Quasigroups and Related Systems 26 (2018), 155 — 164

Fuzzy action of fuzzy groups on a set

Gezahagne Mulat Addis, Derso Abeje Engidaw,
Teferi Getachew Alemayehu

Abstract. We describe the notion of fuzzy action of fuzzy groups on a set using method proposed
by X. Yuan and E.S. Lee.

1. Introduction

The concept of fuzzy sets was introduced by L. A. Zadeh [8] and applied by A.
Rosenfeld [3] to groups. Rosenfeld assumed that subsets of a group G are fuzzy sets
and the binary operation on G is nonfuzzy in the classical sense. Another concept
of fuzzy subgroups was proposed by X. Yuan and E.S. Lee [7]. They assumed that
the binary operation is the fuzzy operation. This approach was developed by some
other researchers (see [1, 5, 6]).

On the other hand, Haddadi [2] and Roventa and Spircu [4] studied fuzzy
actions of fuzzy submonoids and fuzzy subgroups from an algebraic point of view.

In this paper we investigate a fuzzy action of fuzzy groups on a set using the
idea of fuzzy groups proposed by X. Yuan and E. S. Lee [7].

2. Preliminaries

Remember that, a fuzzy subset of a set X is a function from X to the real in-
terval [0, 1]. By a fuzzy relation from X to Y we mean a fuzzy subset of X x Y.
Throughout this paper 6 € [0, 1).

Definition 2.1. Let X and Y be nonempty sets. A fuzzy relation f from X to
Y is said to be a fuzzy function from X to Y if the following are satisfied:

1. for each z € X there exists y € Y such that f(x,y) > 0,
2. for each € X and y1,y2 €Y, f(z,y1) > 0 and f(x,y2) > 6 imply y; = yo.

A fuzzy function f is one-to-one (or injective) if for each 1,20 € X andy € YV
f(z1,y) > 0 and f(xe,y) > 6 imply 21 = x5. A fuzzy function f is onto (or
surjective) if for each y € Y there exists © € X such that f(z,y) > 6.
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Definition 2.2. (cf. [7]) Let G be a nonempty set. By a fuzzy binary operation
on G, we mean a fuzzy function R from G x G into G.

If R is a fuzzy binary operation on G, then we have a mapping:
o: F(G) x F(G) = F(G), (A,B)w— o(A,B),
where F'(G) = {A|A: G — [0,1] is a mapping} and

o(4,B)(c) = \/ (A(x) A B(y) A R(z,y,c)). (1)

z,yeG

For A = {a} and B = {b}, let us denote o(A, B) by aob. Then

(aob)(c) = R(a,b,c) VceQG, (2)

((aob)oc)(z) = \/ (R(a,b,x) A R(z, ¢, z)), (3)
zeG

(ao(boc)(z) = \/ (R(a,z,2) A R(b,c,)). (4)
zeG

Using the notations in (2) — (4), we have the following definition:

Definition 2.3. (cf. [7]) Let G be a nonempty set and R be a fuzzy binary
operation on G. The pair (G, R) is called a fuzzy group if the following conditions
are satisfied:

(G1) Va,b,c,z1,22 € G, ((aob)oc)(z1) >0 and (ao (boc))(ze) > 6 implies that
21 = 22,

(G2) Je, € G such that (e, 0a)(a) > 6 and (ace,)(a) > 0,

(G3) Va € G, 3b € G such that (aob)(e;) > 6 and (boa)(e,) > 0. In this case b

is called an inverse of a and is denoted by a~!.

3. Fuzzy action of fuzzy groups on a set

Throughout this section G stands for a fuzzy group.
Let X be a nonempty set and R* be a fuzzy function from G x X to X. Then
we have a function:

«: F(G) x F(X) = F(X), (AY)— *(A,Y),

here F(G) = {A|A: G — [0,1] is a mapping }, F(X)={Y|Y: X — [0,1]is a
mapping } and

«(AY)z) = \/ (A(s)AY(t) AR (s,t,2) VzeX. (5)

seG,teX
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Let A= {a} and Y = {y}, and let *(4,Y) be denoted by a *y. Then
(a*y)(2) = R*(a,y,2)Va € G,Vy,z € X (6)

((aob)xy)(z) = \/ (R°(a,b,s) N R*(s,y,2))Va,b € G,Vy,z € X (7)
seG

(ax(bxy)(z) =\ R*(a,t,2) ANR*(by,t),Va € G,Vy,z € X (8)
teX

Using the notations in (6) — (8), we have the following definition:

Definition 3.1. A fuzzy function R* of G x X into X is called a fuzzy action of
G on X if the following are satisfied:

1. (exx)(z) >0 forall z € X,
2. ((aob)*x)(z1) >0 and (a* (b x))(z2) > 6 implies z; = 25.
In this case we say that G acts on X by a fuzzy action R*.

Example 3.2. Let (G, R°) be a fuzzy group. Put X to be the set G. Define a
fuzzy subset R* of G x X x X by:

R*(a,z,z) = R°(e,x,z) foralla € G, x,z € X.

Then R* is a fuzzy action of G on itself, and it is called the trivial fuzzy action of
G onto itself.

Example 3.3. Let (G, R°) be a fuzzy group. Put X to be the set G. Define a
fuzzy subset R* of G x X x X by:

R*(a,z,2z) = R°(a,z,z) for all a € G, z,z € X.

Then R* is a fuzzy action of G on itself and it is called a fuzzy action of G on
itself by left translation.

Example 3.4. Let (G, R°) be a fuzzy group. Put X to be the set G. Define a
fuzzy subset R* of G x X x X by:

R*(a,z,2) = ((acx)oa=t)(z) foralla € G, r,z € X.

Then R* is a fuzzy action of G on itself and it is known as a fuzzy action of G on
itself by conjugation.

Example 3.5. Let (G, R) be a fuzzy group and H be a normal fuzzy subgroup
of G. Put X to be the set % Define a fuzzy subset R* of G x % X % by:

R*(a,[bH], [cH]) = R(a,b,c) Va,b,c € G.

Then R* is a fuzzy action of G onto its quotient %
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Let us define a relation ~ on X as follows:
For each z,y € X, x ~ y if and only if R*(a,z,y) > 6 for some a € G.
Theorem 3.6. The relation ~ s an equivalence relation on X.
Proof. Let xz,y,z € X.
1. Since R*(e,x,z) > 0 we have x ~ x.

2. Let  ~ y. Then there exists a € G such that R*(a,z,y) > 0. Asa™! € G,
y € X and R* is a fuzzy mapping from G x X to X, there exists z € X such
that R*(a™!,y,2) > 0. Now consider the following:

(a_l*(a*x))(z):\/R* (a=4t, 2)AR (a,2,t) = R*(a™ Yy, 2) AR*(a, z,y) > 0.
tex

Also

((atoa)*z)(z)= \/R° (a™ % a,s)AR*(s,x,2) > R°(a™ ", a,e) AR* (e, z, ) > 0.
seG

This implies that x = z, so R*(a™!,y,x) > 6 and hence y ~ x.

3. Let # ~ y and y ~ z. There exists a,b € G such that R*(a,z,y) > 6 and
R*(b,y,z) > 0. As a,b € G, there exists ¢ € G such that R°(b,a,c) > 6.
Also there exists w € X such that R*(c,z,w) > 6. We show that w = z.
For this, consider:

((boa) a:)(w):\/RO(b, a,s) AN R*(s,z,w) > R°(b,a,c) N R*(c,z,w)> 6.
seG

Also

(b (a* x))(z):\/ R*(b,t,2) AN R*(a,z,t) 2 R°(b,y,z) A R"(a,z,y) >0,
tex

which implies w = z. So, © ~ z.
Therefore ~ is an equivalence relation on X. O

The equivalence class T = {y € X |z ~ y} is called the orbit of 2 and is denoted
by Or(z). The set St(z) = {a € G| R*(a,z,x) > 0} is called the stabilizer of .

Theorem 3.7. St(x) is a fuzzy subgroup of G.

Proof. Since R*(e,z,z) > 0, then e € St(xz). Now let a,b € St(z) such that
R°(a,b,c) > 6. We show that ¢ € St(x). Let z € X such that R*(c,z,2) > 6.
Then

((aob)xx)(2)= \/Ro(a, b,s) NR*(s,z,z) = R°(a,b,c) N R*(c,x,2) >0
seG
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and

(a* (bx x)(x):\/ R*(a,t,z) N R*(b,x,t) > R°(a,z,z) N R*(b,x,x) >0,
tex

which implies z = . So, R*(¢, z,x) > 6 and hence ¢ € St(x). Let a € St(x). Then
R*(a,xz,x) > 0. Let z € X such that R*(a"',z,2) > 6. Now it can be verified
that

((atoa)xz)(z) >0 and (a ' *(axx))(z) > 0.

So, z = x. That is, R*(a"!,x,2) > 0 and hence a=! € St(x). Therefore St(z) is
a fuzzy subgroup of G. O

Let G be a fuzzy group acting on a set X by a fuzzy action R*. For each a € G,
let us define R : X x X — [0,1] by:

Ri(z,y) = R*(a,2,y) Va,y€X. (9)
Then we have the following;:

Theorem 3.8. For each a € G, the fuzzy map R}, is a fuzzy bijection of X onto
itself.

Proof. Clearly R} is a fuzzy function.

(1) We show that R} is one-to-one. Let 1,22,y € X be such that R (x1,y) > 0
and R}(xzq,y) > 0. Then R*(a,z1,y) > 0 and R*(a,z2,y) > 6. Also let
z € X be such that R*(a"1,y,2) > 6. Now we have:

(a'x(axx1))(2) >0 and (a 'oa)xzy)(x1) >0,
which givesz = x;. In a similar way we get z = z2. Thus R} is one-to-one.
(2) To show that it is onto, let y € X. As a~! € G and R* is a fuzzy action,

there exists * € X such that R*(a=!,y,2) > 0. Alsoasa € G and z € X
there exists z € X such that R*(a,z,z) > 6. Then:

(ax(a " +y)(2)=\/ R*(a,t,2) AR (™", y,t) > R*(a,2,2) AR (0"}, y, ) >0

texX

and

((aca™")xy)(y)=\/ R°(a,a™ ", )AR"(s,y,y) = R°(a,a" ", e)AR"(¢,y,y) >0,
seG

which implies z = y. That Ri(x,y) = R*(a,z,y) > 0. So, R’ is onto.
Therefore it is a bijection. O
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Put $*(X) = {R} | a € G} and define a fuzzy subset H of 3*(X) x $*(X) x *(X)
by:
H(Rg, Ry, R:) = R(a,b,c) Va,b,ceq.

Then we have the following results:
Theorem 3.9. (S*(X), H) is a fuzzy group.

Corollary 3.10. The function f : G — S*(X) defined by f(a) = R for alla € G
is an epimorphism.

The epimorphism f defined above is called the homomorphism associated with
R*. If f is one-to-one then R* is called an effective fuzzy action of G on X. By
the kernel of R*, we mean the kernel of the homomorphism f.

Lemma 3.11. The fuzzy action R* of a fuzzy group G on a set X is effective if
and only if ker R* = {e}.

Corollary 3.12. If R* is the fuzzy action of G on itself by left translation, then
R* is effective.

Corollary 3.13. Let R* be the fuzzy action of G on itself by conjugation. Then,
R* is effective if and only if the center Z(G) of G is {e}.

Proof. This can be verified by showing that kerf = Z(G). O

Theorem 3.14. There is a fuzzy one-to-one correspondence between Or(x) and
the collection of all left cosets of St(x).

Proof. Let H = St(x) and ¥ = {[aH]|a € G}. Define a fuzzy subset a of
Or(z) x X by:
a(y, [aH]) = R*(a,z,y)
for all a € G,y € Or(z).
First we show that « is a fuzzy function.

1. Let y € Or(x). There exists a € G such that R*(a,z,y) > 6. That is,
a(y, [aH]) > 0.

2. Let y € Or(z) and a,b € G be such that a(y, [aH]) > 0 and a(y, [bH]) > 6.
Let z € G be such that R*(a™!,y, z) > 6. Then

(a ™t (axm))(2)= \/R*(a_l,t,z)/\R*(a,x,t) >R*(a ', y,2) AR*(a,z,y) >0

tex
and

((a"toa)xx)(x) = \/Ro(a_l, a,8)AR*(s,z,x)>R°(a"",a,e)AR*(e,x,x) >0,
seG

which implies z = x. So, R*(a~1,y,z) > 6. Similarly R*(b~!,y,x) > 0.
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Let ¢ € G be such that R°(a=!,b,c) > 6. We need to show that ¢ € H. Let
z € X be such that R*(c,x, z) > 6. Then

((a"tob)xz)(2)= \/Ro(a_l7 b,s)AR*(s,z,2) > R°(a™*,b,c) A\R*(c,2,2) >0

seEG
and

(atx(bxa))(2)=\/R*(a” " t,2) AR (b2, t) > R (a™ y, 2) AR" (b, 2, ) > 6,
teX

which gives z = z. So, R*(c,z,x) > 6. Hence c € H. Thus [aH| = [bH].

Therefore « is a fuzzy function. Since R* is a fuzzy action of G on X, it follows
that « is one-to-one and onto. Hence « is a fuzzy one-to-one correspondence. [

Definition 3.15. A fuzzy action of a fuzzy group G on a set X is said to be
transitive if there is only one orbit in X, i.e, Or(z) = X for all z € X. In this
case, we say that G acts transitively on X.

Lemma 3.16. A fuzzy action R* is transitive if and only if, for any pairs of
elements x,y € X, there is an element a € G such that R*(a,z,y) > 6.

Corollary 3.17. Let R* be a fuzzy action of a fuzzy group (G, R°) on itself by
left translation. Then R* is transitive.

Definition 3.18. Let G be acting on two sets X; and X5 by fuzzy actions R* and
R respectively. These two fuzzy actions are said to be equivalent if there exists
a bijection o : X7 — X5 such that

R*(a,z,y) > 0 = R*(a,a(x), a(y)) > 0
forall a € G, x,y € X;.

Lemma 3.19. Let R* be the fuzzy action of G on itself by left translation and let
R”® be the fuzzy action of G on itself defined by:

R®(a,z,y) = R°(z,a™ 1, y)
for all a,xz,y € G. Then the fuzzy actions R* and R are equivalent.

Proof. This can be verified by taking o : G — G defined by a(z) = z~! for all
x € G. O

Below we obtain an internal characterization of transitive fuzzy actions

Theorem 3.20. Let R* be a transitive fuzzy action of G on a set X, v € X and
H = St(x). Then, R* is equivalent to the fuzzy action of G on the set of left cosets
of H in G by left translation.
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Proof. Put H = St(x), X1 = X and Xy = {[aH]|a € G}. Since R* is transitive we
have Or(z) = X;. So for each y € X there exists b € G such that R*(b, z,y) > 6.
Now define f: X7 — X5 by:

f(y) = [aH]
for all y € X;. This f is a bijection. Remember that a fuzzy subset R® of
G x X5 x X3 defined by

R°(a,[bH],[cH]) = R°(a,b,c) Ya,b,c € G

is a fuzzy action of G on X5 by left translation. Let a € G and y;,y2 € X3 such
that R*(a,y1,y2) > 6. Now we show that

R%(a, f(y1), f(y2)) > 0.

As y; € X3 = Or(z), there exists b € G such that R*(b,z,y1) > 0. As a,b € G,
dc € G such that R°(a,b,c) > 0. Let z € X; be such that R*(c, z,z) > 6. Then:

((aob)x* J;)(z):\/Ro(a,b,s) A R*(s,z,z) > R°(a,b,c) N R*(c,z,2) >0

seG
and

(a‘ * (b* w))(yQ):\/R*(avtva) A R*(b,$7t)>R*(a7y1,y2) A R*(b7$,y1)>0,
teX

which implies yo = z. So R*(¢,z,y2) > 0. That is f(y2) = [cH]. Also we have
f(y1) = [bH]. Thus

R®(a, f(v1), f(y2)) = R®(a, [bH], [cH]) = R°(a,b,c) > 6.
Hence R* and R® are equivalent. O

Among the transitive fuzzy actions, there is a special class, namely primitive
fuzzy actions, which deserves emphasis.

Definition 3.21. Let R* be a fuzzy action of a fuzzy group G on a set X. An
equivalence relation ¥ on X is said to be compatible with the fuzzy action R* if,
for any x1,x2,y1,y2 € X, and a € G with R*(a,z1,y1) > 6 and R*(a,x2,y2) > 0

(z1,22) €Y = (y1,92) € 1.

Clearly the whole of X x X and the diagonal A x are equivalence relation X which
are compatible with every fuzzy action of G on X.

Definition 3.22. A fuzzy action of a fuzzy group G on a set X is called primitive
if X x X and the diagonal Ax are the only equivalence relations on X which are
compatible with it. A fuzzy action which is not primitive is called imprimitive.
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Theorem 3.23. Let R* and R® be equivalent fuzzy actions of G on X, and X,
respectively. Then, R* is primitive if and only if R® too is so.

Proof. Let R* and R® be equivalent fuzzy actions. Then there exists a bijection
f: X1 — X5 such that for any a € G and z,y € X;:

R*(a,z,y) > 0 = R®(a, f(), f(y)) > 0.

Suppose that R* is primitive. We show that R% is also primitive. Let 7 be an
equivalence relation on X, which is compatible with R”. Then it can be seen that
@) = {(z,y) € X1 x Xo|(f(x), f(y)) € ¥} is an equivalence relation on X
which is compatible with R*. That is f~!(¢)) = Ay, or f~(¢)) = X; x X; which
is implies that ¥ = Ax, or ¥ = X5 x Xs. O

Theorem 3.24. Let R* be a fuzzy action of G on a set X. Then, R* is imprimitive
if and only if there exists a proper subset Y of X with |Y| > 1 such that, for
any a € G, either R*(a,Y) =Y or R*(a,Y)NY = (), where R*(a,Y) = {z €
X| R*(a,y,z) > 0 for somey €Y},

Proof. Suppose that R* is imprimitive. Then, there exists an equivalence relation
1 on X which is compatible with R* such that ¢ # X x X and ¥ # Ax. Choose
x #y € X such that (z,y) € ¥. Put Y = the equivalence class of ¢ containing
z. That is Y = ¢(z) = {# € X|(z,2) € ¢}. Since x #y €Y, |Y| > 1.
Moreover, since 1) # X x X, Y is a proper subset of X. Now let a € G such that
R*(a,Y)NY # (. Then choose an element z; € Y such that R*(a, z1, 22) > 6 for
some z3 € Y s0, (z,22) € ¥. Let R*(a,x,u) > 0 for some u € X. Since (x,21) € ¢
and 1 is compatible with R*, we get (u, z2) € @ which implies that (x,u) € .
Now it can be easily verified that R*(a,Y) =Y.

Conversely suppose that there is a proper subset Y of X with |Y| > 1 such
that either R*(a,Y)NY =0 or R*(a,Y) =Y. Then for any a and b € G,

either R*(a,Y)=R*(b,Y) or R'(a,Y)NR*(b,Y)=0.
Put Z =X — (U,eq R*(a,Y)). Then P = {R*(a,Y) |a € G} U{Z} is a partition
of X and the corresponding equivalence relation i on X is compatible with the

fuzzy action R*. Since Y = R*(e,Y) is an equivalence class and Y # X, it follows
that ¢ # X x X. Also since |Y| > 1, ¢ # Ax. Thus R* is imprimitive. O

Lemma 3.25. Let R* be a fuzzy action of G on a set X. Define
' ={(z,y) € X x X|R"(a,z,y) > 0 for some a € G}.

Then, ¥* is an equivalence relation on X, which is compatible with the fuzzy action
action R*.
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Corollary 3.26. If a fuzzy action R* of G on X is primitive, then either R* is
transitive or

1 ify==x

0 otherwise

R*(a,z,y) = {

foralla e G and z,y € X.

Proof. If R* is fuzzy primitive, then ¢* = Ax or X x X and hence all orbits are
singleton sets or there is only one orbit. O

In particular, a nontrivial primitive fuzzy action must be necessarily transitive
and hence the class of nontrivial primitive fuzzy actions of a fuzzy group G on a
set X is a subclass of the transitive fuzzy actions of G on X. But in general a
transitive fuzzy action need not be primitive.
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