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Recognition by order and set of orders

of vanishing elements of Cn(2
α), for some n and α

Azam Babai

Abstract. We say that an element g in a �nite group G is a vanishing element of G if there

exists an irreducible character χ ∈ Irr(G) such that χ(g) = 0. The set of orders of vanishing

elements of G is denoted by Vo(G). In [5], the authors put forward the following conjecture: If

G is a �nite group and M is a �nite nonabelian simple group such that Vo(G) = Vo(M) and

|G| = |M |, then G ∼= M . In this paper we answer positive to this conjecture for a family of

classical simple groups Cn(q), where n = 2m > 2, q = 2α and qn + 1 is a prime.

1. Introduction

Let n be a positive integer. By π(n) we mean the set of prime divisors of n.
Let G be a �nite group and π(G) be the set of prime divisors of |G|. Denote by
ω(G), the set of element orders of G. For a �nite set of positive integers X, the
prime graph Π(X) is a graph whose vertices are the prime divisors of elements of
X, and two distinct vertices p and q are adjacent if X has an element divisible
by pq. We denote the graph Π(ω(G)) by GK(G) and we call it the prime graph
or the Gruenberg-Kegel graph of G. The number of connected components of
GK(G) is denoted by t(G), and the connected components of GK(G) is denoted
by π1(G), . . . , πt(G)(G). If there is no ambiguity, we use the notation πi instead of
πi(G). If 2 ∈ π(G), we assume that 2 ∈ π1(G). It is easy to see that |G| can be
written as the product of coprime positive integers mi such that π(mi) = πi(G),
for i = 1, . . . , t(G). These integers are called the order components of G.

We denote by Irr(G) the set of complex irreducible characters of G. We call an
element g ∈ G, a vanishing element, if there exists χ ∈ Irr(G) such that χ(g) = 0.
Put Vo(G), the set of orders of all vanishing elements of G. The prime graph
Π(Vo(G)) is denoted by Γ(G) and is called the vanishing prime graph of G. Note
that for every �nite group G, Γ(G) is a subgraph of GK(G). There is a strong
relation between the structure of a group G and the set Vo(G). For example, if a
�nite group G does not have any vanishing element whose order is divisible by p,
where p ∈ π(G), then G has a normal Sylow p-subgroup (cf. [2]). In [7], it is proved
that if x is a non-vanishing element of a solvable group G, then for some n, x2

n

is an
element of the Fitting subgroup F (G) and conjectured that x ∈ F (G). In [13], this
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conjecture has been proved in a special case that if G is solvable and no Mersenne
prime divides |G|, then every non-vanishing element of G is an element of F (G). In
[14], it is proved that the �nite simple group A5 is recognizable by its set of orders
of vanishing elements. But not all �nite simple groups are characterizable by their
set of orders of vanishing elements. For example Vo(L3(5)) = Vo(Aut(L3(5))),
but L3(5) 6∼= Aut(L3(5)). In [5], M. Foroudi Ghasemabadi et al. proposed the
following conjecture that �nite nonabelian simple groups are recognizable by their
order and their set of orders of vanishing elements:

Conjecture. Let G be a �nite group and M be a �nite nonabelian simple group

such that Vo(G) = Vo(M) and |G| = |M |. Then G ∼= M .

They proved this conjecture for M = A1(q), where q ∈ {5, 7, 8, 9, 17}, A4(4),
A7, Sz(8) and Sz(32). Also in [4], the conjecture has been proved where M is a
sporadic simple group, an alternating group, A1(p), for an odd prime p, and �nite
simple K3-groups and K4-groups. In this paper, we show that this conjecture is
true for classical simple groups Cn(q), where n = 2m > 2, q = 2α and qn + 1 is a
prime. In fact, we prove the following theorem:

Main Theorem. Let G be a group and M = Cn(q), where n = 2m > 2, q = 2α

and qn+1 is a prime. Then G ∼= M if and only if Vo(G) = Vo(M) and |G| = |M |.

Let k and n be coprime integers. If there is an integer x such that x2 ≡ k
(mod n), then k is called a quadratic residue mode n, otherwise k is called a
quadratic nonresidue mode n. For a prime p, the symbol (a/p) is de�ned as
follows: (a/p) = 1 if a is a quadratic residue mode p, (a/p) = −1 if a is a
quadratic nonresidue mode p, and (a/p) = 0 if p | a. It is a well known result that
(−1/p) = (−1)(p−1)/2.

Let n and m be positive integers and p be a prime. We write pm||n, if pm | n
but pm+1 - n. We write np = pm, if pm||n. All further notation can be found in
[1], for instance.

2. Preliminary results

De�nition 1. A �nite group G is called a 2-Frobenius group if it has a normal
series 1 E H E K E G, where K and G/H are Frobenius groups with kernels H
and K/H, respectively.

The following lemma (see [9]) summarizes the basic structural properties of a
Frobenius group and a 2-Frobenius group:

Lemma 1.

(a) Let G be a Frobenius group and let H, K be the Frobenius complement and

the Frobenius kernel of G, respectively. Then t(G) = 2 and the prime graph

components of G are π(H) and π(K). Moreover, K is nilpotent and hence

GK(K) is a complete graph.
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(b) If G is a 2-Frobenius group then t(G) = 2. With the notations of De�nition

1, we also have π1 = π(G/K) ∪ π(H) and π2 = π(K/H).

The next lemma is a consequence of Gruenberg�Kegel Theorem (see [12]):

Lemma 2. If G is a �nite group with disconnected prime graph GK(G), then one

of the following holds:

(1) the �nite group G is a Frobenius group and t(G) = 2;

(2) the �nite group G is a 2-Frobenius group and t(G) = 2;

(3) the �nite group G has a normal series 1EHEKEG, such that H and G/K
are π1-groups and K/H is a nonabelian simple group, where H is a nilpotent

group and |G/K| | |Out(K/H)|.

Lemma 3. [2, 3] If G is a �nite nonabelian simple group except A7, then GK(G) =
Γ(G).

As a consequense of [8, Corollary 22.26], we get the following lemma:

Lemma 4. If χ∈ Irr(G) vanishes on a p-element for some prime p, then p|χ(1).

Let p be a prime number. A character χ ∈ Irr(G) is said to be of p-defect zero
if p is not a divisor of |G|/χ(1). It is a well-known result that if χ is of p-defect
zero, then for every element g ∈ G which order is divisible by p, we have χ(g) = 0
(see for example [6, Theorem 8.17]).

Lemma 5. [9, Lemma 2.5] Let G be a �nite group with t(G) > 2, and let N be

a normal subgroup of G. If N is a πi-group for some prime graph component of

G and m1,m2, . . . ,mr are some order components of G but not πi-numbers, then

m1m2 · · ·mr is a divisor of |N | − 1.

Lemma 6. [10, Lemma 8] Assume q > 1 is a natural number, s =
∏n
i=1(qi − 1),

p is a prime, p | s. We denote the power of p in the standard factorization of s
by sp, e = min{d : p | qd − 1}, qe = 1 + prk, p - k. If p > 2 or r > 2, then

sp < qnp/(p−1).

Lemma 7. (Zsigmondy Theorem) [15] Let p be a prime and let n be a positive

integer. Then one of the following holds:

(i) there is a primitive prime p′ for pn−1, that is , p′ | (pn−1) but p′ - (pm−1),
for every 1 6 m < n,

(ii) p = 2, n = 1 or 6,

(iii) p is a Mersenne prime and n = 2.

Lemma 8. [9, Lemma 2.9] The equation pm − qn = 1, where p and q are primes

and m,n > 1 has only one solution, namely 32 − 23 = 1.
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3. Main results

Theorem 1. Let G be a group and M = Cn(q), where n = 2m > 2, q = 2α and

qn + 1 is odd prime. Then G ∼= M if and only if V o(G) = V o(M) and |G| = |M |.

Proof. If G ∼= M , the result follows obviously. Let V o(G) = V o(M) and |G| =

|M | = qn
2

(qn − 1)
∏n−1
i=1 (q2i − 1)(qn + 1). Let l = qn + 1. Since l is a prime

number there exists a natural number s such that nα = 2s. We continue proof in
the following steps:
• Step 1. The prime graph of G is disconnected.
According to Lemma 3, we have Γ(G) = Γ(M) = GK(M). Hence, Γ(G) has

2 connected components [11] and l is an isolated vertex in Γ(G). So G has an
l-element g such that χ(g) = 0 for some irreducible complex character χ of G.
Now, Lemma 4, implies that l divides χ(1). Since l‖|M | and |G| = |M |, χ is an
irreducible character of l-defect zero of G. So for every element h ∈ G such that
l | o(h), we conclude that χ(h) = 0. So, by the fact that l is an isolated vertex in
Γ(G), we conclude that l is an isolated vertex in GK(G). Hence t(G) ≥ 2.
• Step 2. G is not a Frobenius group.
Let G be a Frobenius group with complement H and kernel K. Consequently,

GK(G) has two connected components, namely π(H) and π(K). Since l is an
isolated vertex in GK(G), then l is a connected component. Since |H| | (|K| − 1),
we conclude that |H| = l. There exists a primitive prime divisor x of qn − 1. Set
S ∈ Sylx(K), so S E G and |S| | (qn − 1). On the other hand, H acts �xed point
freely on S, and consequently |S| ≡ 1 (mod l), which is a contradiction.
• Step 3. G is not a 2-Frobenius group.
Let G be a 2-Frobenius group, so G has a normal series 1EHEKEG, such that

π2(G) = π(K/H) and |G/K| | (|K/H| − 1). Therefore |K/H| = l and |G/K| | qn.
Then (qn − 1) | |H|. Let x be a primitive prime of qn − 1 and S ∈ Sylx(H). So
similarly to Step 2, we get a contradiction.
• Step 4. G has a normal series 1 EH EK E G, such that H and G/K are

π1-groups, K/H is a nonabelian simple group with disconnected prime graph, H
is a nilpotent group and |G/K| | |Out(K/H)|.

It follows from Lemma 2 and Steps 1, 2 and 3.
In the following, let K/H be the same as in Step 4.
• Step 5. K/H is not an sporadic group.
Let K/H ∼= M22. It is clear that l is not equal to 7 or 11. So l = 2nα + 1 = 5,

hence nα = 2. So α = 1, in this case |K/H| - |G|, which is a contradiction.
Similarly, K/H cannot be isomorphic to other sporadic groups.
• Step 6. K/H is not an alternating group.
Let K/H ∼= Ap′ , where p

′ − 2 is not odd prime.
Therefore p′ = l, and so |K/H| = (l)!/2 | |G|, which is impossible.
Similarly, K/H can not be isomorphic to Am, where m ∈ {p′ + 1, p′ + 2} and m
or m − 2 is not odd prime and K/H can not be isomorphic to Ap′ , where p

′ and
p′ − 2 are prime numbers.
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Therefore, K/H is a Lie type group, by classi�cation of simple group.

• Step 7. K/H is isomorphic to Cn(q), where n = 2m > 2, q = 2α and qn + 1
is odd prime.

We get that K/H is a Lie type group. Now by [11, Tables 1a-1c], we consider
each possibility for K/H, separately:

• Case 1. Let K/H ∼= Ap′−1(q′), where q′ = rf and p′ is an odd prime.

Therefore, (q′p
′ − 1)/((q′ − 1)(p′, q′ − 1)) = l = 2nα + 1. We know that

q′p
′
− 1 >

q′p
′ − 1

(q′ − 1)(p′, q′ − 1)
= 2nα + 1 ⇒ q′p

′
> 2nα.

On the other hand, let S ∈ Sylr(G), so q′p
′(p′−1)/2 | |S|. Assume that r 6= 2, so

by Lemma 6, |S| < 22nαr/(r−1) 6 q′3p
′
. Consequently, p′(p′ − 1)/2 < 3p′, which

implies that p′ = 3 or p′ = 5.

Let p′ = 3.

Consider (p′, q′ − 1) = 1. Then (q′3 − 1)/(q′ − 1) = q′2 + q′ + 1 = 2nα + 1. It
follows that q′(q′ + 1) = 2nα, which is a contradiction.

Let (p′, q′ − 1) = 3, then (q′2 + q′ + 1)/3 = (r3f − 1)/3(rf − 1) = l. We claim
that π(f) = {3}. Let f = 3it, for some non-negative integers i and t also 3 - t. So
(r3

i+1t−1)/3(r3
it−1) = (r3

i+1−1)(r3
i+1(t−1) + · · ·+1)/3(r3

it−1) = l. Therefore,

(r3
i+1 − 1) | (r3

it − 1), so by Lemma 7, we get that 3i+1 | 3it, a contradiction.
So π(f) = {3}, and consequently π(G/K) ⊆ {2, 3}, since |G/K| | |Out(K/H)|.
Let x be a primitive prime of qn − 1 and x 6∈ {3, 5}. Therefore, x is a divisor
of (q′2 + q′ + 1)/3 − 2 = (q′2 + q′ − 5)/3. It is easy to get that x - |K/H| =
q′3(q′ − 1)(q′2 − 1)(q′2 + q′ + 1)/3. So x ∈ π(H). Let T ∈ Sylx(H). So T E G
and |T | | (qn − 1). Now by Lemma 5 we have |T | ≡ 1 (mod l), a contradiction. If
x = 3, then α = 1 and n = 2. In this case, |K/H| - |G|, which is a contradiction. If
x = 5, then nα = 4. So l = 17, hence (q′2+q′+1)/3 = 17, which is a contradiction.

Let p′ = 5. Completely similar to the above we get a contradiction.

Therefore r = 2. If (p′, q′ − 1) = 1, then 22f + 2f + 1 = 2nα + 1, which is a
contradiction. Otherwise, (p′, q′ − 1) = 3 and so (22f + 2f + 1)/3 = 2nα + 1. It
follows that n = 1, which is a contradiction.
Similarly, K/H � 2Ap′−1(q′), where q′ = rf and p′ is an odd prime.

• Case 2. Let K/H ∼= Ap′(q
′), where q′ = rf and (q′ − 1) | (p′ + 1).

So we have (q′p
′−1)/(q′−1) = l = 2nα+1. Consequently, q′p

′−1+q′p
′−2+. . .+1 =

2nα + 1, which is a contradiction.
Similarly, K/H � 2Ap′(q

′), where q′ = rf and (q′ + 1) | (p′ + 1).

• Case 3. Let K/H ∼= Bp′(3).

Therefore, (3p
′ − 1)/2 = 2nα + 1, hence 3p

′ − 3 = 2nα+1, which is a contradiction.
Similarly, K/H cannot be isomorphic to Cp′(q

′), where q′ = 2 or 3, Dp′(q
′),

where p′ > 5 q′ = 2, 3 or 5, Dp′+1(q′), where q′ = 2 or 3 and 2Dp(3), where

5 6 p 6= 2m
′
+ 1.
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• Case 4. Let K/H ∼= Bn′(q′), where n′ = 2m
′
> 4 and q′ = rf is odd.

We have
(q′n

′
+ 1)/2 = 2nα + 1 ⇒ q′n

′
− 2nα+1 = 1,

which is a contradiction, by Lemma 8.
Similarly, K/H cannot be isomorphic to 2Dn′(3), where n′ = 2m

′
+ 1 is not a

prime number and m′ ≥ 2.
• Case 5. Let K/H ∼= 2Dn′(q′), where n′ = 2m

′
> 4.

Hence (q′n
′

+ 1)/(2, q′ + 1) = 2nα + 1. If (2, q′ + 1) = 2, then q′n
′ − 2nα+1 = 1,

which is a contradiction, by Lemma 8. Therefore, (2, q′+1) = 1 and so q′n
′

= 2nα.
Hence r = 2 and n′f = nα. Since |K/H| | |G|, so n′ − 1 6 n. We know that
nα = 2s, therefore n′ | n and α | f , so n ≥ 2n′ and α 6 f/2. Let x be a primitive
prime divisor of qn−1 − 1. We have three following cases:

1. Let x ∈ π(H) and S ∈ Sylx(H). So S E G and |S| | (qn−1 − 1). On the
other hand, we have |S| ≡ 1 (mod l), which is a contradiction.

2. Let x ∈ π(G/K). We have π(G/K) ⊆ π(Out(K/H)) = π(f) ∪ {2}, hence
x | f . We know that nα = 2s, hence n′f = 2s. It follows that x = 2, which is a
contradiction.

3. Let x ∈ (K/H), then there exists natural number t such that x is a primitive
prime divisor of 2ft− 1. Consequently, ft = (n− 1)α. Hence f(n′− t) = α 6 f/2,
which is a contradiction.
• Case 6. Let K/H ∼= 2Dn′(2), where n′ = 2m

′
+ 1 > 5.

We have
2n

′−1 + 1 = l ⇒ n′ = nα+ 1.

Therefore, we get that 2nα+1 + 1 | |K/H| and 2nα+1 + 1 - |G|, which is impossible.
• Case 7. Let K/H ∼= 2Dp(3), where p = 2n

′
+ 1 and n′ > 2.

If (3p + 1)/4 = 2nα + 1, then 3p− 3 = 2nα+2, which is a contradiction. Otherwise,
(3p−1 + 1)/2 = 2nα + 1 so 3p−1 − 2nα+1 = 1, which is a contradiction, by Lemma
8.
• Case 8. Let K/H ∼= G2(q′), where q′ ≡ ε (mod 3), ε = ±1 and q′ = rf > 2.

We have
q′2 − εq′ + 1 = l ⇒ q′(q′ − ε) = 2nα,

which is impossible.
Similarly, K/H cannot be isomorphic to 3D4(q′), F4(q′), where q′ is odd.
• Case 9. Let K/H ∼= E6(q′), where q′ = rf .

Consequently, (q′6+q′3+1)/(3, q′−1) = l. If (3, q′−1) = 1, then q′3(q′3+1) = 2nα,
which is a contradiction. Otherwise, (3, q′−1) = 3 and so q′3(q′3+1) = 2(3.2nα−1+
1). Therefore r 6= 2 and we have

q′9 > q′9 − 1 > (q′6 + q′3 + 1)/3 = 2nα + 1 > 2nα.

Let S ∈ Sylr(G), hence q′36 | |S|. By Lemma 6, we have

|S| < q2nr/(r−1) 6 23nα 6 q′27.
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Which implies that 36 6 27, and it is a contradiction.
Similarly, K/H � 2E6(q′).
• Case 10. Let K/H ∼= A1(q′), where q′ = rf .

We consider three following cases:
1. Let 4 | (q′ + 1).

If q′ = l, then rf − 2nα = 1, so f = 1, by Lemma 8. Hence r = l and so
(l + 1)/2 = (2nα−1 + 1) | |G|, which is a contradiction. Otherwise, (q′ − 1)/2 = l,
hence l is a primitive prime divisor of rf − 1, which implies that f | (l − 1).
Therefore, f | 2nα and hence π(f) = {2}. Consequently, π(G/K) = {2}, since
|G/K| | |Out(K/H)|. Moreover, |K/H| = (2nα+1 + 3)(2nα + 1)(2nα+1 + 4). Let
x be a primitive prime divisor of (2nα − 1) and x /∈ {3, 5}, so x | |H|. Assume
that S ∈ Sylx(H), so S EG and |S| | (2nα − 1). On the other hand, by Lemma 5,
we have |S| ≡ 1 (mod l), which is a contradiction. If x = 3, then nα = 2, hence
n = 2 and α = 1. It follows that |K/H| - |G|, which is a contradiction. So x = 5,
then l = 17 which implies that q′ = 35, which is a contradiction.

2. Let 4 | (q′ − 1).
If q′ = l, then rf − 2nα = 1, so f = 1, by Lemma 8. So similar to the above we

get a contradiction. Otherwise, (q′+ 1)/2 = l so q′− 2nα+1 = 1, Therefore, f = 1,
by Lemma 8 and we get a contradiction similar to the above.

3. Let q′ = 2f .
Assume that q′ + 1 = 2nα + 1, so q′ = qn, hence f = nα = 2s, where s is a

natural number. Let x be a primitive prime divisor of qn−1−1. It is clear that x /∈
π(K/H), hence x ∈ π(G/K) ∪ π(H). If x ∈ π(G/K), then x ∈ Out(K/H) = 2f ,
which is a contradiction. Otherwise, x ∈ π(H). Let S ∈ Sylx(H), so S E G and
|S| | (2(n−1)α−1). Also by Lemma 6, we know that l | |S|−1, which is impossible.
Therefore, q′ − 1 = l = 2nα + 1, which is a contradiction.
• Case 11. Let K/H ∼= 2B2(q′), where q′ = 22n

′+1 > 2.
It is clear that q′ − 1 6= l. Hence q′ ±

√
2q′ + 1 = l and so q′ ±

√
2q′ = 2nα, which

is impossible.
Similarly, K/H cannot be isomorphic to 2F4(q′), where q′ = 22n

′+1 > 2, G2(q′) ,
where q′ = 3f , 2G2(q′), where q′ = 32n

′+1 and E8(q′).
• Case 12. Let K/H ∼= F4(q′), where q′ = 2n

′
> 2.

If q′4 + 1 = l, then n′ = nα/4. We know that (q′4−1)2 | |K/H|, hence (2nα−1)2 |
|G|, which is a contradiction. Consequently, q′4−q′2+1 = l hence q′2(q′2−1) = 2nα,
that is impossible.
• Case 13. Let K/H ∼= Cn′(q′), where n′ = 2m

′
> 2 and q′ = rf .

Therefore, (q′n
′

+ 1)/(2, q′ − 1) = l. If (2, q′ − 1) = 2, then q′n
′ − 2nα+1 = 1. By

Lemma 8, we get that n = 2, α = 1, q′ = 3 and n′ = 2. Hence, K/H ∼= C2(3)
and G ∼= C2(2). In this case, |K/H| - |G|, which is a contradiction. Otherwise,
(2, q′ − 1) = 1 and so r = 2 and n′f = nα. Since |K/H| | |G|, so n′ 6 n. Let
n′ < n. We know that nα = 2s, so n′ | n. Consequently, n > 2n′ and so α 6 f/2.

We know that 2(n−1)α− 1 has a primitive prime divisor, we say it x. We claim
that x ∈ π(K/H). If x 6∈ π(K/H), then x ∈ π(G/K) ∪ π(H). Assume that x ∈
π(G/K), so x ∈ Out(K/H) = f , which implies that x = 2 that is a contradiction.
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Therefore, x ∈ π(H). Let S ∈ Sylx(H), so SEG, hence |S| | (qn−1−1). Moreover,
we know that l | (|S| − 1), by Lemma 5, which is a contradiction. Therefore, x ∈
π(K/H). Consequently, there exists a natural number t such that x is primitive
prime divisor of 2tf−1. It follows that (n−1)α = tf . So (n′−t)f = α 6 f/2, which
is a contradiction. Therefore, n = n′ and so α = f . It follows that K/H ∼= Cn(q).
So, H = 1 and G = K. Consequently, G ∼= Cn(q), as required.
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