Recognition by order and set of orders of vanishing elements of $C_n(2^{\alpha})$, for some n and α

Azam Babai

Abstract. We say that an element g in a finite group G is a vanishing element of G if there exists an irreducible character $\chi \in \operatorname{Irr}(G)$ such that $\chi(g) = 0$. The set of orders of vanishing elements of G is denoted by $\operatorname{Vo}(G)$. In [5], the authors put forward the following conjecture: If G is a finite group and M is a finite nonabelian simple group such that $\operatorname{Vo}(G) = \operatorname{Vo}(M)$ and |G| = |M|, then $G \cong M$. In this paper we answer positive to this conjecture for a family of classical simple groups $C_n(q)$, where $n = 2^m \ge 2$, $q = 2^{\alpha}$ and $q^n + 1$ is a prime.

1. Introduction

Let *n* be a positive integer. By $\pi(n)$ we mean the set of prime divisors of *n*. Let *G* be a finite group and $\pi(G)$ be the set of prime divisors of |G|. Denote by $\omega(G)$, the set of element orders of *G*. For a finite set of positive integers *X*, the prime graph $\Pi(X)$ is a graph whose vertices are the prime divisors of elements of *X*, and two distinct vertices *p* and *q* are adjacent if *X* has an element divisible by *pq*. We denote the graph $\Pi(\omega(G))$ by GK(G) and we call it the prime graph or the Gruenberg-Kegel graph of *G*. The number of connected components of GK(G) is denoted by t(G), and the connected components of GK(G) is denoted by $\pi_1(G), \ldots, \pi_{t(G)}(G)$. If there is no ambiguity, we use the notation π_i instead of $\pi_i(G)$. If $2 \in \pi(G)$, we assume that $2 \in \pi_1(G)$. It is easy to see that |G| can be written as the product of coprime positive integers m_i such that $\pi(m_i) = \pi_i(G)$, for $i = 1, \ldots, t(G)$. These integers are called the order components of *G*.

We denote by $\operatorname{Irr}(G)$ the set of complex irreducible characters of G. We call an element $g \in G$, a vanishing element, if there exists $\chi \in \operatorname{Irr}(G)$ such that $\chi(g) = 0$. Put Vo(G), the set of orders of all vanishing elements of G. The prime graph $\Pi(\operatorname{Vo}(G))$ is denoted by $\Gamma(G)$ and is called the vanishing prime graph of G. Note that for every finite group G, $\Gamma(G)$ is a subgraph of GK(G). There is a strong relation between the structure of a group G and the set Vo(G). For example, if a finite group G does not have any vanishing element whose order is divisible by p, where $p \in \pi(G)$, then G has a normal Sylow p-subgroup (cf. [2]). In [7], it is proved that if x is a non-vanishing element of a solvable group G, then for some n, x^{2^n} is an element of the Fitting subgroup F(G) and conjectured that $x \in F(G)$. In [13], this

²⁰¹⁰ Mathematics Subject Classification: 20C15, 20D05

Keywords: vanishing element, prime graph, simple group.

conjecture has been proved in a special case that if G is solvable and no Mersenne prime divides |G|, then every non-vanishing element of G is an element of F(G). In [14], it is proved that the finite simple group A_5 is recognizable by its set of orders of vanishing elements. But not all finite simple groups are characterizable by their set of orders of vanishing elements. For example $Vo(L_3(5)) = Vo(Aut(L_3(5)))$, but $L_3(5) \ncong Aut(L_3(5))$. In [5], M. Foroudi Ghasemabadi et al. proposed the following conjecture that finite nonabelian simple groups are recognizable by their order and their set of orders of vanishing elements:

Conjecture. Let G be a finite group and M be a finite nonabelian simple group such that Vo(G) = Vo(M) and |G| = |M|. Then $G \cong M$.

They proved this conjecture for $M = A_1(q)$, where $q \in \{5, 7, 8, 9, 17\}$, $A_4(4)$, A_7 , Sz(8) and Sz(32). Also in [4], the conjecture has been proved where M is a sporadic simple group, an alternating group, $A_1(p)$, for an odd prime p, and finite simple K_3 -groups and K_4 -groups. In this paper, we show that this conjecture is true for classical simple groups $C_n(q)$, where $n = 2^m \ge 2$, $q = 2^{\alpha}$ and $q^n + 1$ is a prime. In fact, we prove the following theorem:

Main Theorem. Let G be a group and $M = C_n(q)$, where $n = 2^m \ge 2$, $q = 2^{\alpha}$ and $q^n + 1$ is a prime. Then $G \cong M$ if and only if Vo(G) = Vo(M) and |G| = |M|.

Let k and n be coprime integers. If there is an integer x such that $x^2 \equiv k \pmod{n}$, then k is called a quadratic residue mode n, otherwise k is called a quadratic nonresidue mode n. For a prime p, the symbol (a/p) is defined as follows: (a/p) = 1 if a is a quadratic residue mode p, (a/p) = -1 if a is a quadratic nonresidue mode p, and (a/p) = 0 if $p \mid a$. It is a well known result that $(-1/p) = (-1)^{(p-1)/2}$.

Let n and m be positive integers and p be a prime. We write $p^m || n$, if $p^m | n$ but $p^{m+1} \nmid n$. We write $n_p = p^m$, if $p^m || n$. All further notation can be found in [1], for instance.

2. Preliminary results

Definition 1. A finite group G is called a 2-Frobenius group if it has a normal series $1 \leq H \leq K \leq G$, where K and G/H are Frobenius groups with kernels H and K/H, respectively.

The following lemma (see [9]) summarizes the basic structural properties of a Frobenius group and a 2-Frobenius group:

Lemma 1.

(a) Let G be a Frobenius group and let H, K be the Frobenius complement and the Frobenius kernel of G, respectively. Then t(G) = 2 and the prime graph components of G are $\pi(H)$ and $\pi(K)$. Moreover, K is nilpotent and hence GK(K) is a complete graph. (b) If G is a 2-Frobenius group then t(G) = 2. With the notations of Definition 1, we also have $\pi_1 = \pi(G/K) \cup \pi(H)$ and $\pi_2 = \pi(K/H)$.

The next lemma is a consequence of Gruenberg–Kegel Theorem (see [12]):

Lemma 2. If G is a finite group with disconnected prime graph GK(G), then one of the following holds:

- (1) the finite group G is a Frobenius group and t(G) = 2;
- (2) the finite group G is a 2-Frobenius group and t(G) = 2;
- (3) the finite group G has a normal series $1 \leq H \leq K \leq G$, such that H and G/K are π_1 -groups and K/H is a nonabelian simple group, where H is a nilpotent group and $|G/K| \mid |\operatorname{Out}(K/H)|$.

Lemma 3. [2, 3] If G is a finite nonabelian simple group except A_7 , then $GK(G) = \Gamma(G)$.

As a consequence of [8, Corollary 22.26], we get the following lemma:

Lemma 4. If $\chi \in Irr(G)$ vanishes on a p-element for some prime p, then $p|\chi(1)$.

Let p be a prime number. A character $\chi \in Irr(G)$ is said to be of p-defect zero if p is not a divisor of $|G|/\chi(1)$. It is a well-known result that if χ is of p-defect zero, then for every element $g \in G$ which order is divisible by p, we have $\chi(g) = 0$ (see for example [6, Theorem 8.17]).

Lemma 5. [9, Lemma 2.5] Let G be a finite group with $t(G) \ge 2$, and let N be a normal subgroup of G. If N is a π_i -group for some prime graph component of G and m_1, m_2, \ldots, m_r are some order components of G but not π_i -numbers, then $m_1m_2\cdots m_r$ is a divisor of |N| - 1.

Lemma 6. [10, Lemma 8] Assume q > 1 is a natural number, $s = \prod_{i=1}^{n} (q^i - 1)$, p is a prime, $p \mid s$. We denote the power of p in the standard factorization of s by s_p , $e = \min\{d : p \mid q^d - 1\}$, $q^e = 1 + p^r k$, $p \nmid k$. If p > 2 or r > 2, then $s_p < q^{np/(p-1)}$.

Lemma 7. (Zsigmondy Theorem) [15] Let p be a prime and let n be a positive integer. Then one of the following holds:

- (i) there is a primitive prime p' for $p^n 1$, that is, $p' \mid (p^n 1)$ but $p' \nmid (p^m 1)$, for every $1 \leq m < n$,
- (*ii*) p = 2, n = 1 or 6,
- (iii) p is a Mersenne prime and n = 2.

Lemma 8. [9, Lemma 2.9] The equation $p^m - q^n = 1$, where p and q are primes and m, n > 1 has only one solution, namely $3^2 - 2^3 = 1$.

3. Main results

Theorem 1. Let G be a group and $M = C_n(q)$, where $n = 2^m \ge 2$, $q = 2^{\alpha}$ and $q^n + 1$ is odd prime. Then $G \cong M$ if and only if Vo(G) = Vo(M) and |G| = |M|.

Proof. If $G \cong M$, the result follows obviously. Let Vo(G) = Vo(M) and $|G| = |M| = q^{n^2}(q^n - 1) \prod_{i=1}^{n-1} (q^{2i} - 1)(q^n + 1)$. Let $l = q^n + 1$. Since l is a prime number there exists a natural number s such that $n\alpha = 2^s$. We continue proof in the following steps:

• STEP 1. The prime graph of G is disconnected.

According to Lemma 3, we have $\Gamma(G) = \Gamma(M) = GK(M)$. Hence, $\Gamma(G)$ has 2 connected components [11] and l is an isolated vertex in $\Gamma(G)$. So G has an l-element g such that $\chi(g) = 0$ for some irreducible complex character χ of G. Now, Lemma 4, implies that l divides $\chi(1)$. Since l || |M| and |G| = |M|, χ is an irreducible character of l-defect zero of G. So for every element $h \in G$ such that $l \mid o(h)$, we conclude that $\chi(h) = 0$. So, by the fact that l is an isolated vertex in $\Gamma(G)$, we conclude that l is an isolated vertex in GK(G). Hence $t(G) \geq 2$.

• STEP 2. G is not a Frobenius group.

Let G be a Frobenius group with complement H and kernel K. Consequently, GK(G) has two connected components, namely $\pi(H)$ and $\pi(K)$. Since l is an isolated vertex in GK(G), then l is a connected component. Since $|H| \mid (|K| - 1)$, we conclude that |H| = l. There exists a primitive prime divisor x of $q^n - 1$. Set $S \in \text{Syl}_x(K)$, so $S \leq G$ and $|S| \mid (q^n - 1)$. On the other hand, H acts fixed point freely on S, and consequently $|S| \equiv 1 \pmod{l}$, which is a contradiction.

• STEP 3. G is not a 2-Frobenius group.

Let G be a 2-Frobenius group, so G has a normal series $1 \leq H \leq K \leq G$, such that $\pi_2(G) = \pi(K/H)$ and $|G/K| \mid (|K/H| - 1)$. Therefore |K/H| = l and $|G/K| \mid q^n$. Then $(q^n - 1) \mid |H|$. Let x be a primitive prime of $q^n - 1$ and $S \in \text{Syl}_x(H)$. So similarly to Step 2, we get a contradiction.

• STEP 4. *G* has a normal series $1 \leq H \leq K \leq G$, such that *H* and *G/K* are π_1 -groups, *K/H* is a nonabelian simple group with disconnected prime graph, *H* is a nilpotent group and $|G/K| | |\operatorname{Out}(K/H)|$.

It follows from Lemma 2 and Steps 1, 2 and 3.

In the following, let K/H be the same as in Step 4.

• STEP 5. K/H is not an sporadic group.

Let $K/H \cong M_{22}$. It is clear that l is not equal to 7 or 11. So $l = 2^{n\alpha} + 1 = 5$, hence $n\alpha = 2$. So $\alpha = 1$, in this case $|K/H| \nmid |G|$, which is a contradiction. Similarly, K/H cannot be isomorphic to other sporadic groups.

• STEP 6. K/H is not an alternating group.

Let $K/H \cong A_{p'}$, where p'-2 is not odd prime.

Therefore p' = l, and so |K/H| = (l)!/2 ||G|, which is impossible.

Similarly, K/H can not be isomorphic to A_m , where $m \in \{p'+1, p'+2\}$ and m or m-2 is not odd prime and K/H can not be isomorphic to $A_{p'}$, where p' and p'-2 are prime numbers.

Therefore, K/H is a Lie type group, by classification of simple group.

• STEP 7. K/H is isomorphic to $C_n(q)$, where $n = 2^m \ge 2$, $q = 2^{\alpha}$ and $q^n + 1$ is odd prime.

We get that K/H is a Lie type group. Now by [11, Tables 1a-1c], we consider each possibility for K/H, separately:

• CASE 1. Let $K/H \cong A_{p'-1}(q')$, where $q' = r^f$ and p' is an odd prime. Therefore, $(q'^{p'} - 1)/((q' - 1)(p', q' - 1)) = l = 2^{n\alpha} + 1$. We know that

$$q'^{p'} - 1 \ge \frac{q'^{p'} - 1}{(q' - 1)(p', q' - 1)} = 2^{n\alpha} + 1 \quad \Rightarrow \quad q'^{p'} \ge 2^{n\alpha}.$$

On the other hand, let $S \in \text{Syl}_r(G)$, so $q'^{p'(p'-1)/2} | |S|$. Assume that $r \neq 2$, so by Lemma 6, $|S| < 2^{2n\alpha r/(r-1)} \leq q'^{3p'}$. Consequently, p'(p'-1)/2 < 3p', which implies that p' = 3 or p' = 5.

Let p' = 3.

Consider (p', q' - 1) = 1. Then $(q'^3 - 1)/(q' - 1) = q'^2 + q' + 1 = 2^{n\alpha} + 1$. It follows that $q'(q' + 1) = 2^{n\alpha}$, which is a contradiction.

Let (p', q'-1) = 3, then $(q'^2 + q' + 1)/3 = (r^{3f} - 1)/3(r^f - 1) = l$. We claim that $\pi(f) = \{3\}$. Let $f = 3^i t$, for some non-negative integers i and t also $3 \nmid t$. So $(r^{3^{i+1}} - 1)/3(r^{3^i t} - 1) = (r^{3^{i+1}} - 1)(r^{3^{i+1}(t-1)} + \dots + 1)/3(r^{3^i t} - 1) = l$. Therefore, $(r^{3^{i+1}} - 1) \mid (r^{3^i t} - 1)$, so by Lemma 7, we get that $3^{i+1} \mid 3^i t$, a contradiction. So $\pi(f) = \{3\}$, and consequently $\pi(G/K) \subseteq \{2,3\}$, since $|G/K| \mid |\operatorname{Out}(K/H)|$. Let x be a primitive prime of $q^n - 1$ and $x \notin \{3,5\}$. Therefore, x is a divisor of $(q'^2 + q' + 1)/3 - 2 = (q'^2 + q' - 5)/3$. It is easy to get that $x \nmid |K/H| = q'^3(q' - 1)(q'^2 - 1)(q'^2 + q' + 1)/3$. So $x \in \pi(H)$. Let $T \in \operatorname{Syl}_x(H)$. So $T \trianglelefteq G$ and $|T| \mid (q^n - 1)$. Now by Lemma 5 we have $|T| \equiv 1 \pmod{l}$, a contradiction. If x = 3, then $\alpha = 1$ and n = 2. In this case, $|K/H| \nmid |G|$, which is a contradiction. If x = 5, then $n\alpha = 4$. So l = 17, hence $(q'^2 + q' + 1)/3 = 17$, which is a contradiction.

Let p' = 5. Completely similar to the above we get a contradiction.

Therefore r = 2. If (p', q' - 1) = 1, then $2^{2f} + 2^f + 1 = 2^{n\alpha} + 1$, which is a contradiction. Otherwise, (p', q' - 1) = 3 and so $(2^{2f} + 2^f + 1)/3 = 2^{n\alpha} + 1$. It follows that n = 1, which is a contradiction.

Similarly, $K/H \cong {}^{2}A_{p'-1}(q')$, where $q' = r^{f}$ and p' is an odd prime.

• CASE 2. Let $K/H \cong A_{p'}(q')$, where $q' = r^f$ and $(q'-1) \mid (p'+1)$. So we have $(q'^{p'}-1)/(q'-1) = l = 2^{n\alpha}+1$. Consequently, $q'^{p'-1}+q'^{p'-2}+\ldots+1 = 2^{n\alpha}+1$, which is a contradiction.

Similarly, $K/H \ncong {}^2A_{p'}(q')$, where $q' = r^f$ and $(q'+1) \mid (p'+1)$. • CASE 3. Let $K/H \cong B_{p'}(3)$.

Therefore, $(3^{p'}-1)/2 = 2^{n\alpha} + 1$, hence $3^{p'}-3 = 2^{n\alpha+1}$, which is a contradiction. Similarly, K/H cannot be isomorphic to $C_{p'}(q')$, where q' = 2 or 3, $D_{p'}(q')$, where $p' \ge 5$ q' = 2, 3 or 5, $D_{p'+1}(q')$, where q' = 2 or 3 and ${}^{2}D_{p}(3)$, where $5 \le p \ne 2^{m'} + 1$.

• CASE 4. Let $K/H \cong B_{n'}(q')$, where $n' = 2^{m'} \ge 4$ and $q' = r^f$ is odd. We have

$$(q'^{n'}+1)/2 = 2^{n\alpha}+1 \quad \Rightarrow \quad q'^{n'}-2^{n\alpha+1}=1.$$

which is a contradiction, by Lemma 8.

Similarly, K/H cannot be isomorphic to ${}^{2}D_{n'}(3)$, where $n' = 2^{m'} + 1$ is not a prime number and $m' \geq 2$.

• CASE 5. Let $K/H \cong {}^{2}D_{n'}(q')$, where $n' = 2^{m'} \ge 4$.

Hence $(q'^{n'}+1)/(2,q'+1) = 2^{n\alpha}+1$. If (2,q'+1) = 2, then $q'^{n'}-2^{n\alpha+1}=1$, which is a contradiction, by Lemma 8. Therefore, (2, q'+1) = 1 and so $q'^{n'} = 2^{n\alpha}$. Hence r = 2 and $n'f = n\alpha$. Since $|K/H| \mid |G|$, so $n' - 1 \leq n$. We know that $n\alpha = 2^s$, therefore $n' \mid n$ and $\alpha \mid f$, so $n \geq 2n'$ and $\alpha \leqslant f/2$. Let x be a primitive prime divisor of $q^{n-1} - 1$. We have three following cases:

1. Let $x \in \pi(H)$ and $S \in Syl_x(H)$. So $S \leq G$ and $|S| \mid (q^{n-1}-1)$. On the other hand, we have $|S| \equiv 1 \pmod{l}$, which is a contradiction.

2. Let $x \in \pi(G/K)$. We have $\pi(G/K) \subseteq \pi(\operatorname{Out}(K/H)) = \pi(f) \cup \{2\}$, hence $x \mid f$. We know that $n\alpha = 2^s$, hence $n'f = 2^s$. It follows that x = 2, which is a contradiction.

3. Let $x \in (K/H)$, then there exists natural number t such that x is a primitive prime divisor of $2^{ft} - 1$. Consequently, $ft = (n-1)\alpha$. Hence $f(n'-t) = \alpha \leq f/2$, which is a contradiction.

• CASE 6. Let $K/H \cong {}^{2}D_{n'}(2)$, where $n' = 2^{m'} + 1 \ge 5$. We have

 $2^{n'-1} + 1 = l \quad \Rightarrow \quad n' = n\alpha + 1.$

Therefore, we get that $2^{n\alpha+1} + 1 \mid |K/H|$ and $2^{n\alpha+1} + 1 \nmid |G|$, which is impossible.

• CASE 7. Let $K/H \cong {}^{2}D_{p}(3)$, where $p = 2^{n'} + 1$ and $n' \ge 2$. If $(3^{p}+1)/4 = 2^{n\alpha} + 1$, then $3^{p} - 3 = 2^{n\alpha+2}$, which is a contradiction. Otherwise, $(3^{p-1}+1)/2 = 2^{n\alpha} + 1$ so $3^{p-1} - 2^{n\alpha+1} = 1$, which is a contradiction, by Lemma 8.

• CASE 8. Let $K/H \cong G_2(q')$, where $q' \equiv \varepsilon \pmod{3}$, $\varepsilon = \pm 1$ and $q' = r^f > 2$. We have

$$q'^2 - \varepsilon q' + 1 = l \quad \Rightarrow \quad q'(q' - \varepsilon) = 2^{n\alpha}$$

which is impossible.

Similarly, K/H cannot be isomorphic to ${}^{3}D_{4}(q')$, $F_{4}(q')$, where q' is odd.

• CASE 9. Let $K/H \cong E_6(q')$, where $q' = r^f$. Consequently, $(q'^6 + q'^3 + 1)/(3, q' - 1) = l$. If (3, q' - 1) = 1, then $q'^3(q'^3 + 1) = 2^{n\alpha}$, which is a contradiction. Otherwise, (3, q'-1) = 3 and so $q'^3(q'^3+1) = 2(3.2^{n\alpha-1}+1)$ 1). Therefore $r \neq 2$ and we have

$$q'^9 > q'^9 - 1 > (q'^6 + q'^3 + 1)/3 = 2^{n\alpha} + 1 > 2^{n\alpha}.$$

Let $S \in Syl_r(G)$, hence $q'^{36} \mid |S|$. By Lemma 6, we have

$$|S| < q^{2nr/(r-1)} \leqslant 2^{3n\alpha} \leqslant q'^{27}.$$

Which implies that $36 \leq 27$, and it is a contradiction. Similarly, $K/H \cong {}^{2}E_{6}(q')$.

• CASE 10. Let $K/H \cong A_1(q')$, where $q' = r^f$.

We consider three following cases:

1. Let $4 \mid (q'+1)$.

If q' = l, then $r^f - 2^{n\alpha} = 1$, so f = 1, by Lemma 8. Hence r = l and so $(l+1)/2 = (2^{n\alpha-1}+1) | |G|$, which is a contradiction. Otherwise, (q'-1)/2 = l, hence l is a primitive prime divisor of $r^f - 1$, which implies that $f \mid (l-1)$. Therefore, $f \mid 2^{n\alpha}$ and hence $\pi(f) = \{2\}$. Consequently, $\pi(G/K) = \{2\}$, since |G/K| | |Out(K/H)|. Moreover, $|K/H| = (2^{n\alpha+1}+3)(2^{n\alpha}+1)(2^{n\alpha+1}+4)$. Let x be a primitive prime divisor of $(2^{n\alpha} - 1)$ and $x \notin \{3, 5\}$, so $x \mid |H|$. Assume that $S \in Syl_x(H)$, so $S \leq G$ and $|S| \mid (2^{n\alpha} - 1)$. On the other hand, by Lemma 5, we have $|S| \equiv 1 \pmod{l}$, which is a contradiction. If x = 3, then $n\alpha = 2$, hence n=2 and $\alpha=1$. It follows that $|K/H| \nmid |G|$, which is a contradiction. So x=5, then l = 17 which implies that q' = 35, which is a contradiction.

2. Let $4 \mid (q'-1)$.

If q' = l, then $r^f - 2^{n\alpha} = 1$, so f = 1, by Lemma 8. So similar to the above we get a contradiction. Otherwise, (q'+1)/2 = l so $q'-2^{n\alpha+1} = 1$, Therefore, f = 1, by Lemma 8 and we get a contradiction similar to the above.

3. Let $q' = 2^f$.

Assume that $q' + 1 = 2^{n\alpha} + 1$, so $q' = q^n$, hence $f = n\alpha = 2^s$, where s is a natural number. Let x be a primitive prime divisor of $q^{n-1}-1$. It is clear that $x \notin q^{n-1}-1$. $\pi(K/H)$, hence $x \in \pi(G/K) \cup \pi(H)$. If $x \in \pi(G/K)$, then $x \in \text{Out}(K/H) = 2f$, which is a contradiction. Otherwise, $x \in \pi(H)$. Let $S \in Syl_x(H)$, so $S \leq G$ and $|S| \mid (2^{(n-1)\alpha} - 1)$. Also by Lemma 6, we know that $l \mid |S| - 1$, which is impossible. Therefore, $q' - 1 = l = 2^{n\alpha} + 1$, which is a contradiction.

• CASE 11. Let $K/H \cong {}^{2}B_{2}(q')$, where $q' = 2^{2n'+1} > 2$.

It is clear that $q' - 1 \neq l$. Hence $q' \pm \sqrt{2q'} + 1 = l$ and so $q' \pm \sqrt{2q'} = 2^{n\alpha}$, which is impossible.

Similarly, K/H cannot be isomorphic to ${}^{2}F_{4}(q')$, where $q' = 2^{2n'+1} > 2$, $G_{2}(q')$, where $q' = 3^f$, ${}^{2}G_2(q')$, where $q' = 3^{2n'+1}$ and $E_8(q')$.

• CASE 12. Let $K/H \cong F_4(q')$, where $q' = 2^{n'} > 2$. If $q'^4 + 1 = l$, then $n' = n\alpha/4$. We know that $(q'^4 - 1)^2 | |K/H|$, hence $(2^{n\alpha} - 1)^2 |$ |G|, which is a contradiction. Consequently, $q'^4 - q'^2 + 1 = l$ hence $q'^2(q'^2 - 1) = 2^{n\alpha}$, that is impossible.

• CASE 13. Let $K/H \cong C_{n'}(q')$, where $n' = 2^{m'} \ge 2$ and $q' = r^f$.

Therefore, $(q'^{n'}+1)/(2,q'-1) = l$. If (2,q'-1) = 2, then $q'^{n'}-2^{n\alpha+1}=1$. By Lemma 8, we get that n = 2, $\alpha = 1$, q' = 3 and n' = 2. Hence, $K/H \cong C_2(3)$ and $G \cong C_2(2)$. In this case, $|K/H| \nmid |G|$, which is a contradiction. Otherwise, (2,q'-1) = 1 and so r = 2 and $n'f = n\alpha$. Since $|K/H| \mid |G|$, so $n' \leq n$. Let n' < n. We know that $n\alpha = 2^s$, so $n' \mid n$. Consequently, $n \ge 2n'$ and so $\alpha \le f/2$.

We know that $2^{(n-1)\alpha} - 1$ has a primitive prime divisor, we say it x. We claim that $x \in \pi(K/H)$. If $x \notin \pi(K/H)$, then $x \in \pi(G/K) \cup \pi(H)$. Assume that $x \in$ $\pi(G/K)$, so $x \in \operatorname{Out}(K/H) = f$, which implies that x = 2 that is a contradiction. Therefore, $x \in \pi(H)$. Let $S \in Syl_x(H)$, so $S \subseteq G$, hence $|S| \mid (q^{n-1}-1)$. Moreover, we know that $l \mid (|S|-1)$, by Lemma 5, which is a contradiction. Therefore, $x \in \pi(K/H)$. Consequently, there exists a natural number t such that x is primitive prime divisor of $2^{tf}-1$. It follows that $(n-1)\alpha = tf$. So $(n'-t)f = \alpha \leq f/2$, which is a contradiction. Therefore, n = n' and so $\alpha = f$. It follows that $K/H \cong C_n(q)$. So, H = 1 and G = K. Consequently, $G \cong C_n(q)$, as required. \Box

References

- [1] J.H. Conway, R.T. Curtis, S.P. Norton, R.A. Parker and R A. Wilson, Atlas of finite groups, Oxford University Press, Oxford, (1985).
- [2] S. Dolfi, E. Pacifici, L. Sanus and P. Spiga, On the vanishing prime graph of finite groups, J. London Math. Soc. 82 (2010), 311-329.
- [3] S. Dolfi, E. Pacifici, L. Sanus and P. Spiga, On the vanishing prime graph of solvable groups, J. Group Theory 13 (2010), 189 - 206.
- [4] M. Foroudi Ghasemabadi, A. Iranmanesh and M. Ahanjideh, A new characterization of some families of finite simple groups, Rend. Sem. Mat. Univ. Padova, 137 (2017), 57 – 74.
- [5] M. Foroudi Ghasemabadi, A. Iranmanesh and F. Mavadatpour, A new characterization of some finite simple groups, Siberian Math. J. 56 (2015), 78-82.
- [6] I.M. Isaacs, Character theory of finite groups, Dover, New York, (1976).
- [7] I.M. Isaacs, G. Navarro and T. Wolf, Finite group elements where no irreducible character vanishes, J. Algebra 222 (1999), 413 423.
- [8] G. James and M. Liebeck, Representations and characters of groups, Cambridge University Press, Cambridge, (1993).
- [9] A. Khosravi and B. Khosravi, A new characterization of PSL(p,q), Commun. Algebra 32 (2004), 2325 - 2339.
- [10] H. Shi and G. Y. Chen, Relation between B_p(3) and C_p(3) with their order components where p is an odd prime, J. Appl. Math. & Informatics 27 (2009), 653-659.
- [11] A.V. Vasil'ev and M.A. Grechkoseeva, On the recognition of the finite simple orthogonal groups of dimension 2^m, 2^m + 1 and 2^m + 2 over a field of characteristic 2, Siberian Math. J. 45 (2004), 420 431.
- [12] J.S. Williams, Prime graph components of finite groups, J. Algebra 69 (1981), 487-513.
- [13] T. Wolf, Group actions related to non-vanishing elements, Int. J. Group Theory 3 (2014), no.2, 41-51.
- [14] J. Zhang, Z. Li and C. Shao, Finite groups whose irreducible characters vanish only on elements of prime power order, Int. Electronic J. Algebra 9 (2011), 114–123.
- [15] K. Zsigmondy, Zur theorie der potenzreste, Monatsh. Math. Phys. 3 (1892), 265-284.

Received January 31, 2018

Department of Mathematics, University of Qom, Qom 37185-3766, Iran E-mail: a babai@aut.ac.ir