} P_i| = 4$ and if $|P_i| = 2$, then for $j, k \in \{1, 2, 3\} \setminus \{i\}$, the set P_{jk} is empty.
- (d) $\zeta(\Gamma(P)) = 2$ if and only if n = 3, $|\bigcup_{i=1}^{3} P_i| = 3$, $|P_{ij}| = 1$ for some $1 \leq i < j \leq 3$.

Proof. We know $\zeta(\Gamma(P)) = 0$ if $\Gamma(P)$ is non-outerplanar. Thus we may assume that $\Gamma(P)$ is outerplanar. If $\Gamma(P)$ is outerplanar, then $n \leq 3$. Now we have the following cases:

CASE 1. n = 1. Since $\Gamma(P)$ has no edges at all, we have that $\zeta(\Gamma(P)) = \infty$.

CASE 2. n = 2. Note that the graph $\Gamma(P)$ is isomorphic to a complete bipartite graph which its parts are P_1 and P_2 . We have the following subcases:

- (2-1) Suppose that $|P_1| = 1$. If $|P_2| \leq 3$, then $\zeta(\Gamma(P)) = \infty$. If $|P_2| \geq 4$, then the line graph of the graph $\Gamma(P)$ has a copy of K_4 and so it is not outerplanar. Therefore $\zeta(\Gamma(P)) = 1$.
- (2-2) $|P_1| = |P_2| = 2$. In this case $\Gamma(P) \cong C_4$, which implies that $\zeta(\Gamma(P)) = \infty$.

CASE 3. n = 3. By Proposition 3.3, we have the following subcases:

- (3-1) $|\bigcup_{i=1}^{3} P_i| = 3$. The graph $\Gamma(P)$ is pictured in Figure 5. By Figure 5, if one the sets P_{12} , P_{13} or P_{23} has at least 2 elements, then $\Gamma(P)$ has $K_{1,4}$ as a subgraph. Now, by Theorem 3.1, we have that $\zeta(\Gamma(P)) = 1$. If one of the sets P_{ij} has one elements for some $1 \leq i < j \leq 3$, then $\Gamma(P)$ has G_3 as a subgraph, we have that $\zeta(\Gamma(P)) = 2$. At last, if P_{ij} is empty for all $1 \leq i < j \leq 3$, $\Gamma(P)$ is a cycle with 3 vertices. So $\zeta(\Gamma(P)) = \infty$.
- (3-2) $|\bigcup_{i=1}^{3} P_i| = 4$ and if $|P_i| = 2$, then for $j, k \in \{1, 2, 3\} \setminus \{i\}$, the set P_{jk} is empty. Without loss the generality, we may assume that $P_1 = \{a_1, a'_1\}$. With this assumption, $\Gamma(P)$ is the graph which was drawn in Figure 11. By Figure 11, $\Gamma(P)$ has a copy of $K_1 + P_3$ which implies that $\zeta(\Gamma(P)) = 1$. \Box

Corollary 3.5. Let P be a poset with least element 0 and |Atom(P)| = n. Then $\zeta(\Gamma(P)) \in \{0, 1, 2, \infty\}$.

Acknowledgments. The author thanks the referee for his/her thorough review and highly appreciate the comments and suggestions, which significantly contributed to improving the quality of the paper.

References

- M. Afkhami, Z. Barati, K. Khashyarmanesh, Planar zero divisor graphs of partially ordered sets, Acta Math. Hungar. 137 (2012), 27 – 35.
- D.F. Anderson, P.S. Livingston, The zero-divisor graph of commutative ring, J. Algebra 217 (1999), 434 - 447.

- [3] I. Beck, Coloring of commutative rings, J. Algebra 116 (1988), 208 226.
- [4] J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, American Elsevier, New York, 1976.
- [5] B.A. Davey, H.A. Priestley, Introduction to Lattices and Order, Cambridge University Press, 2002.
- [6] F.R. DeMeyer, L. DeMeyer, Zero-divisor graphs of semigroups, J. Algebra 283 (2005), 190-198.
- [7] M. Ghebleh, M. Khatirinejad, Planarity of iterated line graphs, Discrete Math. 308 (2008), 144 - 147.
- [8] R. Halaš, M. Jukl, On Beck's coloring of posets, Discrete Math. 309 (2009), 4584-4589.
- [9] M.R. Khorsandi, A. Shekofteh, On the line graphs of zero-divisor graphs of posets, J. Algebra Appl. 16 (2017), no. 7, 1750121 (10 pages).
- [10] J.D. LaGrange, Complemented zero-divisor graphs and Boolean rings, J. Algebra 315 (2007), 600 - 611.
- [11] H. Lin, W. Yang, H. Zhang, J. Shu, Outerplanarity of line graphs and iterated line graphs, Appl. Math. Lett. 24 (2011), 1214 - 1217.
- [12] D. Lu, T. Wu, The zero-divisor graphs of posets and an application to semigroups, Graphs Comb. 26 (2010), 793 – 804.
- [13] Z. Xue, S. Liu, Zero-divisor graphs of partially ordered sets, Appl. Math. Lett. 23 (2010), 449-452.

Received December 04, 2017

Department of Mathematics, Kosar University of Bojnord, Bojnord, Iran E-mail: Za.Barati87@gmail.com