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The Cayley graph of commutative ring

on triangular subsets

Kazem Hamidizadeh and Gholamreza Aghababaei

Abstract. Let R be a commutative ring with nonzero identity, and T be a triangular subset of

Rn. We investigate the structure of the Cayley graph TCay(Rn, T ∗), where T ∗ = T \ {0} is the
triangular subset of Rn.

1. Introduction

The investigation of algebraic structures of graphs is a very large and growing
area of research. In particular, Cayley graphs and their generalizations have been
a main topic in algebraic graph theory (see [1], [2], [3], [4]). Several other classes
of graphs associated with algebraic structures, such as power graph, total graph
and zero divisor graph, have been investigated in [5] and [6].

Let R be a commutative ring with nonzero identity, Ln(R) be the set of all
lower triangular n × n matrices, and U be a subset of Rn, where n is a positive
integer. We say that U is a triangular subset of Rn if the following condition holds:

for all (u1, . . . , un) ∈ U , A ∈ Ln(R) and (w1, . . . , wn) ∈ Rn,

if A[(u1, . . . , un)]T = [w1, . . . , wn]T , then (w1, . . . , wn) ∈ U.

If T be a triangular subset of Rn, then for every (x1, . . . , xn) ∈ T , we have
Rx1 × . . . × Rxn ⊆ T . Hence T =

⋃
i∈Ω unj=1Iij , where Ii1 ⊆ . . . ⊆ Iin, for every

i ∈ Ω.
Let R be an arbitary commutative ring and T be a triangular subset of Rn.

In this paper, we study the Cayley graph TCay(Rn, T ∗), which is an undirected
graph with vertex set Rn, and two distinct vertices (x1, . . . , xn) and (y1, . . . , yn) are
adjacent if and only if (x1 − y1, . . . , xn − yn) ∈ T ∗. For simplicity our notations,
we denote the graph TCay(Rn, T ∗) by TCay(Rn). We study the structure of
TCay(Rn), in the cases that T is closed under addition and T is not closed under
addition. In sections 2 and 3, we investigate the diameter and the girth of the
TCay(Rn), where the proofs of the results in these two sections are similar to that
in [7]. In section 4, we investigate the planarity of graph TCay(Rn).

Now, we recall some de�nitions and notations on graphs. We use the standard
terminology of graphs in [9]. LetG be a simple graph. We say thatG is connected if
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there is a path between any two distinct vertices of G, otherwise G is disconnected.
Also, we say that G is totally disconnected if no two vertices of G are adjacent. For
vertices x and y ofG, we use the notation x ∼ y to denote that x and y are adjacent.
Also, the length of a shortest path from x to y is denoted by d(x, y) if a path from x
to y exists. Also we de�ne d(x, y) = 0, and d(x, y) =∞ if there is no path between
x and y. The diameter of G is diam(G) = sup{d(x, y) : x, y ∈ V (G)}. The girth

of G, denoted by gr(G), is length of a smallest cycle in G (if G contains no cycles,
then gr(G) = ∞). A graph G is said to be complete bipartite if the vertices of G
can be partitioned into two disjoint sets V1, V2 such that no two vertices in any V1

or V2 are adjacent, but for every u ∈ V1, v ∈ V2, the vertices u and v are adjacent.
Then we use the symbol Km,n for the complete bipartite graph where the cardinal
numbers of V1 and V2 are m,n, respectively. A graph with n vertices in which
each pair of distinct vertices is joined by an edge is called a complete graph, and it
is denoted by Kn. A graph G is said to be planar if it can be drawn in the plane
so that its edges intersect only at their ends. A subdivision of a graph is any graph
that can be obtained from the original graph by replacing edges by paths.

We investigate this graph in case that n > 2. First, assume that T is closed
under addition.

2. The case that T is closed under addition

The proofs of the following theorems are similar to that in [7], and hence we omit
the proofs.

Theorem 2.1. Let R be a commutative ring and T be a triangular subst of Rn.
Then TCay(T ) is disjoint from TCay(Rn \ T ).

Proof. This is clear according to the de�nitions.

Theorem 2.2. Let R be a commutative ring, T be a triangular subset of Rn,
which is closed under addition, |T | = α and |Rn/T | = β. Then TCay(T ) is a

complete graph Kα and TCay(Rn \ T ) is the union of β − 1 disjoint Kα.

Theorem 2.3. Let R be a commutative ring, T be a triangular subset of Rn that

closed under addition, then the following statements hold.

(1) TCay(Rn \ T ) is complete if and only if Rn/T ∼= Z2.

(2) TCay(Rn \ T ) is connected if and only if Rn/T ∼= Z2.

The following corollary follows from Theorems 2.1 and 2.2.

Corollary 2.4. Let R be a commutative ring, T be a triangular subset of Rn that

closed under addition, then the following statements hold.

(1) diam(TCay(Rn \ T )) = 1 if and only if Rn/T ∼= Z2 and | T |> 2. Otherwise

diam(TCay(Rn \ T )) =∞.
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(2) gr(TCay(Rn \ T )) = 3 if and only if |T | > 3. Otherwise gr(TCay(Rn\T ))
=∞.

(3) gr(TCay(T )) = 3 if and only if |T | > 3. Otherwise gr(TCay(T )) =∞.

(4) diam(TCay(R)) = ∞, and gr(TCay(R)) = 3 if and only if |T | > 3, other-
wise gr(TCay(R)) =∞.

3. The case that T is closed under addition

The following results and their proofs are analogous to some of the results in [7].

Theorem 3.1. Let R be a commutative ring and T be a triangular subset of Rn

which is not closed under addition. Then the following statements hold.

(1) TCay(T ) is connected and diamTCay(T ) = 2.

(2) The graphs TCay(T ) and TCay(Rn \ T ) are not disjoint.

(3) If TCay(Rn \ T ) is connected, then so is TCay(Rn).

Proof. (1). Let (x1, . . . , xn) ∈ T . Then (x1, . . . , xn) is adjacent to (0, . . . , 0).
Thus (x1, . . . , xn) ∼ (0, . . . , 0) ∼ (y1, . . . , yn) is a path in TCay(T ) of length two
between any two distinct vertices (x1, . . . , xn), (y1, . . . , yn) ∈ T ∗. Moreover there
are nonzero distinct vertices (x1, . . . , xn), (y1, . . . , yn) ∈ T that are not adjacent,
because U is not closed under addition. Therefore diamTCay(T ) = 2.

(2). Since U is not closed under addition, there are nonzero distinct vertices
(x1, . . . , xn), (y1, . . . , yn) ∈ T such that (x1, . . . , xn) + (y1, . . . , yn) ∈ Rn \ T . We
have (x1, . . . , xn) ∈ T is adjacent to (x1, . . . , xn) + (y1, . . . , yn) ∈ Rn \ T because

((x1, . . . , xn) + (y1, . . . , yn))− (y1, . . . , yn) = (x1, . . . , xn) ∈ T .

(3). This follows from (1) and (2).

Theorem 3.2. Let R be a commutative ring and T be a triangular subset of

Rn that is not closed under addition. Then TCay(R) is connected if and only if

〈T 〉=Rn.

Proof. Suppose that TCay(Rn) is connected. Hence there is a path

(0, . . . , 0) ∼ (x1,1, . . . , x1,n) ∼ · · · ∼ (xk,1, . . . , xk,n) ∼ (1, . . . , 1)

from (0, . . . , 0) to (1, . . . , 1) in TCay(Rn) . Now clearly we have

(x1,1, . . . , x1,n), (x2,1 − x1,1, . . . , x2,n − x1,n), . . . , (1− xk,1, . . . , 1− xk,n) ∈ T .

Hence (1, . . . , 1) belongs to the set

〈(x1,1, . . . , x1,n),(x2,1 − x1,1, . . . , x2,n + x1,n),. . . ,(1− xk,1, . . . , 1− xk,n)〉 ⊆ 〈T 〉.
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Conversly, suppose that 〈T 〉=Rn. We show that for each (x1, . . . , xn) ∈ T ,
there exists a path in TCay(Rn) from (0, . . . , 0) to (x1, . . . , xn). By assump-
tion, there are elements (x1,1, . . . , x1,n),(x2,1, . . . , x2,n),. . . ,(xk,1, . . . , xk,n) ∈ T
such that

(x1, . . . , xn) = (x1,1, . . . , x1,n)+· · ·+(xk,1, . . . , xk,n).

Let c0 = (0, . . . , 0) and cl = (x1,1, . . . , x1,n) + · · · + (xl,1, . . . , xl,n)) for every
integer l with 1 6 l 6 k. Thus cl − cl−1 = (xl,1, . . . , xl,n) for each integer l with
1 6 l 6 k and thus

(0, . . . , 0) = c0 ∼ c1 ∼ · · · ∼ ck = (x1, . . . , xn)

is a path from (0, . . . , 0) to (x1, . . . , xn) in TCay(Rn) of length at most k. Now, let
(x1, . . . , xn) and (y1, . . . , yn) be in Rn. Then, by the preceding argument, there are
paths from (x1, . . . , xn) to (0, . . . , 0) and (0, . . . , 0) to (y1, . . . , yn) in TCay(Rn).
Hence there is a path from (x1, . . . , xn) to (y1, . . . , yn) in TCay(Rn). Therefore
TCay(Rn) is connected.

Theorem 3.3. Let R be a commutative ring, T be a triangular subset of Rn

which is not closed under addition such that 〈T 〉=Rn. Let k > 2 be the least

integer that R = 〈(x1,1, . . . , x1,n), . . . , (xk,1, . . . , xk,n)〉, for some distinct elements

(x1,1, . . . , x1,n), . . . , (xk,1, . . . , xk,n) ∈ U . Then diam(TCay(Rn)) = k.

Proof. First, we show that any path from (0, . . . , 0) to (1, . . . , 1) has length at least
l. Suppose that

(0, . . . , 0) ∼ (y1,1, . . . , y1,n) ∼ · · · ∼ (yl−1,1, . . . , yl−1,n) ∼ (1, . . . , 1)

is a path from (0, . . . , 0) to (1, . . . , 1) in TCay(Rn) of length l. Thus

(y1,1, . . . , y1,n),(y2,1 − y1,1, . . . , y2,n − y1,n), (1− yl−1,1, . . . , 1− yl−1,n) ∈ T .

Therefore (1, . . . , 1) belongs to

〈(y1,1, . . . , y1,n), (y2,1 − y1,1, . . . , y2,n − y1,n), (1− yl−1,1, . . . , 1− yl−1,n)〉 ⊆ T .

Hence l > k. Now let (a1, . . . , an) and (b1, . . . , bn) be distinct elements in Rn.
We show that there is a path from (a1, . . . , an) to (b1, . . . , bn) in TCay(Rn) with
length at most k. Let (1, . . . , 1) = (x1,1, . . . , x1,n) + · · ·+ (xk,1, . . . , xk,n), for some
(x1,1, . . . , x1,n), . . . , (xk,1, . . . , xk,n) ∈ T . De�ne z0 = (a1, . . . , an) and

zl = (b1 − a1, . . . , bn − an)((x1,1, . . . , x1,n) + · · ·+ (xl,1, . . . , xl,n))(a1, . . . , an)

for every integer l with 1 6 l 6 k. Then

zk+1 − zk = (b1 − a1, . . . , bn − an)(bl+1,1, . . . , bl+1,n) ∈ T

for every integer l with 0 6 l 6 n− 1. Thus

(a1, . . . , an) ∼ z1 ∼ z2 ∼ · · · ∼ zk−1 ∼ (b1, . . . , bn)
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is a path from (a1, . . . , an) to (b1, . . . , bn) in TCay(Rn) with length at most n.
Specially, a shortest path between (0, . . . , 0) and (1, . . . , 1) in TCay(Rn) has length
at most k, and thus diam(TCay(R)) = k.

Corollary 3.4. Let R be a commutative ring and T be a triangular subset of Rn

which is not closed under addition and TCay(Rn) is connected. Then the following

statements hold.

(1) diam(TCay(Rn)) = d((0, . . . , 0), (1, . . . , 1)).

(2) If diam(TCay(Rn)) = k, then diam(TCay(Rn \ T )) > m− 2.

Proof. (1). This follows from Theorem 2.6.
(2). diam(TCay(Rn)) = d((0, . . . , 0), (1, . . . , 1)), by (1). So, let

(0, . . . , 0) ∼ (c1,1, . . . , c1,n) ∼ · · · ∼ (ck−1,1, . . . , ck−1,n) ∼ (1, . . . , 1)

be the shortest path from (0, . . . , 0) to (1, . . . , 1) in TCay(Rn).
Clearly (c1,1, . . . , c1,n) ∈ T ∗. If (ci,1, . . . , ci,n) ∈ T ∗, for 2 6 i 6 k − 1, then we

can construct the path

(0, . . . , 0) ∼ (ci,1, . . . , ci,n) ∼ · · · ∼ (ck−1,1, . . . , ck−1,n) ∼ (1, .., 1)

from (0, . . . , 0) to (1, . . . , 1) in TCay(Rn) which has length less than k, which is a
contradication. Thus (ci,1, . . . , ci,n) ∈ Rn \ T , for 2 6 i 6 k − 1. Hence

(c2,1, . . . , c2,n) ∼ · · · ∼ (ck−1,1, . . .k−1,n) ∼ (1, . . . , 1)

is the shortest path from (c2,1, . . . , c2,n) to (1, . . . , 1) in Rn \ T and it has length
k − 2. Thus diam(TCay(Rn \ T )) > m− 2.

Now, for each X ∈ T , let iX be a positive integer that the �rst nonzero com-
ponent of X is in the iX -th place. Also let

m := min{iX |X ∈ U}.

Lemma 3.5. Let R be a commutative ring and T be a triangular subset of Rn

which is not closed under addition. If m > 2, then

gr(TCay(Rn \ T )) = gr(TCay(T )) = 3.

Proof. If n > 3, since m > 2, then exist (0, . . . , 0, a, 0) ∈ T such that a 6= 0. Hence

(0, . . . , 0, a, 0), (0, . . . , 0, a), (0, . . . , 0)

are adjacent in T. Also

(1, . . . , 1, a, 0), (1, . . . , 1, 0, 0), (1, . . . , 1, 0, a)

are adjacent in Rn \ T.
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If n = 2, since m = 2 and Rn 6= T , then exist (a, 0) in T and (x, y) in
Rn \ T such that a, x 6= 0. Hence (a, 0), (a, a), (0, 0) ∈ T that are adjacent. Also
(x, 0), (x, a), (x+ a, 0) ∈ Rn \T that are adjacent. Therefore gr(TCay(Rn \T )) =
gr(TCay(T )) = 3.

Theorem 3.6. Let R be a commutative ring and T be a triangular subset of Rn

which is not closed under addition. If m = 1, then gr(TCay(Rn \ T )) 6 4 and

gr(TCay(T )) ∈ {3, 4,∞}.

Proof. Since T is traingular subset of Rn, then T =
⋃
i∈γ Ii1 × . . . × Iin, where

Ii1 ⊆ . . . ⊆ Iin and Iij are ideals of R, for 1 6 j 6 n and i ∈ γ. Also T is not
closed under addition and m = 1, therefore i > 2 and T =

⋃
i∈γ{0}× . . . {0}× Iin,

which Iin 6= {0}.
Case 1: If |Ikn|> 3 for some k ∈ γ, then gr(TCay(Rn\T ))= gr(TCay(T ))= 3.
Case 2: If |Iin| 6 2 for every i ∈ γ, then i > 2, since T is not closed under

addition. So, we have two subcases.
Case 2a: If exist nonzero element (0, . . . , 0, a), (0, . . . , 0, b), (0, . . . , 0, c) ∈ T

such that a, b, c 6= 0 and a+ b = c, then

(0, . . . , 0), (0, . . . , 0, a), (0, . . . , 0, a+ b), (0, . . . , 0, b), (0, . . . , 0)

is a cycle of length 4 in TCay(T ). Also

(1, . . . , 1), (1, . . . , 1, a), (1, . . . , 1, a+ b), (1, . . . , 1, b), (1, . . . , 1)

is a cycle of length 4 in TCay(R\T ). Thus gr(TCay(T )) = gr(TCay(R\T )) = 3.
Case 2b: If for every nonzero element (0, . . . , 0, x), (0, . . . , 0, y) ∈ T , then

(0, . . . , 0, x + y) /∈ T . Since i > 2, then exist (0, . . . , 0, a), (0, . . . , 0, b) ∈ T , such
that a, b 6= 0 and a 6= b. Now

(1, . . . , 1, 0) ∼ (1, . . . , 1, a) ∼ (1, . . . , 1, a+ b) ∼ (1, . . . , 1, b) ∼ (1, . . . , 1, 0)

is a cycle of length 4 in TCay(R \ T ), then gr(TCay(R \ T )) 6 4. The graph
TCay(T ) is isomorphic to K1,i. Hence gr(TCay(T )) =∞.

4. Planarity

The graph G is said to be planar if it can be drawn in the plane so that its
edges intersect only at their ends. A subdivision of a graph is any graph that can
be obtained from the original graph by replacing edges by paths. A remarkable
simple characterization of the planar graphs was given by Kuratowski in 1930.
Kuratowski,s Theorem says that a graph is planar if and only if it contains no
subdivision of K5 or K3,3.

Theorem 4.1. Let R be a commutative ring and T be a triangular subset of Rn

which is closed under addition, then TCay(Rn) is planar if and only if |T | 6 4.
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Proof. Let |T | = α and |Rn/T | = β. Since T is closed under addition, then T is
an ideal and by Theorem 2.2, TCay(T ) is a complete graph Kα and TCay(Rn \T )
is the union of β − 1 disjoint Kα. Therefore TCay(Rn) is planar if and only if
|T | 6 4.

Theorem 4.2. Let R be a commutative ring and T be a triangular subset of Rn

which is not closed under addition and m 6 n− 1, then TCay(Rn) is not planar.

Proof. Since T is not an ideal and m 6 n−1, then exist (0, . . . , 0, a, 0), (0, . . . , 0, b)
in T where a 6= b and a, b 6= 0. Then the vertices

(0, . . . , 0), (0, . . . , 0, a, 0), (0, . . . , 0, a), (0, . . . , 0, a, a),

(0, . . . , 0, a+ b, 0), (0, . . . , 0, b), (0, . . . , 0, a+ b), (0, . . . , 0, a+ b, a)

forms a subdivision of K5, hence TCay(Rn) is not planar.

Now, the only remaining case for investigating the planarity of TCay(Rn), is
the case that m = n. If T is not closed under addition, since T is a triangular
subset of Rn, then T =

⋃
i∈γ Ii1 × . . .× Iin, where Ii1 ⊆ . . . ⊆ Iin and i > 2.

Theorem 4.3. Let R be a commutative ring and T be a triangular subset of Rn

which is not closed under addition and m = n and i > 4, then TCay(Rn) is not

planar.

Proof. Since i > 4, there exist ideals of Rn such that {0} × . . . × {0} × {x1},
{0} × . . .× {0} × {x2}, {0} × . . .× {0} × {x3} and {0} × . . .× {0} × {x4} where
x1, x2, x3, x4 6= 0.

Case 1: If xr + xp = xq, for 1 6 r, p, q 6 4, then we may assume that
x1 + x2 = x3. Hence

(0, . . . , 0), (0, . . . , 0, x1), (0, . . . , 0, x2), (0, . . . , 0, x3), (0, . . . , 0, x4),

(0, . . . , 0, x1 + x4), (0, . . . , 0, x2 + x4), (0, . . . , 0, x3 + x4)

forms a subdivision of K5, and so TCay(Rn) is not planar.
Case 2: If xr + xp 6= xq for every 1 6 r, p, q 6 4, then

(0, . . . , 0), (0, . . . , 0, x1), (0, . . . , 0, x2), (0, . . . , 0, x3), (0, . . . , 0, x2 + x3),

(0, . . . , 0, x1 + x3), (0, . . . , 0, x1 + x2), (0, . . . , 0, x1 + x4), (0, . . . , 0, x3 + x4)

(0, . . . , 0, x2 + x3 + x4), (0, . . . , 0, x1 + x2 + x4), (0, . . . , 0, x1 + x2 + x3)

forms a subdivision of K3,3, and so TCay(Rn) is not planar.

Theorem 4.4. Let R be a commutative ring and T be a triangular subset of Rn

which is not closed under addition and m = n and i = 3, then TCay(Rn) is planar

if and only if |T | = 4.
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Proof. Since i = 3 , then

T = ({0} × . . .× {0} × I1) ∪ ({0} × . . .× {0} × I2) ∪ ({0} × . . .× {0} × I3)

where |I1|,|I2| and |I3| are at least 2.
Case 1: If |T | > 4, then there exists |Ii| > 3, for 1 6 i 6 3. Hence, the

elements (0, . . . , 0, a), (0, . . . , 0, 2a), (0, . . . , 0, b), (0, . . . , 0, c) are belong T , where
a, 2a, b, c 6= 0. Therefore

(0, . . . , 0), (0, . . . , 0, a), (0, . . . , 0, 2a), (0, . . . , 0, b), (0, . . . , 0, b), (0, . . . , 0, a+ b),

(0, ..., 0, 2a+b), (0, ..., 0, 2a+c), (0, ..., 0, b+c), (0, ..., 0, a+b+c), (0, ..., 0, 2a+b+c)

forms a subdivision of K3,3, and so TCay(Rn) is not planar.
Case 2: If |T | = 4, then |I1| = |I2| = |I3| = 2. Since

T = ({0} × . . .× {0} × {a}) ∪ ({0} × . . .× {0} × {b}) ∪ ({0} × . . .× {0} × {c}).

Hence the graph TCay(Rn) is the union of some copies of graph as Figure 1.

Figure 1.

The converse statement is clear.

The proof of following lemma is similar to the proof of Lemma 4.1 in [3] and
hence we omit it.

Lemma 4.5. Let R be a commutative ring and T be a triangular subset of Rn

which is not closed under addition, m = n and i = 2. Then

(1) if T contains ideals P1 and P2 with |P1| > 4, |P2| > 2 and |P1 ∪ P2| > 5,
then TCay(Rn) is not planar;

(2) If T contains ideals P1 and P2 with |P1|, |P2| > 3 and |P1 ∪ P2| > 5, then

TCay(Rn) is not planar.

Theorem 4.6. Let R be a commutative ring and T be a triangular subset of Rn

which is not closed under addition, m = n and i = 2, then TCay(Rn) is planar if

and only if |T | 6 4.
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Proof. Let |T | 6 4.
Case 1: |T | = 4, then T contains ideals P1 and P2 with |P1| = 3, |P2| =

2. We may assume that P1 = {(0, . . . , 0), (0, . . . , 0, a), (0, . . . , 0, 2a)} and P2 =
{(0, . . . , 0), (0, . . . , 0, b)}, where a, b 6= 0 and a 6= b. then TCay(Rn) is the union
of some copies of grpah as Figure 2. For every (x1, . . . , xn) ∈ Rn, we have

Figure 2.

x1 = (x1, . . . , xn + a), x2 = (x1, . . . , xn + 2a),

x3 = (x1, . . . , xn), x4 = (x1, . . . , xn + b),

x5 = (x1, . . . , xn + a+ b), x6 = (x1, . . . , xn + 2a+ b).

Therefore TCay(Rn) is planar.
Case 2: If |T | = 4, then T contains ideals P1 and P2 with |P1| = |P2| = 2 and

hence the graph TCay(Rn) is the union of some copies of C4. Therefore |T | = 4
is planar.

The converse statement is a consequence of Theorem 4.5.

Now we have the following corollary.

Corollary 4.7. Let R be a commutative ring and T be a triangular subset of Rn,
then TCay(Rn) is planar if and only if following statment is hod:

(1) T is closed under addition and |T | 6 4.

(2) T not closed under addition, i = 3 and |T | = 4.

(3) T not closed under addition, i = 2 and |T | 6 4.
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