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Fuzzy action of fuzzy groups on a set

Gezahagne Mulat Addis, Derso Abeje Engidaw,

Teferi Getachew Alemayehu

Abstract. We describe the notion of fuzzy action of fuzzy groups on a set using method proposed

by X. Yuan and E.S. Lee.

1. Introduction

The concept of fuzzy sets was introduced by L. A. Zadeh [8] and applied by A.
Rosenfeld [3] to groups. Rosenfeld assumed that subsets of a group G are fuzzy sets
and the binary operation on G is nonfuzzy in the classical sense. Another concept
of fuzzy subgroups was proposed by X. Yuan and E.S. Lee [7]. They assumed that
the binary operation is the fuzzy operation. This approach was developed by some
other researchers (see [1, 5, 6]).

On the other hand, Haddadi [2] and Roventa and Spircu [4] studied fuzzy
actions of fuzzy submonoids and fuzzy subgroups from an algebraic point of view.

In this paper we investigate a fuzzy action of fuzzy groups on a set using the
idea of fuzzy groups proposed by X. Yuan and E. S. Lee [7].

2. Preliminaries

Remember that, a fuzzy subset of a set X is a function from X to the real in-
terval [0, 1]. By a fuzzy relation from X to Y we mean a fuzzy subset of X × Y .
Throughout this paper θ ∈ [0, 1).

De�nition 2.1. Let X and Y be nonempty sets. A fuzzy relation f from X to
Y is said to be a fuzzy function from X to Y if the following are satis�ed:

1. for each x ∈ X there exists y ∈ Y such that f(x, y) > θ,

2. for each x ∈ X and y1, y2 ∈ Y , f(x, y1) > θ and f(x, y2) > θ imply y1 = y2.

A fuzzy function f is one-to-one (or injective) if for each x1, x2 ∈ X and y ∈ Y
f(x1, y) > θ and f(x2, y) > θ imply x1 = x2. A fuzzy function f is onto (or
surjective) if for each y ∈ Y there exists x ∈ X such that f(x, y) > θ.
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De�nition 2.2. (cf. [7]) Let G be a nonempty set. By a fuzzy binary operation

on G, we mean a fuzzy function R from G×G into G.

If R is a fuzzy binary operation on G, then we have a mapping:

◦ : F (G)× F (G)→ F (G), (A,B) 7→ ◦(A,B),

where F (G) = {A |A : G→ [0, 1] is a mapping} and

◦(A,B)(c) =
∨

x,y∈G
(A(x) ∧B(y) ∧R(x, y, c)). (1)

For A = {a} and B = {b}, let us denote ◦(A,B) by a ◦ b. Then

(a ◦ b)(c) = R(a, b, c) ∀c ∈ G, (2)

((a ◦ b) ◦ c)(z) =
∨
x∈G

(R(a, b, x) ∧R(x, c, z)), (3)

(a ◦ (b ◦ c))(z) =
∨
x∈G

(R(a, x, z) ∧R(b, c, x)). (4)

Using the notations in (2)− (4), we have the following de�nition:

De�nition 2.3. (cf. [7]) Let G be a nonempty set and R be a fuzzy binary
operation on G. The pair (G,R) is called a fuzzy group if the following conditions
are satis�ed:

(G1) ∀a, b, c, z1, z2 ∈ G, ((a ◦ b) ◦ c)(z1) > θ and (a ◦ (b ◦ c))(z2) > θ implies that
z1 = z2,

(G2) ∃e◦ ∈ G such that (e◦ ◦ a)(a) > θ and (a ◦ e◦)(a) > θ,

(G3) ∀a ∈ G, ∃b ∈ G such that (a ◦ b)(e◦) > θ and (b ◦ a)(e◦) > θ. In this case b
is called an inverse of a and is denoted by a−1.

3. Fuzzy action of fuzzy groups on a set

Throughout this section G stands for a fuzzy group.
Let X be a nonempty set and R∗ be a fuzzy function from G×X to X. Then

we have a function:

∗ : F (G)× F (X)→ F (X), (A, Y ) 7→ ∗(A, Y ),

here F (G) = {A |A : G → [0, 1] is a mapping }, F (X) = {Y |Y : X → [0, 1] is a
mapping } and

∗(A, Y )(z) =
∨

s∈G,t∈X
(A(s) ∧ Y (t) ∧R∗(s, t, z)) ∀z ∈ X. (5)
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Let A = {a} and Y = {y}, and let ∗(A, Y ) be denoted by a ∗ y. Then

(a ∗ y)(z) = R∗(a, y, z)∀a ∈ G,∀y, z ∈ X (6)

((a ◦ b) ∗ y)(z) =
∨
s∈G

(R◦(a, b, s) ∧R?(s, y, z))∀a, b ∈ G,∀y, z ∈ X (7)

(a ∗ (b ∗ y))(z) =
∨
t∈X

R∗(a, t, z) ∧R∗(b, y, t),∀a ∈ G,∀y, z ∈ X (8)

Using the notations in (6)− (8), we have the following de�nition:

De�nition 3.1. A fuzzy function R∗ of G×X into X is called a fuzzy action of
G on X if the following are satis�ed:

1. (e ∗ x)(x) > θ for all x ∈ X,

2. ((a ◦ b) ∗ x)(z1) > θ and (a ∗ (b ∗ x))(z2) > θ implies z1 = z2.

In this case we say that G acts on X by a fuzzy action R∗.

Example 3.2. Let (G,R◦) be a fuzzy group. Put X to be the set G. De�ne a
fuzzy subset R∗ of G×X ×X by:

R∗(a, x, z) = R◦(e, x, z) for all a ∈ G, x, z ∈ X.

Then R∗ is a fuzzy action of G on itself, and it is called the trivial fuzzy action of
G onto itself.

Example 3.3. Let (G,R◦) be a fuzzy group. Put X to be the set G. De�ne a
fuzzy subset R∗ of G×X ×X by:

R∗(a, x, z) = R◦(a, x, z) for all a ∈ G, x, z ∈ X.

Then R∗ is a fuzzy action of G on itself and it is called a fuzzy action of G on
itself by left translation.

Example 3.4. Let (G,R◦) be a fuzzy group. Put X to be the set G. De�ne a
fuzzy subset R∗ of G×X ×X by:

R∗(a, x, z) = ((a ◦ x) ◦ a−1)(z) for all a ∈ G, x, z ∈ X.

Then R∗ is a fuzzy action of G on itself and it is known as a fuzzy action of G on
itself by conjugation.

Example 3.5. Let (G,R) be a fuzzy group and H be a normal fuzzy subgroup
of G. Put X to be the set G

H . De�ne a fuzzy subset R∗ of G× G
H ×

G
H by:

R∗(a, [bH], [cH]) = R(a, b, c) ∀a, b, c ∈ G.

Then R∗ is a fuzzy action of G onto its quotient G
H .
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Let us de�ne a relation ∼ on X as follows:

For each x, y ∈ X, x ∼ y if and only if R∗(a, x, y) > θ for some a ∈ G.

Theorem 3.6. The relation ∼ is an equivalence relation on X.

Proof. Let x, y, z ∈ X.

1. Since R∗(e, x, x) > θ we have x ∼ x.

2. Let x ∼ y. Then there exists a ∈ G such that R∗(a, x, y) > θ. As a−1 ∈ G,
y ∈ X and R∗ is a fuzzy mapping from G×X to X, there exists z ∈ X such
that R∗(a−1, y, z) > θ. Now consider the following:

(a−1∗(a∗x))(z)=
∨
t∈X

R∗(a−1, t, z)∧R∗(a, x, t) > R∗(a−1, y, z)∧R∗(a, x, y)> θ.

Also

((a−1◦a)∗x)(x)=
∨
s∈G

R◦(a−1, a, s)∧R∗(s, x, x)>R◦(a−1, a, e)∧R∗(e, x, x)>θ.

This implies that x = z, so R∗(a−1, y, x) > θ and hence y ∼ x.

3. Let x ∼ y and y ∼ z. There exists a, b ∈ G such that R∗(a, x, y) > θ and
R∗(b, y, z) > θ. As a, b ∈ G, there exists c ∈ G such that R◦(b, a, c) > θ.
Also there exists w ∈ X such that R∗(c, x, w) > θ. We show that w = z.
For this, consider:

((b ◦ a) ∗ x)(w)=
∨
s∈G

R◦(b, a, s) ∧R∗(s, x, w)>R◦(b, a, c) ∧R∗(c, x, w)> θ.

Also

(b ∗ (a ∗ x))(z)=
∨
t∈X

R∗(b, t, z) ∧R∗(a, x, t)>R◦(b, y, z) ∧R∗(a, x, y)>θ,

which implies w = z. So, x ∼ z.

Therefore ∼ is an equivalence relation on X.

The equivalence class x = {y ∈ X |x ∼ y} is called the orbit of x and is denoted
by Or(x). The set St(x) = {a ∈ G |R∗(a, x, x) > θ} is called the stabilizer of x.

Theorem 3.7. St(x) is a fuzzy subgroup of G.

Proof. Since R∗(e, x, x) > θ, then e ∈ St(x). Now let a, b ∈ St(x) such that
R◦(a, b, c) > θ. We show that c ∈ St(x). Let z ∈ X such that R∗(c, x, z) > θ.
Then

((a ◦ b) ∗ x)(z)=
∨
s∈G

R◦(a, b, s) ∧R∗(s, x, z) > R◦(a, b, c) ∧R∗(c, x, z)>θ
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and

(a ∗ (b ∗ x)(x)=
∨
t∈X

R∗(a, t, x) ∧R∗(b, x, t) > R◦(a, x, x) ∧R∗(b, x, x)>θ,

which implies z = x. So, R∗(c, x, x) > θ and hence c ∈ St(x). Let a ∈ St(x). Then
R∗(a, x, x) > θ. Let z ∈ X such that R∗(a−1, x, z) > θ. Now it can be veri�ed
that

((a−1 ◦ a) ∗ x)(x) > θ and (a−1 ∗ (a ∗ x))(z) > θ.

So, z = x. That is, R∗(a−1, x, x) > θ and hence a−1 ∈ St(x). Therefore St(x) is
a fuzzy subgroup of G.

Let G be a fuzzy group acting on a set X by a fuzzy action R∗. For each a ∈ G,
let us de�ne R∗a : X ×X → [0, 1] by:

R∗a(x, y) = R∗(a, x, y) ∀x, y ∈ X. (9)

Then we have the following:

Theorem 3.8. For each a ∈ G, the fuzzy map R∗a is a fuzzy bijection of X onto

itself.

Proof. Clearly R∗a is a fuzzy function.

(1) We show that R∗a is one-to-one. Let x1, x2, y ∈ X be such that R∗a(x1, y) > θ
and R∗a(x2, y) > θ. Then R∗(a, x1, y) > θ and R∗(a, x2, y) > θ. Also let
z ∈ X be such that R∗(a−1, y, z) > θ. Now we have:

(a−1 ∗ (a ∗ x1))(z) > θ and (a−1 ◦ a) ∗ x1)(x1) > θ,

which givesz = x1. In a similar way we get z = x2. Thus R
∗
a is one-to-one.

(2) To show that it is onto, let y ∈ X. As a−1 ∈ G and R∗ is a fuzzy action,
there exists x ∈ X such that R∗(a−1, y, x) > θ. Also as a ∈ G and x ∈ X
there exists z ∈ X such that R∗(a, x, z) > θ. Then:

(a∗(a−1∗y)(z)=
∨
t∈X

R∗(a, t, z)∧R∗(a−1, y, t) > R∗(a, x, z)∧R∗(a−1, y, x)>θ

and

((a◦a−1)∗y)(y)=
∨
s∈G

R◦(a, a−1, s)∧R∗(s, y, y) > R◦(a, a−1, e)∧R∗(e, y, y)>θ,

which implies z = y. That R∗a(x, y) = R∗(a, x, y) > θ. So, R∗a is onto.
Therefore it is a bijection.
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Put =∗(X) = {R∗a | a ∈ G} and de�ne a fuzzy subset H of =∗(X)×=∗(X)×=∗(X)
by:

H(R∗a, R
∗
b , R

∗
c) = R(a, b, c) ∀a, b, c ∈ G.

Then we have the following results:

Theorem 3.9. (=∗(X), H) is a fuzzy group.

Corollary 3.10. The function f : G→ =∗(X) de�ned by f(a) = R∗a for all a ∈ G
is an epimorphism.

The epimorphism f de�ned above is called the homomorphism associated with

R∗. If f is one-to-one then R∗ is called an e�ective fuzzy action of G on X. By
the kernel of R∗, we mean the kernel of the homomorphism f .

Lemma 3.11. The fuzzy action R∗ of a fuzzy group G on a set X is e�ective if

and only if kerR∗ = {e}.

Corollary 3.12. If R∗ is the fuzzy action of G on itself by left translation, then

R∗ is e�ective.

Corollary 3.13. Let R∗ be the fuzzy action of G on itself by conjugation. Then,

R∗ is e�ective if and only if the center Z(G) of G is {e}.

Proof. This can be veri�ed by showing that kerf = Z(G).

Theorem 3.14. There is a fuzzy one-to-one correspondence between Or(x) and

the collection of all left cosets of St(x).

Proof. Let H = St(x) and Σ = {[aH] | a ∈ G}. De�ne a fuzzy subset α of
Or(x)× Σ by:

α(y, [aH]) = R∗(a, x, y)

for all a ∈ G, y ∈ Or(x).
First we show that α is a fuzzy function.

1. Let y ∈ Or(x). There exists a ∈ G such that R∗(a, x, y) > θ. That is,
α(y, [aH]) > θ.

2. Let y ∈ Or(x) and a, b ∈ G be such that α(y, [aH]) > θ and α(y, [bH]) > θ.
Let z ∈ G be such that R∗(a−1, y, z) > θ. Then

(a−1 ∗(a∗x))(z)=
∨
t∈X
R∗(a−1, t, z)∧R∗(a, x, t)>R∗(a−1, y, z)∧R∗(a, x, y)>θ

and

((a−1◦a)∗x)(x)=
∨
s∈G

R◦(a−1, a, s)∧R∗(s, x, x)>R◦(a−1, a, e)∧R∗(e, x, x)>θ,

which implies z = x. So, R∗(a−1, y, x) > θ. Similarly R∗(b−1, y, x) > θ.
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Let c ∈ G be such that R◦(a−1, b, c) > θ. We need to show that c ∈ H. Let
z ∈ X be such that R∗(c, x, z) > θ. Then

((a−1 ◦b)∗x)(z)=
∨
s∈G

R◦(a−1, b, s)∧R∗(s, x, z)>R◦(a−1, b, c)∧R∗(c, x, z)>θ

and

(a−1∗(b∗x))(x)=
∨
t∈X

R∗(a−1, t, x)∧R∗(b, x, t)>R∗(a−1, y, x)∧R∗(b, x, y)>θ,

which gives z = x. So, R∗(c, x, x) > θ. Hence c ∈ H. Thus [aH] = [bH].

Therefore α is a fuzzy function. Since R∗ is a fuzzy action of G on X, it follows
that α is one-to-one and onto. Hence α is a fuzzy one-to-one correspondence.

De�nition 3.15. A fuzzy action of a fuzzy group G on a set X is said to be
transitive if there is only one orbit in X, i.e, Or(x) = X for all x ∈ X. In this
case, we say that G acts transitively on X.

Lemma 3.16. A fuzzy action R∗ is transitive if and only if, for any pairs of

elements x, y ∈ X, there is an element a ∈ G such that R∗(a, x, y) > θ.

Corollary 3.17. Let R∗ be a fuzzy action of a fuzzy group (G,R◦) on itself by

left translation. Then R∗ is transitive.

De�nition 3.18. Let G be acting on two sets X1 and X2 by fuzzy actions R
∗ and

R4 respectively. These two fuzzy actions are said to be equivalent if there exists
a bijection α : X1 → X2 such that

R∗(a, x, y) > θ ⇒ R4(a, α(x), α(y)) > θ

for all a ∈ G, x, y ∈ X1.

Lemma 3.19. Let R∗ be the fuzzy action of G on itself by left translation and let

R4 be the fuzzy action of G on itself de�ned by:

R4(a, x, y) = R◦(x, a−1, y)

for all a, x, y ∈ G. Then the fuzzy actions R∗ and R4 are equivalent.

Proof. This can be veri�ed by taking α : G → G de�ned by α(x) = x−1 for all
x ∈ G.

Below we obtain an internal characterization of transitive fuzzy actions

Theorem 3.20. Let R∗ be a transitive fuzzy action of G on a set X, x ∈ X and

H = St(x). Then, R∗ is equivalent to the fuzzy action of G on the set of left cosets

of H in G by left translation.
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Proof. PutH = St(x), X1 = X andX2 = {[aH] | a ∈ G}. Since R∗ is transitive we
have Or(x) = X1. So for each y ∈ X1 there exists b ∈ G such that R∗(b, x, y) > θ.
Now de�ne f : X1 → X2 by:

f(y) = [aH]

for all y ∈ X1. This f is a bijection. Remember that a fuzzy subset R� of
G×X2 ×X2 de�ned by

R�(a, [bH], [cH]) = R◦(a, b, c) ∀a, b, c ∈ G

is a fuzzy action of G on X2 by left translation. Let a ∈ G and y1, y2 ∈ X1 such
that R∗(a, y1, y2) > θ. Now we show that

R�(a, f(y1), f(y2)) > θ.

As y1 ∈ X1 = Or(x), there exists b ∈ G such that R∗(b, x, y1) > θ. As a, b ∈ G,
∃c ∈ G such that R◦(a, b, c) > θ. Let z ∈ X1 be such that R∗(c, x, z) > θ. Then:

((a ◦ b) ∗ x)(z)=
∨
s∈G

R◦(a, b, s) ∧R∗(s, x, z)>R◦(a, b, c) ∧R∗(c, x, z)>θ

and

(a ∗ (b ∗ x))(y2)=
∨
t∈X

R∗(a, t, y2) ∧R∗(b, x, t)>R∗(a, y1, y2) ∧R∗(b, x, y1)>θ,

which implies y2 = z. So R∗(c, x, y2) > θ. That is f(y2) = [cH]. Also we have
f(y1) = [bH]. Thus

R�(a, f(y1), f(y2)) = R�(a, [bH], [cH]) = R◦(a, b, c) > θ.

Hence R∗ and R� are equivalent.

Among the transitive fuzzy actions, there is a special class, namely primitive
fuzzy actions, which deserves emphasis.

De�nition 3.21. Let R∗ be a fuzzy action of a fuzzy group G on a set X. An
equivalence relation ψ on X is said to be compatible with the fuzzy action R∗ if,
for any x1, x2, y1, y2 ∈ X, and a ∈ G with R∗(a, x1, y1) > θ and R∗(a, x2, y2) > θ

(x1, x2) ∈ ψ ⇒ (y1, y2) ∈ ψ.

Clearly the whole of X×X and the diagonal ∆X are equivalence relation X which
are compatible with every fuzzy action of G on X.

De�nition 3.22. A fuzzy action of a fuzzy group G on a set X is called primitive

if X ×X and the diagonal ∆X are the only equivalence relations on X which are
compatible with it. A fuzzy action which is not primitive is called imprimitive.
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Theorem 3.23. Let R∗ and R4 be equivalent fuzzy actions of G on X1 and X2,

respectively. Then, R∗ is primitive if and only if R4 too is so.

Proof. Let R∗ and R4 be equivalent fuzzy actions. Then there exists a bijection
f : X1 → X2 such that for any a ∈ G and x, y ∈ X1:

R∗(a, x, y) > θ ⇒ R4(a, f(x), f(y)) > θ.

Suppose that R∗ is primitive. We show that R4 is also primitive. Let ψ be an
equivalence relation on X2 which is compatible with R4. Then it can be seen that
f−1(ψ) = {(x, y) ∈ X1 × X2 | (f(x), f(y)) ∈ ψ} is an equivalence relation on X1

which is compatible with R∗. That is f−1(ψ) = ∆X1 or f−1(ψ) = X1 ×X1 which
is implies that ψ = ∆X2 or ψ = X2 ×X2.

Theorem 3.24. Let R∗ be a fuzzy action of G on a set X. Then, R∗ is imprimitive

if and only if there exists a proper subset Y of X with |Y | > 1 such that, for

any a ∈ G, either R∗(a, Y ) = Y or R∗(a, Y ) ∩ Y = ∅, where R∗(a, Y ) = {z ∈
X|R∗(a, y, z) > θ for some y ∈ Y }.

Proof. Suppose that R∗ is imprimitive. Then, there exists an equivalence relation
ψ on X which is compatible with R∗ such that ψ 6= X ×X and ψ 6= ∆X . Choose
x 6= y ∈ X such that (x, y) ∈ ψ. Put Y = the equivalence class of ψ containing
x. That is Y = ψ(x) = {z ∈ X | (x, z) ∈ ψ}. Since x 6= y ∈ Y, |Y | > 1.
Moreover, since ψ 6= X ×X, Y is a proper subset of X. Now let a ∈ G such that
R∗(a, Y ) ∩ Y 6= ∅. Then choose an element z1 ∈ Y such that R∗(a, z1, z2) > θ for
some z2 ∈ Y so, (x, z2) ∈ ψ. Let R∗(a, x, u) > θ for some u ∈ X. Since (x, z1) ∈ ψ
and ψ is compatible with R∗, we get (u, z2) ∈ ψ which implies that (x, u) ∈ ψ.
Now it can be easily veri�ed that R∗(a, Y ) = Y .

Conversely suppose that there is a proper subset Y of X with |Y | > 1 such
that either R∗(a, Y ) ∩ Y = ∅ or R∗(a, Y ) = Y . Then for any a and b ∈ G,

either R∗(a, Y ) = R∗(b, Y ) or R∗(a, Y ) ∩R∗(b, Y ) = ∅.

Put Z = X − (
⋃

a∈GR
∗(a, Y )). Then P = {R∗(a, Y ) | a ∈ G} ∪ {Z} is a partition

of X and the corresponding equivalence relation ψ on X is compatible with the
fuzzy action R∗. Since Y = R∗(e, Y ) is an equivalence class and Y 6= X, it follows
that ψ 6= X ×X. Also since |Y | > 1, ψ 6= ∆X . Thus R

∗ is imprimitive.

Lemma 3.25. Let R∗ be a fuzzy action of G on a set X. De�ne

ψ∗ = {(x, y) ∈ X ×X |R∗(a, x, y) > θ for some a ∈ G}.

Then, ψ∗ is an equivalence relation on X, which is compatible with the fuzzy action

action R∗.
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Corollary 3.26. If a fuzzy action R∗ of G on X is primitive, then either R∗ is

transitive or

R∗(a, x, y) =

{
1 if y = x

0 otherwise

for all a ∈ G and x, y ∈ X.

Proof. If R∗ is fuzzy primitive, then ψ∗ = ∆X or X ×X and hence all orbits are
singleton sets or there is only one orbit.

In particular, a nontrivial primitive fuzzy action must be necessarily transitive
and hence the class of nontrivial primitive fuzzy actions of a fuzzy group G on a
set X is a subclass of the transitive fuzzy actions of G on X. But in general a
transitive fuzzy action need not be primitive.
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