The Cayley graph of commutative ring on triangular subsets

Kazem Hamidizadeh and Gholamreza Aghababaei

Abstract. Let R be a commutative ring with nonzero identity, and T be a triangular subset of R^n . We investigate the structure of the Cayley graph $TCay(R^n, T^*)$, where $T^* = T \setminus \{0\}$ is the triangular subset of R^n .

1. Introduction

The investigation of algebraic structures of graphs is a very large and growing area of research. In particular, Cayley graphs and their generalizations have been a main topic in algebraic graph theory (see [1], [2], [3], [4]). Several other classes of graphs associated with algebraic structures, such as power graph, total graph and zero divisor graph, have been investigated in [5] and [6].

Let R be a commutative ring with nonzero identity, $L_n(R)$ be the set of all lower triangular $n \times n$ matrices, and U be a subset of R^n , where n is a positive integer. We say that U is a triangular subset of R^n if the following condition holds:

for all
$$(u_1, ..., u_n) \in U$$
, $A \in L_n(R)$ and $(w_1, ..., w_n) \in R^n$,
if $A[(u_1, ..., u_n)]^T = [w_1, ..., w_n]^T$, then $(w_1, ..., w_n) \in U$.

If T be a triangular subset of \mathbb{R}^n , then for every $(x_1, \ldots, x_n) \in T$, we have $\mathbb{R}x_1 \times \ldots \times \mathbb{R}x_n \subseteq T$. Hence $T = \bigcup_{i \in \Omega} \bigcap_{j=1}^n I_{ij}$, where $I_{i1} \subseteq \ldots \subseteq I_{in}$, for every $i \in \Omega$.

Let R be an arbitrary commutative ring and T be a triangular subset of \mathbb{R}^n . In this paper, we study the Cayley graph $TCay(\mathbb{R}^n, T^*)$, which is an undirected graph with vertex set \mathbb{R}^n , and two distinct vertices (x_1, \ldots, x_n) and (y_1, \ldots, y_n) are adjacent if and only if $(x_1 - y_1, \ldots, x_n - y_n) \in T^*$. For simplicity our notations, we denote the graph $TCay(\mathbb{R}^n, T^*)$ by $TCay(\mathbb{R}^n)$. We study the structure of $TCay(\mathbb{R}^n)$, in the cases that T is closed under addition and T is not closed under addition. In sections 2 and 3, we investigate the diameter and the girth of the $TCay(\mathbb{R}^n)$, where the proofs of the results in these two sections are similar to that in [7]. In section 4, we investigate the planarity of graph $TCay(\mathbb{R}^n)$.

Now, we recall some definitions and notations on graphs. We use the standard terminology of graphs in [9]. Let G be a simple graph. We say that G is *connected* if

²⁰¹⁰ Mathematics Subject Classification: 05C10, 13A15.

 $^{{\}small {\sf Keywords: \ Cayley \ graph, \ commutative \ ring, \ triangular \ subset.}}$

there is a path between any two distinct vertices of G, otherwise G is disconnected. Also, we say that G is totally disconnected if no two vertices of G are adjacent. For vertices x and y of G, we use the notation $x \sim y$ to denote that x and y are adjacent. Also, the length of a shortest path from x to y is denoted by d(x, y) if a path from x to y exists. Also we define d(x, y) = 0, and $d(x, y) = \infty$ if there is no path between x and y. The diameter of G is $diam(G) = sup\{d(x,y) : x, y \in V(G)\}$. The girth of G, denoted by gr(G), is length of a smallest cycle in G (if G contains no cycles, then $gr(G) = \infty$). A graph G is said to be *complete bipartite* if the vertices of G can be partitioned into two disjoint sets V_1, V_2 such that no two vertices in any V_1 or V_2 are adjacent, but for every $u \in V_1, v \in V_2$, the vertices u and v are adjacent. Then we use the symbol $K_{m,n}$ for the complete bipartite graph where the cardinal numbers of V_1 and V_2 are m, n, respectively. A graph with n vertices in which each pair of distinct vertices is joined by an edge is called a *complete graph*, and it is denoted by K_n . A graph G is said to be *planar* if it can be drawn in the plane so that its edges intersect only at their ends. A subdivision of a graph is any graph that can be obtained from the original graph by replacing edges by paths.

We investigate this graph in case that $n \ge 2$. First, assume that T is closed under addition.

2. The case that T is closed under addition

The proofs of the following theorems are similar to that in [7], and hence we omit the proofs.

Theorem 2.1. Let R be a commutative ring and T be a triangular subst of \mathbb{R}^n . Then TCay(T) is disjoint from $TCay(\mathbb{R}^n \setminus T)$.

Proof. This is clear according to the definitions.

Theorem 2.2. Let R be a commutative ring, T be a triangular subset of \mathbb{R}^n , which is closed under addition, $|T| = \alpha$ and $|\mathbb{R}^n/T| = \beta$. Then TCay(T) is a complete graph K_{α} and $TCay(\mathbb{R}^n \setminus T)$ is the union of $\beta - 1$ disjoint K_{α} .

Theorem 2.3. Let R be a commutative ring, T be a triangular subset of \mathbb{R}^n that closed under addition, then the following statements hold.

- (1) $TCay(\mathbb{R}^n \setminus T)$ is complete if and only if $\mathbb{R}^n/T \cong \mathbb{Z}_2$.
- (2) $TCay(\mathbb{R}^n \setminus T)$ is connected if and only if $\mathbb{R}_n/T \cong \mathbb{Z}_2$.

The following corollary follows from Theorems 2.1 and 2.2.

Corollary 2.4. Let R be a commutative ring, T be a triangular subset of R^n that closed under addition, then the following statements hold.

(1) $diam(TCay(\mathbb{R}^n \setminus T)) = 1$ if and only if $\mathbb{R}^n/T \cong \mathbb{Z}_2$ and $|T| \ge 2$. Otherwise $diam(TCay(\mathbb{R}^n \setminus T)) = \infty$.

- (2) $gr(TCay(R^n \setminus T)) = 3$ if and only if $|T| \ge 3$. Otherwise $gr(TCay(R^n \setminus T)) = \infty$.
- (3) gr(TCay(T)) = 3 if and only if $|T| \ge 3$. Otherwise $gr(TCay(T)) = \infty$.
- (4) $diam(TCay(R)) = \infty$, and gr(TCay(R)) = 3 if and only if $|T| \ge 3$, otherwise $gr(TCay(R)) = \infty$.

3. The case that T is closed under addition

The following results and their proofs are analogous to some of the results in [7].

Theorem 3.1. Let R be a commutative ring and T be a triangular subset of \mathbb{R}^n which is not closed under addition. Then the following statements hold.

- (1) TCay(T) is connected and diamTCay(T) = 2.
- (2) The graphs TCay(T) and $TCay(R^n \setminus T)$ are not disjoint.
- (3) If $TCay(\mathbb{R}^n \setminus T)$ is connected, then so is $TCay(\mathbb{R}^n)$.

Proof. (1). Let $(x_1, \ldots, x_n) \in T$. Then (x_1, \ldots, x_n) is adjacent to $(0, \ldots, 0)$. Thus $(x_1, \ldots, x_n) \sim (0, \ldots, 0) \sim (y_1, \ldots, y_n)$ is a path in TCay(T) of length two between any two distinct vertices $(x_1, \ldots, x_n), (y_1, \ldots, y_n) \in T^*$. Moreover there are nonzero distinct vertices $(x_1, \ldots, x_n), (y_1, \ldots, y_n) \in T$ that are not adjacent, because U is not closed under addition. Therefore diamTCay(T) = 2.

(2). Since U is not closed under addition, there are nonzero distinct vertices $(x_1, \ldots, x_n), (y_1, \ldots, y_n) \in T$ such that $(x_1, \ldots, x_n) + (y_1, \ldots, y_n) \in \mathbb{R}^n \setminus T$. We have $(x_1, \ldots, x_n) \in T$ is adjacent to $(x_1, \ldots, x_n) + (y_1, \ldots, y_n) \in \mathbb{R}^n \setminus T$ because

$$((x_1, \dots, x_n) + (y_1, \dots, y_n)) - (y_1, \dots, y_n) = (x_1, \dots, x_n) \in T.$$

(3). This follows from (1) and (2).

Theorem 3.2. Let R be a commutative ring and T be a triangular subset of R^n that is not closed under addition. Then TCay(R) is connected if and only if $\langle T \rangle = R^n$.

Proof. Suppose that $TCay(\mathbb{R}^n)$ is connected. Hence there is a path

$$(0,\ldots,0) \sim (x_{1,1},\ldots,x_{1,n}) \sim \cdots \sim (x_{k,1},\ldots,x_{k,n}) \sim (1,\ldots,1)$$

from $(0, \ldots, 0)$ to $(1, \ldots, 1)$ in $TCay(\mathbb{R}^n)$. Now clearly we have

$$(x_{1,1},\ldots,x_{1,n}),(x_{2,1}-x_{1,1},\ldots,x_{2,n}-x_{1,n}),\ldots,(1-x_{k,1},\ldots,1-x_{k,n})\in T.$$

Hence $(1, \ldots, 1)$ belongs to the set

$$\langle (x_{1,1},\ldots,x_{1,n}), (x_{2,1}-x_{1,1},\ldots,x_{2,n}+x_{1,n}), \ldots, (1-x_{k,1},\ldots,1-x_{k,n}) \rangle \subseteq \langle T \rangle.$$

Conversely, suppose that $\langle T \rangle = \mathbb{R}^n$. We show that for each $(x_1, \ldots, x_n) \in T$, there exists a path in $TCay(\mathbb{R}^n)$ from $(0, \ldots, 0)$ to (x_1, \ldots, x_n) . By assumption, there are elements $(x_{1,1}, \ldots, x_{1,n}), (x_{2,1}, \ldots, x_{2,n}), \ldots, (x_{k,1}, \ldots, x_{k,n}) \in T$ such that

$$(x_1, \ldots, x_n) = (x_{1,1}, \ldots, x_{1,n}) + \cdots + (x_{k,1}, \ldots, x_{k,n})$$

Let $c_0 = (0, \ldots, 0)$ and $c_l = (x_{1,1}, \ldots, x_{1,n}) + \cdots + (x_{l,1}, \ldots, x_{l,n}))$ for every integer l with $1 \leq l \leq k$. Thus $c_l - c_{l-1} = (x_{l,1}, \ldots, x_{l,n})$ for each integer l with $1 \leq l \leq k$ and thus

$$(0,\ldots,0) = c_0 \sim c_1 \sim \cdots \sim c_k = (x_1,\ldots,x_n)$$

is a path from $(0, \ldots, 0)$ to (x_1, \ldots, x_n) in $TCay(\mathbb{R}^n)$ of length at most k. Now, let (x_1, \ldots, x_n) and (y_1, \ldots, y_n) be in \mathbb{R}^n . Then, by the preceding argument, there are paths from (x_1, \ldots, x_n) to $(0, \ldots, 0)$ and $(0, \ldots, 0)$ to (y_1, \ldots, y_n) in $TCay(\mathbb{R}^n)$. Hence there is a path from (x_1, \ldots, x_n) to (y_1, \ldots, y_n) in $TCay(\mathbb{R}^n)$. Therefore $TCay(\mathbb{R}^n)$ is connected.

Theorem 3.3. Let R be a commutative ring, T be a triangular subset of \mathbb{R}^n which is not closed under addition such that $\langle T \rangle = \mathbb{R}^n$. Let $k \ge 2$ be the least integer that $R = \langle (x_{1,1}, \ldots, x_{1,n}), \ldots, (x_{k,1}, \ldots, x_{k,n}) \rangle$, for some distinct elements $(x_{1,1}, \ldots, x_{1,n}), \ldots, (x_{k,1}, \ldots, x_{k,n}) \in U$. Then $diam(TCay(\mathbb{R}^n)) = k$.

Proof. First, we show that any path from $(0, \ldots, 0)$ to $(1, \ldots, 1)$ has length at least l. Suppose that

 $(0,\ldots,0) \sim (y_{1,1},\ldots,y_{1,n}) \sim \cdots \sim (y_{l-1,1},\ldots,y_{l-1,n}) \sim (1,\ldots,1)$

is a path from $(0, \ldots, 0)$ to $(1, \ldots, 1)$ in $TCay(\mathbb{R}^n)$ of length l. Thus

 $(y_{1,1},\ldots,y_{1,n}),(y_{2,1}-y_{1,1},\ldots,y_{2,n}-y_{1,n}),(1-y_{l-1,1},\ldots,1-y_{l-1,n})\in T.$

Therefore $(1, \ldots, 1)$ belongs to

$$\langle (y_{1,1},\ldots,y_{1,n}), (y_{2,1}-y_{1,1},\ldots,y_{2,n}-y_{1,n}), (1-y_{l-1,1},\ldots,1-y_{l-1,n}) \rangle \subseteq T.$$

Hence $l \ge k$. Now let (a_1, \ldots, a_n) and (b_1, \ldots, b_n) be distinct elements in \mathbb{R}^n . We show that there is a path from (a_1, \ldots, a_n) to (b_1, \ldots, b_n) in $TCay(\mathbb{R}^n)$ with length at most k. Let $(1, \ldots, 1) = (x_{1,1}, \ldots, x_{1,n}) + \cdots + (x_{k,1}, \ldots, x_{k,n})$, for some $(x_{1,1}, \ldots, x_{1,n}), \ldots, (x_{k,1}, \ldots, x_{k,n}) \in T$. Define $z_0 = (a_1, \ldots, a_n)$ and

$$z_{l} = (b_{1} - a_{1}, \dots, b_{n} - a_{n})((x_{1,1}, \dots, x_{1,n}) + \dots + (x_{l,1}, \dots, x_{l,n}))(a_{1}, \dots, a_{n})$$

for every integer l with $1 \leq l \leq k$. Then

$$z_{k+1} - z_k = (b_1 - a_1, \dots, b_n - a_n)(b_{l+1,1}, \dots, b_{l+1,n}) \in T$$

for every integer l with $0 \leq l \leq n-1$. Thus

$$(a_1,\ldots,a_n) \sim z_1 \sim z_2 \sim \cdots \sim z_{k-1} \sim (b_1,\ldots,b_n)$$

is a path from (a_1, \ldots, a_n) to (b_1, \ldots, b_n) in $TCay(\mathbb{R}^n)$ with length at most n. Specially, a shortest path between $(0, \ldots, 0)$ and $(1, \ldots, 1)$ in $TCay(\mathbb{R}^n)$ has length at most k, and thus diam $(TCay(\mathbb{R})) = k$.

Corollary 3.4. Let R be a commutative ring and T be a triangular subset of \mathbb{R}^n which is not closed under addition and $TCay(\mathbb{R}^n)$ is connected. Then the following statements hold.

- (1) $diam(TCay(R^n)) = d((0, ..., 0), (1, ..., 1)).$
- (2) If $diam(TCay(\mathbb{R}^n)) = k$, then $diam(TCay(\mathbb{R}^n \setminus T)) \ge m 2$.

Proof. (1). This follows from Theorem 2.6.

(2). diam
$$(TCay(R^n)) = d((0, ..., 0), (1, ..., 1))$$
, by (1). So, let

$$(0,\ldots,0) \sim (c_{1,1},\ldots,c_{1,n}) \sim \cdots \sim (c_{k-1,1},\ldots,c_{k-1,n}) \sim (1,\ldots,1)$$

be the shortest path from $(0, \ldots, 0)$ to $(1, \ldots, 1)$ in $TCay(\mathbb{R}^n)$.

Clearly $(c_{1,1},\ldots,c_{1,n}) \in T^*$. If $(c_{i,1},\ldots,c_{i,n}) \in T^*$, for $2 \leq i \leq k-1$, then we can construct the path

$$(0,\ldots,0) \sim (c_{i,1},\ldots,c_{i,n}) \sim \cdots \sim (c_{k-1,1},\ldots,c_{k-1,n}) \sim (1,\ldots,1)$$

from $(0, \ldots, 0)$ to $(1, \ldots, 1)$ in $TCay(\mathbb{R}^n)$ which has length less than k, which is a contradication. Thus $(c_{i,1}, \ldots, c_{i,n}) \in \mathbb{R}^n \setminus T$, for $2 \leq i \leq k-1$. Hence

 $(c_{2,1},\ldots,c_{2,n})\sim\cdots\sim(c_{k-1,1},\ldots_{k-1,n})\sim(1,\ldots,1)$

is the shortest path from $(c_{2,1}, \ldots, c_{2,n})$ to $(1, \ldots, 1)$ in $\mathbb{R}^n \setminus T$ and it has length k-2. Thus diam $(TCay(\mathbb{R}^n \setminus T)) \ge m-2$.

Now, for each $X \in T$, let i_X be a positive integer that the first nonzero component of X is in the i_X -th place. Also let

$$m := \min\{i_X \mid X \in U\}.$$

Lemma 3.5. Let R be a commutative ring and T be a triangular subset of \mathbb{R}^n which is not closed under addition. If $m \ge 2$, then

$$gr(TCay(R^n \setminus T)) = gr(TCay(T)) = 3.$$

Proof. If $n \ge 3$, since $m \ge 2$, then exist $(0, \ldots, 0, a, 0) \in T$ such that $a \ne 0$. Hence

$$(0, \ldots, 0, a, 0), (0, \ldots, 0, a), (0, \ldots, 0)$$

are adjacent in T. Also

 $(1, \ldots, 1, a, 0), (1, \ldots, 1, 0, 0), (1, \ldots, 1, 0, a)$

are adjacent in $\mathbb{R}^n \setminus T$.

If n = 2, since m = 2 and $R^n \neq T$, then exist (a, 0) in T and (x, y) in $R^n \setminus T$ such that $a, x \neq 0$. Hence $(a, 0), (a, a), (0, 0) \in T$ that are adjacent. Also $(x, 0), (x, a), (x + a, 0) \in R^n \setminus T$ that are adjacent. Therefore $gr(TCay(R^n \setminus T)) = gr(TCay(T)) = 3$.

Theorem 3.6. Let R be a commutative ring and T be a triangular subset of \mathbb{R}^n which is not closed under addition. If m = 1, then $gr(TCay(\mathbb{R}^n \setminus T)) \leq 4$ and $gr(TCay(T)) \in \{3, 4, \infty\}$.

Proof. Since T is traingular subset of \mathbb{R}^n , then $T = \bigcup_{i \in \gamma} I_{i1} \times \ldots \times I_{in}$, where $I_{i1} \subseteq \ldots \subseteq I_{in}$ and I_{ij} are ideals of R, for $1 \leq j \leq n$ and $i \in \gamma$. Also T is not closed under addition and m = 1, therefore $i \geq 2$ and $T = \bigcup_{i \in \gamma} \{0\} \times \ldots \{0\} \times I_{in}$, which $I_{in} \neq \{0\}$.

CASE 1: If $|I_{kn}| \ge 3$ for some $k \in \gamma$, then $gr(TCay(\mathbb{R}^n \setminus T)) = gr(TCay(T)) = 3$. CASE 2: If $|I_{in}| \le 2$ for every $i \in \gamma$, then $i \ge 2$, since T is not closed under addition. So, we have two subcases.

CASE 2A: If exist nonzero element $(0, \ldots, 0, a), (0, \ldots, 0, b), (0, \ldots, 0, c) \in T$ such that $a, b, c \neq 0$ and a + b = c, then

 $(0,\ldots,0), (0,\ldots,0,a), (0,\ldots,0,a+b), (0,\ldots,0,b), (0,\ldots,0)$

is a cycle of length 4 in TCay(T). Also

 $(1, \ldots, 1), (1, \ldots, 1, a), (1, \ldots, 1, a + b), (1, \ldots, 1, b), (1, \ldots, 1)$

is a cycle of length 4 in $TCay(R \setminus T)$. Thus $gr(TCay(T)) = gr(TCay(R \setminus T)) = 3$.

CASE 2B: If for every nonzero element $(0, \ldots, 0, x), (0, \ldots, 0, y) \in T$, then $(0, \ldots, 0, x + y) \notin T$. Since $i \ge 2$, then exist $(0, \ldots, 0, a), (0, \ldots, 0, b) \in T$, such that $a, b \ne 0$ and $a \ne b$. Now

$$(1, \ldots, 1, 0) \sim (1, \ldots, 1, a) \sim (1, \ldots, 1, a + b) \sim (1, \ldots, 1, b) \sim (1, \ldots, 1, 0)$$

is a cycle of length 4 in $TCay(R \setminus T)$, then $gr(TCay(R \setminus T)) \leq 4$. The graph TCay(T) is isomorphic to $K_{1,i}$. Hence $gr(TCay(T)) = \infty$.

4. Planarity

The graph G is said to be planar if it can be drawn in the plane so that its edges intersect only at their ends. A subdivision of a graph is any graph that can be obtained from the original graph by replacing edges by paths. A remarkable simple characterization of the planar graphs was given by Kuratowski in 1930. Kuratowski's Theorem says that a graph is planar if and only if it contains no subdivision of K_5 or $K_{3,3}$.

Theorem 4.1. Let R be a commutative ring and T be a triangular subset of \mathbb{R}^n which is closed under addition, then $TCay(\mathbb{R}^n)$ is planar if and only if $|T| \leq 4$.

Proof. Let $|T| = \alpha$ and $|R^n/T| = \beta$. Since T is closed under addition, then T is an ideal and by Theorem 2.2, TCay(T) is a complete graph K_{α} and $TCay(R^n \setminus T)$ is the union of $\beta - 1$ disjoint K_{α} . Therefore $TCay(R^n)$ is planar if and only if $|T| \leq 4$.

Theorem 4.2. Let R be a commutative ring and T be a triangular subset of \mathbb{R}^n which is not closed under addition and $m \leq n-1$, then $TCay(\mathbb{R}^n)$ is not planar.

Proof. Since T is not an ideal and $m \leq n-1$, then exist $(0, \ldots, 0, a, 0), (0, \ldots, 0, b)$ in T where $a \neq b$ and $a, b \neq 0$. Then the vertices

$$(0, \ldots, 0), (0, \ldots, 0, a, 0), (0, \ldots, 0, a), (0, \ldots, 0, a, a),$$

$$(0, \ldots, 0, a + b, 0), (0, \ldots, 0, b), (0, \ldots, 0, a + b), (0, \ldots, 0, a + b, a)$$

forms a subdivision of K_5 , hence $TCay(\mathbb{R}^n)$ is not planar.

Now, the only remaining case for investigating the planarity of $TCay(\mathbb{R}^n)$, is the case that m = n. If T is not closed under addition, since T is a triangular subset of \mathbb{R}^n , then $T = \bigcup_{i \in \gamma} I_{i1} \times \ldots \times I_{in}$, where $I_{i1} \subseteq \ldots \subseteq I_{in}$ and $i \ge 2$.

Theorem 4.3. Let R be a commutative ring and T be a triangular subset of \mathbb{R}^n which is not closed under addition and m = n and $i \ge 4$, then $TCay(\mathbb{R}^n)$ is not planar.

Proof. Since $i \ge 4$, there exist ideals of \mathbb{R}^n such that $\{0\} \times \ldots \times \{0\} \times \{x_1\}$, $\{0\} \times \ldots \times \{0\} \times \{x_2\}$, $\{0\} \times \ldots \times \{0\} \times \{x_3\}$ and $\{0\} \times \ldots \times \{0\} \times \{x_4\}$ where $x_1, x_2, x_3, x_4 \neq 0$.

CASE 1: If $x_r + x_p = x_q$, for $1 \leq r, p, q \leq 4$, then we may assume that $x_1 + x_2 = x_3$. Hence

 $(0,\ldots,0), (0,\ldots,0,x_1), (0,\ldots,0,x_2), (0,\ldots,0,x_3), (0,\ldots,0,x_4),$

 $(0,\ldots,0,x_1+x_4),(0,\ldots,0,x_2+x_4),(0,\ldots,0,x_3+x_4)$

forms a subdivision of K_5 , and so $TCay(\mathbb{R}^n)$ is not planar. CASE 2: If $x_r + x_p \neq x_q$ for every $1 \leq r, p, q \leq 4$, then

 $(0,\ldots,0), (0,\ldots,0,x_1), (0,\ldots,0,x_2), (0,\ldots,0,x_3), (0,\ldots,0,x_2+x_3),$

$$(0, \ldots, 0, x_1 + x_3), (0, \ldots, 0, x_1 + x_2), (0, \ldots, 0, x_1 + x_4), (0, \ldots, 0, x_3 + x_4)$$

 $(0, \ldots, 0, x_2 + x_3 + x_4), (0, \ldots, 0, x_1 + x_2 + x_4), (0, \ldots, 0, x_1 + x_2 + x_3)$

forms a subdivision of $K_{3,3}$, and so $TCay(\mathbb{R}^n)$ is not planar.

Theorem 4.4. Let R be a commutative ring and T be a triangular subset of \mathbb{R}^n which is not closed under addition and m = n and i = 3, then $TCay(\mathbb{R}^n)$ is planar if and only if |T| = 4.

Proof. Since i = 3, then

 $T = (\{0\} \times \ldots \times \{0\} \times I_1) \cup (\{0\} \times \ldots \times \{0\} \times I_2) \cup (\{0\} \times \ldots \times \{0\} \times I_3)$

where $|I_1|, |I_2|$ and $|I_3|$ are at least 2.

CASE 1: If |T| > 4, then there exists $|I_i| \ge 3$, for $1 \le i \le 3$. Hence, the elements $(0, \ldots, 0, a), (0, \ldots, 0, 2a), (0, \ldots, 0, b), (0, \ldots, 0, c)$ are belong T, where $a, 2a, b, c \ne 0$. Therefore

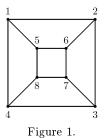
$$(0,\ldots,0), (0,\ldots,0,a), (0,\ldots,0,2a), (0,\ldots,0,b), (0,\ldots,0,b), (0,\ldots,0,a+b),$$

$$(0,...,0,2a+b),(0,...,0,2a+c),(0,...,0,b+c),(0,...,0,a+b+c),(0,...,0,2a+b+c)$$

forms a subdivision of $K_{3,3}$, and so $TCay(\mathbb{R}^n)$ is not planar. CASE 2: If |T| = 4, then $|I_1| = |I_2| = |I_3| = 2$. Since

$$T = (\{0\} \times \ldots \times \{0\} \times \{a\}) \cup (\{0\} \times \ldots \times \{0\} \times \{b\}) \cup (\{0\} \times \ldots \times \{0\} \times \{c\}).$$

Hence the graph $TCay(\mathbb{R}^n)$ is the union of some copies of graph as Figure 1.



The converse statement is clear.

The proof of following lemma is similar to the proof of Lemma 4.1 in [3] and hence we omit it.

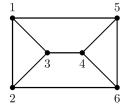
Lemma 4.5. Let R be a commutative ring and T be a triangular subset of \mathbb{R}^n which is not closed under addition, m = n and i = 2. Then

- (1) if T contains ideals P_1 and P_2 with $|P_1| \ge 4$, $|P_2| \ge 2$ and $|P_1 \cup P_2| \ge 5$, then $TCay(\mathbb{R}^n)$ is not planar;
- (2) If T contains ideals P_1 and P_2 with $|P_1|, |P_2| \ge 3$ and $|P_1 \cup P_2| \ge 5$, then $TCay(\mathbb{R}^n)$ is not planar.

Theorem 4.6. Let R be a commutative ring and T be a triangular subset of \mathbb{R}^n which is not closed under addition, m = n and i = 2, then $TCay(\mathbb{R}^n)$ is planar if and only if $|T| \leq 4$.

Proof. Let $|T| \leq 4$.

CASE 1: |T| = 4, then T contains ideals P_1 and P_2 with $|P_1| = 3$, $|P_2| = 2$. We may assume that $P_1 = \{(0, \ldots, 0), (0, \ldots, 0, a), (0, \ldots, 0, 2a)\}$ and $P_2 = \{(0, \ldots, 0), (0, \ldots, 0, b)\}$, where $a, b \neq 0$ and $a \neq b$. then $TCay(\mathbb{R}^n)$ is the union of some copies of grpah as Figure 2. For every $(x_1, \ldots, x_n) \in \mathbb{R}^n$, we have



$x_1 = (x_1, \dots, x_n + a),$	$x_2 = (x_1, \dots, x_n + 2a),$
$x_3 = (x_1, \dots, x_n),$	$x_4 = (x_1, \dots, x_n + b),$
$x_5 = (x_1, \dots, x_n + a + b),$	$x_6 = (x_1, \dots, x_n + 2a + b).$

Therefore $TCay(\mathbb{R}^n)$ is planar.

CASE 2: If |T| = 4, then T contains ideals P_1 and P_2 with $|P_1| = |P_2| = 2$ and hence the graph $TCay(\mathbb{R}^n)$ is the union of some copies of C_4 . Therefore |T| = 4is planar.

The converse statement is a consequence of Theorem 4.5.

Now we have the following corollary.

Corollary 4.7. Let R be a commutative ring and T be a triangular subset of \mathbb{R}^n , then $TCay(\mathbb{R}^n)$ is planar if and only if following statement is hod:

- (1) T is closed under addition and $|T| \leq 4$.
- (2) T not closed under addition, i = 3 and |T| = 4.
- (3) T not closed under addition, i = 2 and $|T| \leq 4$.

References

- M. Afkhami, M.R. Ahmadi, R. Jahani-Nezhad and K. Khashyarmanesh, Cayley graphs of ideals in a commutative ring, Bull. Malays. Math. Sci. Soc. 37 (2014), 833 - 843.
- [2] M. Afkhami, Z. Barati, K. Khashyarmanesh and N. Paknejad, Cayley sum graphs of ideals of a commutative ring, J. Aust. Math. Soc. 96 (2014), 289 - 302.
- [3] M. Afkhami, K.Hamidizadeh and K. Khashyarmanesh, On the generalization of Cayley graphs of commutative ring, Beitrage Algebra Geom. 58 (2016), 395-404.

- [4] G. Alipour, S. Akbari, Some properties of a Cayley graph of a commutative ring, Commun. Algebra 42 (2014) 1582 - 1593.
- [5] D.F. Anderson, A. Badawi, On the zero-divisor graph of a ring, Commun. Algebra 36 (2008), 3073 - 3092.
- [6] D.F. Anderson, A. Badawi, The generelized total graph of a commutative ring, J. Algebra Appl. 12 (2013), 1250212.
- [7] D.F. Anderson, A. Badawi, The total graph of a commutative ring, J. Algebra. 320 (2008), 2706 - 2719.
- [8] D.F. Anderson, A. Badawi, The total graph of a commutative ring with out the zero element, J. Algebra Appl. 11 (2012), 12500740.
- [9] J.A. Bondy, U.S.R. Murty, Graph Theory with applications, American Elsevier, New York, 1976.
- [10] I. Kaplansky, Commutative Rings, 1976.rev. ed., University of Chicago Press, Chicago, 1974
- [11] A.V. Kelarev, Directed graphs and nilpotent rings, J. Austral. Math. Soc. 65 (1998), 326-332.
- [12] A.V. Kelarev, On undirected Cayley graphs, Australasian J. Combinatorics 25 (2002), 73-78.
- [13] A.V. Kelarev, Ring Constructions and Applications, World Scientific, River Edge, NJ, 2002.
- [14] A.V. Kelarev, Graph Algebras and Automata, Marcel Dekker, New York, 2003.
- [15] A.V. Kelarev, Labelled Cayley graphs and minimal automata, Australasian J. Combinatorics 30 (2004), 95 - 101.
- [16] A.V. Kelarev, On Cayley graphs of inverse semigroups, Semigroup Forum 72 (2006), 411-418.
- [17] A.V. Kelarev, C.E. Praeger, On transitive Cayley graphs of groups and semigroups, European J. Combinatorics 24 (2003), 59 - 72.
- [18] A.V. Kelarev, S.J. Quinn, A combinatorial property and power graphs of groups, Contrib. General Algebra 12 (2000), 229 – 235.
- [19] A.V. Kelarev, S.J. Quinn, Directed graphs and combinatorial properties of semigroups, J. Algebra 251 (2002), 16 – 26.

Received May 14, 2017

Department of Mathematics, Payame Noor University, P.O.Box 19395-3697, Tehran, Iran E-mail: k.hamidizadeh@pnu.ac.ir

G. Aghababaei

K. Hamidizadeh

Department of Mathematics, University of Applied Sciences and Technology, Tehran, Iran E-mail: g-aghababaei@yahoo.com