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Planar and outerplanar indices

of zero divisor graphs of partially ordered sets

Zahra Barati

Abstract. For poset P with the least element 0, the zero divisor graph of P , denoted by Γ(P ),

is an undirected graph with vertex set Z∗(P ) and, for two distinct vertices x and y, x is adjacent

to y in Γ(P ) if and only if {x, y}` = {0}. In this paper, we study the planar and outerplanar

indices of Γ(P ) and completely investigate these indices of Γ(P ) when Atom(P) is �nite.

1. Introduction

In 1988, the concept of a zero divisor graph was introduced by Beck in [3]. For a
commutative ring R with identity, he de�ned Γ(R) to be the graph whose vertices
are elements of R and in which two vertices x and y are adjacent if and only if
xy = 0. In [2], Anderson and Livingston introduced and studied the zero divisor
graph whose vertices are the non-zero zero divisors of R. Recently, there has been
considerable researches done on associating graphs with algebraic structures (e.g.
[6], [10] and [13]).

In [8], Hala�s and Jukl introduced the zero-divisor graphs of posets. For all
x, y ∈ P , let {x, y}` denote the set of lower bounds for the set {x, y}. They de�ned
the zero divisor graph as a simple graph with vetex set consist of all the elements
of P and two distinct vertices x and y are adjacent if and only if {x, y}` = {0}.
Since the vertex 0 is adjacent to all other vertices, the authors in [1], omit 0 from
the vertex set of this graph and denoted this graph by G∗(P ). They studied some
properties of G∗(P ) and investigated when G∗(P ) is planar. Recently, a di�erent
method of associating a zero-divisor graph to a poset P was proposed by Lu and
Wu in [12]. The graph de�ned by them is slightly di�erent from the one de�ned
in [8] and [1]. The vertex set of the graph de�ned in [12] consists of all non-zero
zero divisors of P .

In this paper, we deal with zero divisor graphs of posets based on the termi-
nology of [12]. An element x ∈ P is called a zero divisor of P if there exists y ∈ P ∗
such that {x, y}` = {0}. We denote the set of zero divisors of P by Z(P ) and we
consider Z∗(P ) := Z(P ) \ {0}. The zero divisor graph of P , denoted by Γ(P ),
is the graph obtained by setting all the elements of Z∗(P ) to be the vertices and
de�ning distinct vertices x and y to be adjacent if and only if {x, y}` = {0}. In
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[9], the authors studied the planarity of the line graph of the graph Γ(P ). In this
paper, we continue their work and we study the planarity of iterated line graphs
of the graph Γ(P ). In Section 2, we study the planar index of the iterated line
graphs of the zero divisor graph of P . We give a full characterization of all zero
divisor graphs with respect to planar index. Also, we study the outerplanarity of
iterated line graphs of the graph Γ(P ). In Section 3, we show that when Γ(P ) is
outerplanar and study the outerplanar index of its iterated line graphs.

We use the standard terminology of graphs [4], and of partially ordered sets [5].
In a partially ordered set (P,6) (poset, brie�y) with a least element 0, an element
a is called an atom if a 6= 0 and, for an element x in P , the relation 0 6 x 6 a
implies either x = 0 or x = a. We use the notation Atom(P ) for the set of atoms
in P . Assume that S is a subset of P . Then an element x in P is a lower bound

of S if x 6 s for all s ∈ S. The set of all lower bounds of S is denoted by S` and

S` := {x ∈ P | x 6 s, for all s ∈ S}.

2. Planar index of Γ(P )

From now on, (P,≤) is a partially ordered set with the least element 0 and with
Atom(P) = {a1, a2, . . . , an}. The following notation was stated in [1].

Notation 1. Let 1 6 i1 < i2 < . . . < ik 6 n. The notation Pi1i2...ik stands for

the following set:

{x ∈ P ; x ∈ ∩ks=1{ais}u \ ∪j 6=i1,i2,...,ik{aj}u}.

In [1], the authors showed that no two distinct elements in Pi1i2...ik are adjacent
in graph G∗(P ). Also, if the index sets {i1, i2, . . . , ik} and {j1, j2, . . . , jk′} of
Pi1i2...ik and Pj1j2...jk′ , respectively, are distinct, then Pi1i2...ik ∩ Pj1j2...jk′ = ∅.
Moreover

P ∗ = ∪nk=1,16i1<i2<...<ik6nPi1i2...ik .

It is easy to see that P12...n is the set of isolated points in G∗(P ) and

Z∗(P ) = ∪nk=1,16i1<i2<...<ik6nPi1i2...ik \ P12...n.

In this section we want to study the planar index of the Γ(P ). The planar

index of the graph G was de�ned as the smallest k such that Lk(G) is non-planar.
We denote the planar index of G by ξ(G). If Lk(G) is planar for all k > 0, we
de�ne ξ(G) = ∞. In [7], the authors gave a full characterization of graphs with
respect to their planar index.

Theorem 2.1. [Theorem 10, [7]] Let G be a connected graph. Then:

(i) ξ(G) = 0 if and only if G is non-planar.
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(ii) ξ(G) =∞ if and only if G is either a path, a cycle, or K1,3.

(iii) ξ(G) = 1 if and only if G is planar and either ∆(G) > 5 or G has a vertex

of degree 4 which is not a cut-vertex.

(iv) ξ(G) = 2 if and only if L(G) is planar and G contains one of the graphs Hi

in Figure 1 as a subgraph.

(v) ξ(G) = 4 if and only if G is one of the graphs Xk or Yk (Figure 1) for some

k > 2.

(vi) ξ(G) = 3 otherwise.
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Figure 1

In Section 3 of [1], the planarity of the graph G(P ) was studied. In fact, they
studied the planarity of Γ(P ). Since isolated points do not a�ect planarity, the
authors ignored the set P12...n from the vertex set of G∗(P ). By using [Section 3,
[1]] and Theorem 2.1, we have the following theorem.

Theorem 2.2. Let P be a poset and Atom(P ) be a �nite set with n elements.

Then:

(a) ξ(Γ(P )) = 0 if and only if Γ(P ) is non-planar.

(b) ξ(Γ(P )) =∞ if and only if n = 1 or Z(P ) is one of the of Figure 2.

0 0 0 0 0

Figure 2
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(c) ξ(Γ(P )) = 1 if and only if

(c-1) n = 2 and one of the following holds:

(c-1-1) |P1| = 1 and |P2| > 5.

(c-1-2) |P1| = 2 and |P2| > 4.

(c-2) n = 3 and one of the following holds:

(c-2-1) | ∪3i=1 Pi| = 3 and |Pij | > 3 for some 1 6 i < j 6 3.

(c-2-2) | ∪3i=1 Pi| = 4 and |Pij | > 2 for some 1 6 i < j 6 3.

(c-2-3) | ∪3i=1 Pi| = 5, |P1| = 3 and P23 = ∅.
(c-2-4) |P1| = |P2| = 2, |P3| = 1 and P13 = ∅ or P23 = ∅.
(c-2-5) | ∪3i=1 Pi| = 6, |P2| = |P3| = 1 and P23 = ∅.
(c-2-6) | ∪3i=1 Pi| = 6, |Pi| = 2 for all 1 6 i 6 3, and Pij = ∅ for all

1 6 i < j 6 3.

(c-2-7) | ∪3i=1 Pi| > 7, |P2| = |P3| = 1 and P23 = ∅.
(c-3) n = 4 and one of the following holds:

(c-3-1) | ∪4i=1 Pi| = 4 and Pi′j′ = ∅ whenever Pij 6= ∅ for all 1 6 i < j 6 4
where {i′, j′} = {1, 2, 3, 4} \ {i, j} and |Pij | > 1 for some 1 6 i <
j 6 3 or |Pijk| > 2 for some 1 6 i < j < k 6 3.

(c-3-2) | ∪4i=1 Pi| = 5, |P1| = 2, Pij = ∅ for all 2 6 i < j 6 4 and P234 = ∅.

(d) ξ(Γ(P )) = 2 if and only if

(d-1) n = 3 and one of the following holds:

(d-1-1) | ∪3i=1 Pi| = 3, |Pij | 6 2 for all 1 6 i < j 6 3 and one of the sets

Pij has two elements.

(d-1-2) | ∪3i=1 Pi| = 3, |Pij | 6 1 for all 1 6 i < j 6 3 and two of the sets

Pij has one elements.

(d-1-3) | ∪3i=1 Pi| = 4, |Pij | 6 1 for all 1 6 i < j 6 3.

(d-2) n = 4, | ∪3i=1 Pi| = 4, Pij = ∅ for all 1 6 i < j 6 3 and |Pijk| 6 1 for

all 1 6 i < j < k 6 3.

(e) ξ(Γ(P )) = 3 if and only if Z(P ) is one of the following of Figure 3:

0 0 0

Figure 3
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Proof. We know that if Γ(P ) is non-planar then ξ(Γ(P )) = 0. Thus we may
assume that Γ(P ) is planar. By [1, Lemma 3.1], if Γ(P ) is planar, then n 6 4.
Now we have the following cases:

Case 1. n = 1. Note that Γ(P ) has no edges at all if and only if n = 1.
Therefore in this case ξ(Γ(P )) =∞.

Case 2. n = 2. By Corollarly 2.8 of [1], the graph Γ(P ) is isomorphic to a
complete bipartite graph which its parts are P1 and P2. Therefore, by [1, Propo-
sition 3.2], Γ(P ) is planar if and only if |P1| 6 2 or |P2| 6 2. Now, we have the
following subcases:

(2-1) Suppose that |P1| = 1. If |P2| 6 3, then ξ(Γ(P )) =∞. If |P2| = 4, then the
line graph of the graph Γ(P ) is isomorphic to K4 and so it is planar. Also,
the line graph of the Γ(P ) has H2 as a subgraph and L2(Γ(P )) is planar.
Thus ξ(Γ(P )) = 3. Otherwise |P2| > 5. In this situation, ∆(Γ(P )) > 5.
Therefore ξ(Γ(P )) = 1.

(2-2) Suppose that P1 has two elements, say P1 = {a1, a′1}. If |P2| 6 2, then
ξ(Γ(P )) = ∞. If P2 has three elements, say P2 = {a2, a′2, a′′2}, then the
graph Γ(P ) is isomorphic to K2,3. Since ∆(Γ(P )) = 3, the line graph of the
graph Γ(P ) is planar. Also, by Figure 4, L2(Γ(P )) is planar and L(Γ(P )) has
H2 as a subgraph. So ξ(Γ(P )) = 3. Otherwise |P2| > 4. Then, by Theorem
2.1, ξ(Γ(P )) = 1.
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a′1 a′′2

1

2

4

3
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1 2

3 4

5 6

Figure 4: Γ(P ) and its line graph

Case 3. n = 3. By [1, Theorem 3.3], we have the following subcases:

(3-1) | ∪3i=1 Pi| = 3. The graph Γ(P ) is pictured in Figure 5. By Figure 5, if
one of the sets P12, P13 or P23 has at least 3 elements, then ∆(Γ(P )) > 5.
By Theorem 2.1, ξ(Γ(P )) = 1. Therefore |Pij | 6 2 for all 1 6 i < j 6 3.
We can conclude that L(Γ(P )) is planar. Now, if only one of the sets P12,
P13 or P23 has two elements, then L(Γ(P )) is planar and Γ(P ) has H4 as a
subgraph, we have that ξ(Γ(P )) = 2. If only two of the sets P12, P13 or P23

has one element, then L(Γ(P )) is planar and Γ(P ) has H3 as a subgraph, we
have that ξ(Γ(P )) = 2. Also, if only one of the sets P12, P13 or P23 has one
element, then L(L(Γ(P ))) is planar and the line graph of the Γ(P ) has H2

as a subgraph and so ξ(Γ(P )) = 3. If only two of the sets or all of the sets
P12, P13 or P23 has one element, exactly, then L(Γ(P )) is planar and Γ(P )
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has H3 as a subgraph. Hence ξ(Γ(P )) = 2. At last, if all the sets P12, P13

and P23 are empty, then Γ(P ) ∼= C3, which implies that ξ(Γ(P )) =∞.

a1 a2

a3

P23

P13P12

Figure 5

(3-2) | ∪3i=1 Pi| = 4. Without loss the generality, we may assume P1 = {a1, a′1}.
With this assumption, Γ(P ) is the graph which was drawn in Figure 6. By
Figure 6, if one the sets P12 or P13 has at least 2 elements, then ∆(Γ(P )) > 5.
Also, if P23 has at least two elements, then Γ(P ) has a vertex of degree 4
which is not a cut vertex. So ξ(Γ(P )) = 1. Otherwise |Pij | 6 1 for all
1 6 i < j 6 3. We can conclude that L(Γ(P )) is planar. Since Γ(P ) has H2

as a subgraph, we have that ξ(Γ(P )) = 2.

a1

a′1

a2a3
P23

P12 P13

Figure 6

(3-3) | ∪3i=1 Pi| = 5 and one of the following holds:

(3-3-1) One of the sets Pi, say P1, has three elements and P23 = ∅. By Figure
7, if one of the sets P13 or P12 is non-empty, then ∆(Γ(P )) > 5. So
ξ(Γ(P )) = 1. Now, assume that P12 and P13 are empty. Since the
Γ(P ) has a vertex of degree 4 which is not a cut vertex, we have that
ξ(Γ(P )) = 1.
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a1

a′1

a2a3 a′′1
P12 P13

Figure 7

(3-3-2) |Pi| ≤ 2, for all 1 ≤ i ≤ 3, and P13 = ∅ or P23 = ∅. Without loss
the generality, we may assume that P1 = {a1, a′1}, P2 = {a2, a′2}, P3 =
{a3} and P13 = ∅. Now, by Figure 8, if P12 6= ∅ or |P23| > 2, then
∆(Γ(P )) > 5. So ξ(Γ(P )) = 1. Also, |P23| = 1, the graph Γ(P ) has
a vertex of degree 4 which is not a cut vetex. Hence ξ(Γ(P )) = 1.
Otherwise, P12 = ∅ and P23 = ∅. In this case the vertex a3 has degree
4 and it is not a cut vertex. Hence ξ(Γ(P )) = 1.

a1
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a2a′2
a3

P23

P12

Figure 8

(3-4) Suppose that | ∪3i=1 Pi| = 6. Now, by Theorem 3.3 of [1], we must consider
one of the following cases:

(3-4-1) |P2| = |P3| = 1 and P23 = ∅. In this case we have that ∆(Γ(P )) > 5
and so L(Γ(P )) is not planar which implies that ξ(Γ(P )) = 1.

(3-4-2) |Pi| = 2 for all i = 1, 2, 3 and Pij = ∅ for all 1 ≤ i < j ≤ 3. By Figure
9, we can see that Γ(P ) is a 4-regular graph but none of the vertices is
a cut vertex. So ξ(Γ(P )) = 1.
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Figure 9

(3-5) At last suppose that | ∪3i=1 Pi| ≥ 7. By Theorem 3.3 of [1], since Γ(P ) is
planar, we have that |P2| = |P3| = 1 and P23 = ∅. In this case ∆(Γ(P )) > 5.
So ξ(Γ(P )) = 1.

Case 4. Suppose that n = 4. Now we have the following subcases:

(4-1) Suppose that | ∪4i=1 Pi| = 4. Then, by [1, Theorem 3.5], Γ(P ) is planar if
and only if Pi′j′ = ∅ whenever Pij 6= ∅, where {i′, j′} = {1, 2, 3, 4} \ {i, j}.
If |Pijk| > 2 for some 1 ≤ i < j < k ≤ 4 or |Pij | > 2 for some 1 ≤ i <
j ≤ 4, then ∆(Γ(P )) > 5. So we can conclude that ξ(Γ(P )) = 1. Now
suppose that |Pij | = 1 for some 1 ≤ i < j ≤ 4. Then ai′ and aj′ , when
{i′, j′} = {1, 2, 3, 4} \ {i, j}, are adjacent to the element of Pij . So the graph
Γ(P ) has a vertex of degree 4 which is not a cut vertex which implies that
ξ(Γ(P )) = 1. Finally, if Pij = ∅ for all 1 ≤ i < j ≤ 4 and |Pijk| 6 1 for all
1 ≤ i < j < k ≤ 4, then L(Γ(P )) is planar and Γ(P ) has H2 as a subgraph.
So ξ(Γ(P )) = 2.

(4-2) Let | ∪4i=1 Pi| = 5 and |P1| = 2. Then, by [1, Theorem 3.7], Γ(P ) is planar
if and only if Pij = ∅, for 2 ≤ i < j ≤ 4, and P234 = ∅. If P1j 6= ∅, for
some 2 6 j 6 4 or P1jk 6= ∅ for some 2 6 j < k 6 4, then ∆(Γ(P )) > 5
and so ξ(Γ(P )) = 1. Otherwise, P1j = ∅ for all 2 6 j 6 4 and P1jk = ∅ for
all 2 6 j < k 6 4. In this case, the degree of the vertices a2, a3 and a4 are
4 and these vertices are not cut vertices. Thus the line graph Γ(P ) is not
planar which implies that ξ(Γ(P )) = 1.

Corollary 2.3. Let P be a poset with least element 0 and |Atom(P )| = n. Then

ξ(Γ(P )) ∈ {0, 1, 2, 3,∞}.

3. Outerplanar index of Γ(P )

In this section, we study the outerplanar index of the zero divisor graph of a poset.
An undirected graph is an outerplanar graph if it can be drawn in the plane without
crossings in such a way that all of the vertices belong to the unbounded face of the
drawing. There is a characterization of outerplanar graphs that says a graph is
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outerplanar if and only if it does not contain a subdivision of the complete graph
K4 or the complete bipartite graph K2,3.

The outerplanar index of a graph G, which is denoted by ζ(G), is the smallest
integer k such that the kth iterated line graph of G is non-outerplanar. If Lk(G)
is outerplanar for all k > 0, we de�ne ζ(G) = ∞. In [11], the authors gave a full
characterization of all graphs with respect to their outerplanar index.

Theorem 3.1. Let G be a connected graph. Then:

(i) ζ(G) = 0 if and only if G is non-outerplanar.

(ii) ζ(G) =∞ if and only if G is a path, a cycle, or K1,3.

(iii) ζ(G) = 1 if and only if G is planar and G has a subgraph homeomorphic to

K1,4 or K1 + P3 in Figure 10.

(iv) ζ(G) = 2 if and only if L(G) is planar and G has a subgraph isomorphic to

one of the graphs G2 or G3 in Figure 10.

(v) ζ(G) = 3 if and only if G ∈ I(d1, d2, . . . , dt) where di > 2 for i = 2, . . . , t−1,
and d1 > 1 (Figure 10).

K1 + P3

e

G2

e

Ck

k > 3

G3

d1 d1 + d2 d1 + d2 + d3 d1 + d2 + · · · dt

Figure 10

At �rst, we investigate the outerplanarity of Γ(P ). We know that the in-
duced subgraph on Atom(P ) is a complete graph. So, if Γ(P ) is outerplanar then
|Atom(P )| 6 3. Thus we must study the cases that |Atom(P )| is equal to 1, 2 and
3. When |Atom(P )| = 1, the graph Γ(P ) has no edges at all which implies that
Γ(P ) is an outerplanar graph. In the following proposition, we state the necessary
and su�cient condition for outerplanarity of Γ(P ) when |Atom(P )| = 2.

Proposition 3.2. Suppose that |Atom(P )| = 2. Then Γ(P ) is outerplanar if and

only if one of the following happens:



182 Z. Barati

(a) one of the sets P1 and P2 has one element, exactly.

(b) |P1| = 2 and |P2| = 2.

Proof. Since Γ(P ) is a complete bipartite graph, we are done.

Proposition 3.3. Suppose that |Atom(P )| = 3. Then Γ(P ) is outerplanar if and

only if one of the following happens:

(a) | ∪3i=1 Pi| = 3.

(b) | ∪3i=1 Pi| = 4, |Pi| = 2 and Pjk = ∅ for j, k ∈ {1, 2, 3} \ {i}.

Proof. Let |Atom(P )| = 3 and Γ(P ) is outerplanar. If | ∪3i=1 Pi| > 5, then it is
not hard to see that Γ(P ) has a K2,3 as a subgraph. So we must investigate the
following cases:

1. | ∪3i=1 Pi| = 3. Now, by Figure 5, Γ(P ) is outerplanar.

2. |∪3i=1Pi| = 4. In this case one of the sets Pi, say P1 has two elements, exactly.
Suppose that P1 = {a1, a′1} and x ∈ P23. Then, by setting V1 := {a1, a′1}
and V2 := {a2, a3, x}, we can �nd a copy of K2,3 in the contraction of Γ(P ).
So Γ(P ) is not outerplanar. Now suppose that P23 is empty. Then, by Figure
11, Γ(P ) is outerpalanr.

a1

a′1

a2a3P12 P13

Figure 11

In next theorem, we investigate the outerplanar index of the zero divisor graph
of a poset when Atom(P ) is a �nite set.

Theorem 3.4. Let P be a poset and |Atom(P )| = n. Then:

(a) ζ(Γ(P )) = 0 if and only if Γ(P ) is non-outerplanar.

(b) ζ(Γ(P )) =∞ if and only if n = 1 or Z(P ) is one of the Figure 2.

(c) ζ(Γ(P )) = 1 if and only if

(c-1) n = 2, |P1| = 1 and |P2| > 4.
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(c-2) n = 3, | ∪3i=1 Pi| = 3 and |Pij | > 2 for some 1 6 i < j 6 3.

(c-3) n = 3, | ∪3i=1 Pi| = 4 and if |Pi| = 2, then for j, k ∈ {1, 2, 3} \ {i}, the
set Pjk is empty.

(d) ζ(Γ(P )) = 2 if and only if n = 3, | ∪3i=1 Pi| = 3, |Pij | = 1 for some

1 6 i < j 6 3.

Proof. We know ζ(Γ(P )) = 0 if Γ(P ) is non-outerplanar. Thus we may assume
that Γ(P ) is outerplanar. If Γ(P ) is outerplanar, then n 6 3. Now we have the
following cases:

Case 1. n = 1. Since Γ(P ) has no edges at all, we have that ζ(Γ(P )) =∞.
Case 2. n = 2. Note that the graph Γ(P ) is isomorphic to a complete bipartite

graph which its parts are P1 and P2. We have the following subcases:

(2-1) Suppose that |P1| = 1. If |P2| 6 3, then ζ(Γ(P )) =∞. If |P2| > 4, then the
line graph of the graph Γ(P ) has a copy of K4 and so it is not outerplanar.
Therefore ζ(Γ(P )) = 1.

(2-2) |P1| = |P2| = 2. In this case Γ(P ) ∼= C4, which implies that ζ(Γ(P )) =∞.

Case 3. n = 3. By Proposition 3.3, we have the following subcases:

(3-1) | ∪3i=1 Pi| = 3. The graph Γ(P ) is pictured in Figure 5. By Figure 5, if
one the sets P12, P13 or P23 has at least 2 elements, then Γ(P ) has K1,4 as
a subgraph. Now, by Theorem 3.1, we have that ζ(Γ(P )) = 1. If one of
the sets Pij has one elements for some 1 6 i < j 6 3, then Γ(P ) has G3

as a subgraph, we have that ζ(Γ(P )) = 2. At last, if Pij is empty for all
1 6 i < j 6 3, Γ(P ) is a cycle with 3 vertices. So ζ(Γ(P )) =∞.

(3-2) | ∪3i=1 Pi| = 4 and if |Pi| = 2, then for j, k ∈ {1, 2, 3} \ {i}, the set Pjk

is empty. Without loss the generality, we may assume that P1 = {a1, a′1}.
With this assumption, Γ(P ) is the graph which was drawn in Figure 11. By
Figure 11, Γ(P ) has a copy of K1 + P3 which implies that ζ(Γ(P )) = 1.

Corollary 3.5. Let P be a poset with least element 0 and |Atom(P )| = n. Then

ζ(Γ(P )) ∈ {0, 1, 2,∞}.
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