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Torsion-unitary Cayley graph of an R-module

as a functor

Ali Ramin and Ahmad Abbasi

Abstract. Let R be a commutative ring with 1 6= 0 and U(R) be the set of unit elements.

Let M be an R-module and T (M) the set of torsion elements. In this paper, we introduce and

investigate the torsion-unitary Cayley graph of M , denoted by ΥR(M). It is a simple graph

with vertex set M × R, and two elements (m, r), (n, s) ∈ M × R are adjacent if and only if

(m, r) − (n, s) ∈ T (M) × U(R). We observe that ΥR(−) acts as a functor on the category of

modules. We also introduce the exact sequence of Cayley graphs and determine the properties

of functor ΥR(−).

1. Introduction

The Cayley graph introduced by Arthur Cayley in 1878 is a useful tool for connec-
tion between group theory and the theory of algebraic graphs. Let G be an abelian
additive group, C be a subset of G. Whenever 0 /∈ C and −C = {−c | c ∈ C} ⊆ C,
then the Cayley graph Cay(G,C) is the graph with vertex set G and edge set
{{a, b} | a− b ∈ C}. The Cayley graphs as a subcategory of category of graphs is
denoted by C. We refer the reader to [8] for general properties of Cayley graphs.

In recent years, for a ring R and M as an R-module, Cayley graphs of the
abelian group (R,+) and (M,+) with respect to subsets of R and M have re-
ceived much attention in the literature. Suppose that Z(R), U(R), J(R) and
Nil(R) are the set of zero-divisors, the set of unit elements, the Jacobson radical
of R and the ideal of nilpotent elements, respectively. In [4] and [12], the authors
obtained some basic properties of Cay(R,U(R)), denoted by GR, which is usu-
ally called the unitary Cayley graph. Also in [11], D. Kiani and M. Molla Haji
Aghaei show that if GR ∼= GS , then R/J(R) ∼= S/J(S) where R and S are �nite
commutative rings. Moreover, in [13], J. Sato and K. Baba studied the chromatic
number of Cay(R,Z(R) \ {0}). In [14], Shekarriz et al. tried to answer the nat-
urally arising question: Under what conditions on a �nite commutative ring R,
do we have τ(R) ∼= Cay(R,Z(R) \ {0})? where τ(R) is the total graph de�ned
in [5]. Also G. G. Aalipour and S. Akbari continued to investigate the properties
of Cay(R,Z(R) \ {0}) in [1] and [2]. Let M be an R-module where the collec-
tion of prime submodules is non-empty. Let NΛ be an arbitrary union of prime
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submodules and T (M) = {m ∈ M | rm = 0 for some 0 6= r ∈ R} be the set of
torsion elements of M . Also, suppose that c ∈ U(R) such that c−1 = c. In [3], we
de�ne the extended total graph of M as a simple graph TΓc(M,NΛ) with vertex
set M , and two distinct elements x, y ∈M are adjacent if and only if x+ cy ∈ NΛ

and study some graph theoretic results of it. Also In [6], the authors show that if
M 6= T (M), then T (M) is a union of prime submodules of M . Hence in [3], we
investigate some properties of TΓ−1(M,T (M)) = Cay(M,T (M)\{0}) too. These
provide a motivation to introduce a graph over an R-module as a functor from
category of modules to subcategory of graphs.

In this paper, we introduce the torsion-unitary Cayley graph of M , denoted
by ΥR(M). It is a simple graph with vertex set M × R, and two elements
(m, r), (n, s) ∈ M × R are adjacent if and only if (m, r)− (n, s) ∈ T (M)× U(R).
We show that it acts as a functor over an R-module. Also we introduce two func-
tors, unitary Cayley graph and torsion graph and study some category theoretic
properties of them. The motivation is based the fact that any ring homomor-
phism and R-module homomorphism preserves the unit elements and the torsion
elements, respectively. Of course, any ring homomorphism preserves idempotent
and nilpotent elements too. But to make a simple graph (without loop), the set
of unit elements is used in de�nition.

In Section 2, we determine some basic properties of ΥR(M). In section 3, the
graph ΥR(M) will be studied in �nite mode. Also in the end of this section, an ex-
ample will be provided to demonstrate defects of proof given in [14, Theorem 5.2].
It is not counterexample for [14, Theorem 5.2], which is only indicated counting the
number of vertices of a maximal clique of τ(R) is very complicated in this case (a
clique in a graph G is a subset of pairwise adjacent vertices). We also show errors
underlying their proof. In the last section, we de�ne the functor ΥR : MR → C
with ΥR(M) = Cay(M ×R, T (M)× U(R)) where MR is the R-module category.
Let φ : M → N be an R-module homomorphism, then ΥR(φ) : ΥR(M)→ ΥR(N)
given by ΥR(φ)((m, r)) = (φ(m), r) is a homomorphism of graphs. Also let R be
the category of ring and let TΓR(M) be Cay(M,T (M) \ {0}) with loop on all
vertices. Then Υu : R → C and Υt : MR → C are functors, with Υu(R) = GR
and Υt(M) = TΓR(M) respectively. In this section, we investigate the properties
of these functors and introduce an exact sequence of cayley graphs.

Throughout this article, all rings are assumed to be commutative with non-
zero identity. Let R be an Artinian ring, the structure theorem [7, Theorem 8.7]
implies that R ∼= R1×. . .×Rt, where each Ri is a local ring with maximal ideal mi;
this decomposition is unique up to permutation of factors. We denote by ki the
residue �eld Ri/mi and fi = |ki|. We also assume (after appropriate permutation
of factors) that f1 6 f2 6 . . . 6 ft. As usual, Z, Q, Zn, and Fq will denote the
integers, rational numbers, integers modulo n, and the �nite �eld with q elements,
respectively. R is reduced if Nil(R) = {0}. For more notations, we refer the reader
to [7].

Let G be a graph with the vertex set V (G). A graph G is totally disconnected
if no two vertices of G are adjacent. The complement of G is denoted by G.
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For vertices x and y of G, the length of a shortest path from x to y is denoted by
dG(x, y) (dG(x, x) = 0 and dG(x, y) =∞ if there is no such path). The diameter of
G is diam(G) = sup{dG(x, y)|x and y are vertices of G}. The girth of G, denoted
by gr(G), is the length of a shortest cycle in G (gr(G) = ∞ if G contains no
cycles). The complete graph on n vertices is denoted by Kn. A graph G is called
bipartite if its vertex set can be represented as the union of two disjoint sets V1 and
V2, such that every edge of G connects an element of V1 with one of V2. We call V1,
V2 a bipartition of V (G). The union of two simple graphs (with loop) G and H is
the graph G∪H with the vertex set V (G)∪V (H) and the edge set E(G)∪E(H).
Also

⋃t
i=1G is denoted by tG. Let P = {V1, ..., Vk} be a partition of the vertex

set of G into non-empty classes. The quotient G/P of G by P is the graph whose
vertices are the sets V1, ..., Vk and whose edges are the pairs [Vi, Vj ] such that there
are ui ∈ Vi, uj ∈ Vj with [ui, uj ] ∈ E(G). The mapping πP : V (G) → V (G/P)
de�ned by πP(u) = Vi such that u ∈ Vi, is the natural map for P. Quotients often
provide a way of deriving the structure of an object from the structure of a larger
one. Observe that πP is a homomorphism and it is automatically faithful. If ϕ
is a homomorphism of graph from X to Y , then the preimages ϕ−1(y) of each
vertex y in Y are called the �bres of ϕ. The �bres of ϕ determine a partition Kϕ
of V (X) called the kernel of ϕ. If Y has no loops, then the kernel is a partition
into independent sets. Given a graph X together with a partition Kϕ of V (X),
de�ne a graph X/Kϕ with vertex set the cells of Kϕ and with an edge between
two cells if there is an edge of X with an endpoint in each cell (and a loop if there
is an edge within a cell). The set of �nite simple graphs, denoted by Θ. A graph
with loop on all vertices, denoted by G◦. The set of �nite simple graphs in which
loops are admitted is denoted by Θ◦. The categorical product of G and H is the
graph, denoted by G×H, and vertex set V (G)× V (H), such that vertices (g, h)
and (g′, h′) are adjacent precisely if gg′ ∈ E(G) and hh′ ∈ E(H). Other names for
the categorical product that have appeared in the literature are tensor product,
Kronecker product or direct product. We know that the categorical product is
commutative and associative. Let G1 and G2 be graphs. Also let G be a subgraph
of G1 and V ⊆ V (G2) be the set of disjoint vertices, then G × V is denoted by
GV .

2. Torsion-unitary Cayley graph

In this section, we de�ne the torsion-unitary Cayley graph of M and we obtain
some its basic properties and categorical product. Also, the relationship between
the torsion-unitary Cayley graph and the unitary Cayley graph will be expressed.

De�nition 2.1. Let R be a commutative ring with nonzero identity andM be an
R-module. The torsion-unitary Cayley graph of M is a simple graph with vertex
set M × R, and two elements (m, r), (n, s) ∈ M × R are adjacent if and only if
(m, r)− (n, s) ∈ T (M)× U(R). This graph is denoted by ΥR(M).
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De�nition 2.2. Let R be a commutative ring with nonzero identity and M be
an R-module. The torsion graph of M , denoted by TΓR(M), is the graph, whose
vertex set is M , and in which {m,n} is an edge if and only if m− n ∈ T (M) (i.e.,
TΓR(M) ∼= Cay(M,T (M) \ {0})◦).

In what follows, the some properties of categorical product is recalled.

Remark 2.3. Let K◦1 ∈ Θ◦ denote the graph with exactly one vertex, on which
there is a loop. Observe that K◦1 ×G ∼= G for any G ∈ Θ◦. Therefore, under the
operations × and +, the set Θ◦ is a commutative semiring with unit K◦1 . Also if G
has no loop at g, then H{g} is totally disconnected; whereas if G has a loop at g,
then H{g} is isomorphic to H. Let G = G1×G2×· · ·×Gk =

∏k
i=1Gi. By simple

rewording of the de�nitions, each projection pi : G → Gi is a homomorphism.
Furthermore, given a graph H and a collection of homomorphisms ϕi : H → Gi,
for 1 6 i 6 k, observe that the map ϕ : x 7→ (ϕ1(x), ϕ2(x), . . . , ϕk(x)) is a
homomorphism H → G. From the two facts just mentioned, we see that every
homomorphism ϕ : H → G has the form ϕ : x 7→ (ϕ1(x), ϕ2(x), . . . , ϕk(x)), for
homomorphisms ϕi : H → Gi, where ϕi = piϕ. Clearly ϕ is uniquely determined
by the pi and ϕi.

Proposition 2.4. [9, Proposition 5.7] Suppose (g, h) and (g′, h′) are vertices of a
categorical product G×H, and n is an integer for which G has a g, g′-walk of length
n and H has an h, h′-walk of length n. Then G×H has a walk of length n from
(g, h) to (g′, h′). The smallest such n (if it exists) equals dG×H((g, h), (g′, h′)). If
no such n exists, then dG×H((g, h), (g′, h′)) =∞.

Proposition 2.5. [9, Proposition 5.8] Suppose x and y are vertices of G =
G1 × G2 × · · · × Gk. Then dG(x, y) = min{n ∈ N | each factor Gi has a walk of
length n from pi(x) to pi(y)}, where it is understood that dG(x, y) =∞ if no such
n exists.

Theorem 2.6. (Weichsel's Theorem, [9, Theorem 5.9]) Suppose G and H are
connected nontrivial graphs in Θ◦. If at least one of G or H has an odd cycle, then
G×H is connected.

In view of the above theorem, we have the following corollary.

Corollary 2.7. A categorical product of connected nontrivial graphs is connected
if and only if at most one of the factors is bipartite.

Remark 2.8. (1). ΥR(M) ∼= TΓR(M) × GR. Since every vertex m ∈ TΓR(M)

has a loop, every G
{m}
R is isomorphic to GR, also since every vertex r ∈ GR has

no loop, every TΓR(M){r} is totally disconnected.
(2). Let R be an Artinian ring and suppose that f1 = 2, then GR is a bipartite

graph. Note that GR =
∏
GRi .

Theorem 2.9. GR is a bipartite graph if and only if ΥR(M) is a bipartite graph.
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Proof. Suppose that GR is bipartite. Let V1 and V2 be bipartition of V (GR),
then TΓR(M)V1 and TΓR(M)V2 are bipartition of V (ΥR(M)). Therefore ΥR(M)
is bipartite. Conversely, if GR is not bipartite, then it has an odd cycle namely
O. Hence O{m} is an odd cycle in ΥR(M), since m has a loop in TΓR(M), a
contradiction. Therefore GR is a bipartite graph.

Proposition 2.10. Let R be a commutative ring with identity and let T (M) 6=
{0}, then gr(ΥR(M)) ≤ 4. In particular, if T (M) = {0}, then ΥR(M) is the
union of |M | disjoint GR's, and gr(ΥR(M)) = gr(GR).

Proof. GR is not totally disconnected, also since T (M) 6= {0}, ΥR(M) is not
totally disconnected too. Since K◦2 ×K2 is a cycle of length four, gr(ΥR(M)) 6 4.
In particular, if T (M) = {0}, then ΥR(M) ∼=

⋃
M K◦1 × GR ∼=

⋃
M GR and it is

clear that gr(ΥR(M)) = gr(GR).

By Remark 2.3, G
{m}
R is isomorphic to GR for all m ∈ M . Therefore we have

the following corollary in the light of Proposition 2.4.

Corollary 2.11. gr(ΥR(M)) 6 gr(GR). In particular, gr(ΥR(M)) = 3 if and
only if gr(GR) = 3. Moreover gr(ΥR(M)) = 4, if gr(GR) = 4.

Lemma 2.12. [8, Lemma 3.7.4] Cay(G,C) is connected if and only if C is a
generating set for G.

Remark 2.13. Let GR = {V1(GR), . . . , Vk(GR)} be a partition of the vertex
set of ΥR(M) where Vi(GR) = mi × R for mi ∈ M and |M | = k (k can

be in�nite). Since mi has a loop in TΓR(M), GR
{mi} ∼= GR by Remark 2.3.

Hence the vertices Vi(GR), Vj(GR) ∈ ΥR(M)/GR are adjacent if and only if the
vertices mi,mj ∈ TΓR(M) are adjacent since (mi, 0) ∈ Vi(GR) and (mj , 1) ∈
Vj(GR) are adjacent in ΥR(M) if and only if mi − mj ∈ T (M). Therefore,
ΥR(M)/GR ∼= TΓR(M).

As usual, if A ⊆M , then < A > denotes the Z-submodule of M generated by
A.

Theorem 2.14. Let R be a commutative ring and M an R-module. Then ΥR(M)
is connected if and only if M =< T (M) > and R =< U(R) >.

Proof. Let ΥR(M) be connected. By Lemma 2.12,M×R =< T (M)×U(R) > and
so M =< T (M) > and R =< U(R) >. Conversely, suppose that M =< T (M) >
and R =< U(R) >. By Lemma 2.12, GR is connected and also TΓR(M) is

connected with loops. Consider GR
{mi} for some mi ∈ M , then GR

{mi} ∼= GR
by Remark 2.3. Hence there is a path in ΥR(M) from (mi, r) to (mi, r

′) for
r, r′ ∈ R since GR is connected. Also since TΓR(M) is connected, there is a path
in ΥR(M)/GR from Vi(GR) to Vj(GR) for every mj ∈ M by the above remark.
Therefore there is a path from (mi, r) to (mj , r

′) and ΥR(M) is a connected
graph.
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As an applications of the algebraic graph theory in modules theory, the follow-
ing corollary hold by Lemma 2.12 and the above theorem.

Corollary 2.15. Let M be an R-module, then M ×R =< T (M)×U(R) > if and
only if M =< T (M) > and R =< U(R) >.

Theorem 2.16. Let R be a commutative ring and M an R-module. Suppose that
ΥR(M) is a connected graph (i.e., M×R =< T (M)×U(R) >). If there is k which
is a greatest integer i such that m = n1 + n2 + · · · + ni where, m ∈ M × R and
n1, ..., ni ∈ T (M)×U(R) with n1 +n2 + · · ·+ni is a shortest representation of m,
then diam(ΥR(M)) = k. Otherwise, diam(ΥR(M)) =∞. Moreover, if ΥR(M) is
a connected graph, then diam(ΥR(M)) = dM×R(0,m).

Proof. The proof is similar to the proof of [3, Theorem 14].

Remark 2.17. Let u ∈ U(R) and j ∈ J(R), then u+ j ∈ U(R). Hence, whenever
x and y are adjacent vertices in GR, then every element of x+J(R) is adjacent to
every element of y+J(R). Moreover, x+m is a totally disconnected subgraph ofGR
where m is a maximal ideal. Therefore

⋃
m∈M (x+m){m} is a totally disconnected

subgraph of ΥR(M). Also, suppose that M 6= T (M) and {Nλ}λ∈Ω is the set of
all prime submodules of M . We know that T (M) =

⋃
λ∈ΛNλ for Λ ⊆ Ω as shown

in [6]. Let NΛ =
⋂
λ∈ΛNλ, then every element of m + NΛ is adjacent to every

element of n + NΛ if m and n are adjacent vertices in TΓR(M). Furthermore,
m+Nλ is a clique with loop in TΓR(M), where λ ∈ Λ.

Lemma 2.18. Let R be a commutative ring and M be an R-module. Then :

(i) ΥR(M) is complete graph if and only if M = 0 and R is a �eld,

(ii) ΥR(M) is vertex transitive,

(iii) ΥR(M) is a regular graph of degree |T (M)| × |U(R)| with isomorphic com-
ponents.

Proof. Let ΥR(M) is complete graph. Then M = 0 since (m, r) and (n, r) are
not adjacent for every m,n ∈ M and r ∈ R. Also R is a �eld since if there
exists a nonunit x 6= 0 in R, then (m, 0) and (n, x) are not adjacent. Part (ii)
holds for every Cayley graph of a group. To prove the last part, note that under
an automorphism of graph G, any component of G is isomorphically mapped
to another component. Since ΥR(M) is vertex-transitive, we conclude that the
components of ΥR(M) are isomorphic and so part (iii) is proved.

3. The case when M and R are �nite

In this section, all graphs considered to be �nite. It is natural to seek the conditions
under which A×C ∼= B×C implies A ∼= B. We call this the cancellation problem
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for the categorical product. In general, cancellation for the categorical product fails
dramatically. If C is any bipartite graph, then there are always non-isomorphic
graphs A and B for which A×C ∼= B×C. Indeed, just take A = K2 and B = 2K◦1
(two loops), then A × C ∼= 2C ∼= B × C. But we say that cancellation holds for
the torsion-unitary Cayley graphs in this section. Finally, we examine the validity
of the proof of Theorem 5.2 in [14].

Remark 3.1. Let R be a �nite commutative ring, then ΥR(R) = GR
◦

×GR since
R is an union of zero divisor and unit elements. Therefore if GR ∼= GS , then
ΥR(R) ∼= ΥS(S).

Corollary 3.2. Let R be a �nite commutative reduced ring and let S be a com-
mutative ring. Then TΓR(R) ∼= TΓS(S) if and only if R ∼= S.

Proof. Let R be a �nite commutative ring, then GR
◦ ∼= TΓR(R). By [11, Corollary

5.4], R ∼= S if and only if TΓR(R) ∼= TΓS(S).

Theorem 3.3. Suppose that R and S are commutative ring and let M be an R-
S-bimodule. Then ΥS(M) ∼= ΥR(M) if and only if GS ∼= GR where ΥS(M) ∈ Θ.

Proof. It is clear by [9, Proposition 9.6].

Corollary 3.4. Suppose that R and S are commutative reduced ring. let M be
an R-S-bimodule such that ΥR(M) ∈ Θ. Then ΥS(M) ∼= ΥR(M) if and only if
R ∼= S.

Proof. This follow directly from [11, Corollary 5.4] and the above theorem.

Theorem 3.5. Suppose that there is a ring homomorphism ψ : S → R and
ΥR(M),ΥS(M) ∈ Θ. Also let M and N be R-modules. If ΥR(M) ∼= ΥR(N), then
ΥS(M) ∼= ΥS(N).

Proof. It is clear by [9, Proposition 9.9].

By Theorem 2.9 and [9, Proposition 9.10], if ΥR(M) ∈ Θ and it has an odd
cycle, then ΥR(M) ∼= ΥR(N) if and only if TΓR(M) ∼= TΓR(N). Also by Lemma
2.18(iii), if M is a torsion or torsion-free module, then ΥR(M) ∼= ΥR(N) if and
only if TΓR(M) ∼= TΓR(N) since TΓR(M) and TΓR(N) have loop on all ver-
tices and minimum and maximum degree of TΓR(M) and TΓR(N) equal two and
|T (M)|+ 1 respectively (a loop is incident to only one vertex, when measuring the
degree of such a vertex, the loop is counted twice). By the following theorem, the
condition that ΥR(M) has an odd cycle can be omitted.

Theorem 3.6. Let M and N be R-modules and let ΥR(M) ∈ Θ, then

ΥR(M) ∼= ΥR(N) if and only if TΓR(M) ∼= TΓR(N).
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Proof. Suppose that ΥR(M) ∼= ΥR(N). Since ΥR(M) = TΓR(M) × GR and
ΥR(N) = TΓR(N)×GR, |T (M)| = |T (N)| by Lemma 2.18(iii). Hence

TΓR(M)×GR/GR ∼= TΓR(N)×GR/GR,

where GR is as mentioned in Remark 2.13. Therefore TΓR(M) ∼= TΓR(N) by
Remark 2.13.

Also, by the similar proof, the following corollary is obtained in the cancellation
for the categorical product.

Corollary 3.7. Let A,B,C ∈ Θ◦. Suppose that A and B have loop on all vertices
and C has at least one edge. Then A× C ∼= B × C if and only if A ∼= B.

Shekarriz et al. answered the isomorphic question in [14, Theorem 5.2]: Let
R be a �nite commutative ring, then τ(R) ∼= Cay(R,Z(R) \ {0}) if and only if
at least one of the following conditions is true: (a) R ∼= R1 ⊕ · · · ⊕ Rk, where
k ≥ 1 and each Ri is a local ring of an even order; (b) R ∼= R1 ⊕ · · · ⊕ Rk, where
k ≥ 2 and each Ri is a local ring and f1 = 2. But, they have errors in its proof
when they conclude τ(R) � Cay(R,Z(R)\{0}), supposed (a) and (b) do not hold
for a �nite commutative ring R. In the following, an example will be provided to
demonstrate defects of proof given in [14, Theorem 5.2], and we investigate the
method of proof too. The equivalence class Z(Ri) + ai, is denoted by [ai].

Example 3.8. Let R = F4 ⊕ F4 ⊕ Z3 and (1, 1, 1), (0, 0,−1) ∈ R, denoted by 1
and x, respectively. Then τ(F4⊕F4⊕Z3) has �ve maximal cliques, all containing
the edge {1, x}, which are given separately as follows:

(a). Let c1 = ([1], [0],Z3), c2 = (F4, [0], [−1]) and c3 = ([1],F4, [1]), then
c1 ∪ c2 ∪ c3 forms a maximal clique, where |c1 ∪ c2 ∪ c3| = |c1|+ |c2|+ |c3| − |c1 ∩
c2| − |c1 ∩ c3| − |c2 ∩ c3|+ |c1 ∩ c2 ∩ c3| = 3 + 4 + 4− 1− 1− 0 + 0 = 9.

By permuting the �rst two components, a new maximal clique will be gener-
ated: ([0], [1],Z3) ∪ ([0],F4, [−1]) ∪ (F4, [1], [1]). Since, |R|/f1 = |R|/f2, these two
cliques will be equal in size. Moreover, in these maximal cliques, vertices 1 and x
are already counted.

(b). Let c1 = ([1],F4, [1]) and c2 = ([0],F4, [−1]), then c1 ∪ c2 forms a maximal
clique, where |c1 ∪ c2| = |c1|+ |c2| − |c1 ∩ c2| = 4 + 4− 0 = 8. By permuting the
�rst two components, a new maximal clique will be generated:

(F4, [1], [1]) ∪ (F4, [0], [−1]).

Since, in this example, |R|/f1 = |R|/f2, these two cliques will be equal in size.
Moreover, in these maximal cliques, vertices 1 and x are already counted.

(c). Let c1 = ([1], [0], [0]), c2 = ([0], [1], [0]), c3 = ([1], [1], [1]) and c4 =
([0], [0], [−1]), then c1 ∪ c2 ∪ c3 ∪ c4 forms a clique of maximal size 4. It should be
noted that, the mutual intersection of every pair of ci's is empty, for i = 1, . . . , 4,
and vertices 1 and x are already counted.
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Remark 3.9. Note that this example is not contra example for [14, Theorem
5.2], this is an example which determines the method of counting the number of
vertices of a maximal clique of τ(R) is not true. Let R = R1 ⊕ R2 ⊕ R3 where
R1 and R2 are even such that Ri/Z(Ri) ∼= F2t , for i = 1, 2 and t > 2, and R3

is odd. Then the layouts of equivalence classes of maximal cliques containing the
edge {1, x} are as the above example.

Now, let us return to the main subject concerning the �aws in the proof of [14,
Theorem 5.2].

The �ndings discussed in the proof are well-reasoned until they were going to
show that for i = 1, . . . , k, the edge {1, x} does not belong to a maximal (|R|/fi)-
clique in τ(R). In that proof, it is supposed that {ys|s ∈ S} is a set of elements
of R of maximal size which are adjacent to both 1 and x and also to themselves.
It is also cited that if {ys | s ∈ S} ∪ {1, x} forms a clique of maximal size |R|/fi,
then there must be 1 6 m1 < m2 < · · · < mq 6 k; 0 6 q 6 k such that all ys's
belong to

R1⊕· · ·⊕Rm1−1⊕ [am1
]⊕Rm1+1⊕· · ·⊕Rmq−1⊕ [amq ]⊕Rmq+1⊕· · ·⊕Rk. (1)

Now, according to this direct sum and ambiguity in the assumption, ys's could
be chosen in three following ways:

(1) ys's belong to (1) in which ami and mi are �xed for all i = 1, . . . , q. Based on
maximal cliques in the example 3.8(a), 3.8(b) and 3.8(c), {ys|s ∈ S}∪{1, x}
is not a maximal clique. It shows that the argument can not be true.

(2) ys's belong to (1) in which only mi are �xed for all i = 1, . . . , q. Now,
example 3.8(a) shows that {ys|s ∈ S} ∪ {1, x} is not a maximal clique.

(3) ys's belong to (1) in such away ami , mi and q can vary. Thus q will
be replaced with qλ in (1), for some λ ∈ Λ such that 1 6 qλ 6 k, and
ySλ = {ys|s ∈ Sλ}'s are contained in the representation (1), where Sλ ⊆ S
such that for all s ∈ Sλ, the elements of ySλ in (1) have a �xed representation
(i.e., miλ and qλ are �xed). In Example 3.8, ySλ is the set of vertices of a
clique ci. Based on deduction in [14, Theorem 5.2], qλ 6= 1. If qλ > 2, then

|ySλ | =
|R|∏qλ
i=1 fmi

, and the required number is calculated by |
⋃
ySλ | as in

Example 3.8.

The counting method given in [14, Theorem 5.2] implies that the authors have
considered either conditions (1) or (2). Moreover, in the proof, where it is supposed
that 2 6 q 6 k, if [amp ] = [−1mp ] and [amv ] = [−xmv ] for some v 6= p, 1 6 p 6 j
and j+1 6 v 6 k, then 1 may belong to {ys|s ∈ S}. Correspondingly, if 1 6 v 6 j
and j + 1 6 p 6 k, then x may belong to {ys|s ∈ S}. Therefore, it is generally
incorrect to add 2 in counting the total number of vertices of maximal cliques.
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4. Torsion-unitary Cayley functor

In this section, we de�ne torsion-unitary Cayley functor and determine some of its
categorical properties.

De�nition 4.1. Let R be a commutative ring with nonzero identity andM be an
R-module. The functor ΥR : MR → C with ΥR(M) = Cay(M ×R, T (M)× U(R))
is a covariant functor. It is easily veri�ed that if φ : M → N is an R-module homo-
morphism, then ΥR(φ) : ΥR(M)→ ΥR(N) given by ΥR(φ)((m, r)) = (φ(m), r) is
a homomorphism of graph.

Remark 4.2. In general, let R and S be commutative rings, ψ : S → R a
ring homomorphism. Suppose that MR and NR are R-modules and φ : M →
N is an R-module homomorphism. Then MR × S and NR × S are S-modules,
ΥR(φ, ψ) : ΥS(MR) → ΥR(NR) given by ΥS(φ, ψ)((m, r)) = (φ(m), ψ(r)) is a
homomorphism of graph ((φ, idR) replace by (φ, ψ) in the above de�nition) and
the following diagram commutes:

MR × S NR × S

MR ×R NR ×R

ΥS(M) ΥS(N)

ΥR(M) ΥR(N)

(φ, idS)

(idM , ψ)
(φ, ψ)

(idN , ψ)

(φ, idR)

(φ, idS)

(idM , ψ)
(φ, ψ)

(φ, idR)

(idN , ψ)

where, (−→) denotes S-module homomorphisms, (=⇒) denotes homomorphisms
of graph and ( ) denotes functors.

By Remark 2.3, if R = M = 0, then GR = TΓR(M) = K◦1 . So the followings
hold:

(a) Let M = 0, then M ×R ∼= R, ΥR(M) ∼= GR, Υ−(0) is a functor from cate-
gory of rings to unitary Cayley graphs as a subcategory of graphs category,
denoted by Υu(−), and the following diagram commutes:

S R

GS GR

Υu(S)

ψ

ψ

Υu(R)

.

(b) Let M be an R-module, then Υ0(−) is a functor from MR to torsion graphs
as a subcategory of category of graphs, denoted by Υt(−). Note that, in this
case, graphs are not simple such that every vertex has a loop.
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We say that a functor F : C → D preserves a property P of a morphism f
in C if F (f) in D also has the property P. We say that F re�ects a property
P if f has P in C whenever F (f) has P in D. Analogous de�nitions can be
made with respect to properties of objects. It is clear that every functor preserves
commutative diagrams. A homomorphism f from G to f(G) ⊆ H is called a
retraction if there exists an injective homomorphism g from f(G) to G such that
fg = idf(G). In this case f(G) is called a retract of G, and then G is called a
coretract of f(G) while g is called a coretraction. According to the de�nition of
the functor Υ, we have the following corollary.

Corollary 4.3. The functor Υ preserves and re�ects injective mappings and sur-
jective mappings. It preserves retractions and coretractions.

A homomorphism ϕ : G→ H is called faithful if ϕ(G) is an induced subgraph
of H. It will be called full if {g, g′} ∈ E(G) if and only if {ϕ(g), ϕ(g′)} ∈ E(H).
Let G be a simple graph and ϕ a full homomorphism, then ϕ−1(h) ∪ ϕ−1(h′)
induces a complete bipartite graph whenever {h, h′} ∈ E(H).

Corollary 4.4. Let S be a commutative ring and M be an R-module. Suppose
that ψ′ : S → S/J(S) and φ′ : M → M/NΛ are the canonical homomorphism,
where NΛ is as mentioned in Remark 2.17. Then Υu(ψ′) and Υt(φ′) are full
homomorphism of graph.

Let m′ ∈ T (M), then σm′ : GR → TΓR(M) given by σm′(r) = rm′ is a
homomorphism since Im(σm′) is a complete graph with loop.

Proposition 4.5. Let m ∈ M \ T (M) such that U(R) = R \ (T (M) : m), then
φm : GR → TΓR(M) given by φm(r) = rm is a full homomorphism. In partic-
ular, if R is a �nite commutative ring, then φm is a full homomorphism for all
m ∈M \ T (M).

Proof. It is clear that φm is a homomorphism of graphs. Suppose that {r1m, r2m}
is an edge in TΓR(M) for some r1, r2 ∈ R, then u = r2 − r1 ∈ U(R) since
um ∈ T (M) if and only if u ∈ R \ U(R) = (T (M) : m) for m ∈ M \ T (M).
Therefore φm is full. For the �in particular� statement, suppose that R is �nite.
Hence U(R) = R \ (T (M) : m) for all m ∈M \ T (M) since every regular element
of a �nite commutative ring is a unit.

Remark 4.6. In Remark 4.2, ψ is a faithful homomorphism if and only if ψ−1(ψ(s))∩
U(S) 6= ∅ for all ψ(s) ∈ U(R) because if {ψ(s1), ψ(s2)} is an edge in GR for some
s1, s2 ∈ S, then (s2 + k2) − (s1 + k1) ∈ U(S) for some k1, k2 ∈ Ker(ψ). Accord-
ing to the same reason, φ is a faithful homomorphism if and only if φ−1(φ(s)) ∩
T (M) 6= ∅ for all φ(s) ∈ T (N). Also, ψ is a full homomorphism if and only if

ψ−1(ψ(s)) ⊆ U(S) for all ψ(s) ∈ U(R) because if ψ(s) ∈ U(R), then {ψ(s), ψ(0)}
is a edge in GR and so s − 0 ∈ U(S) since ψ is a full homomorphism. According

to the same reason, φ is a full homomorphism if and only if φ−1(φ(m)) ⊆ T (M)
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for every φ(m) ∈ T (N). Moreover, the homomorphism (φ, ψ) is faithful (full) if
and only if each of φ and ψ is faithful (full).

Proposition 4.7. Let ψ : S → R be a ring homomorphism such that the induced
map Spec(R) → Spec(S) is surjective. Then ψ : GS → GR is a full homomor-
phism.

Proof. Let ψ(x) is an unit, then ψ(x) /∈ q for all q ∈ Spec(R). Hence x /∈ ψ−1(q)
for all q ∈ Spec(R). Since induced map is surjective, x is an unit and ψ is full
homomorphism by the above remark.

Theorem 4.8. In Remark 4.2, ψ is a surjective full homomorphism of graph if
and only if ψ is surjective and Ker(ψ) ⊆ J(S). In particular, if ψ is a surjective
ring homomorphism and S is a local commutative ring, then ψ is a full surjective
homomorphism.

Proof. Suppose that ψ is full. Hence, ψ−1(ψ(s)) ⊆ U(S) for all ψ(s) ∈ U(R) by
Remark 4.6. Let s ∈ Ker(ψ). Then ψ(1 + ss′) = 1 for all s′ ∈ S, hence 1 + ss′ has
inverse and it follows that s ∈ J(S). Therefore Ker(ψ) ⊆ J(S) and ψ is a surjec-
tive ring homomorphism by Corollary 4.3. Conversely, let ψ(s) ∈ U(R), then there
is s′ ∈ S such that (s′+Ker(ψ))(s+Ker(ψ)) = 1 +Ker(ψ) since S/Ker(ψ) ∼= R.
Hence ss′ − 1 ∈ Ker(ψ) and so (ss′ − 1) ∈ J(S) since Ker(ψ) ⊆ J(S). There-
fore ss′ ∈ U(S) and so s ∈ U(S) since 1 + J(R) ⊆ U(R) and U(S) is a sat-
urated multiplicatively closed subset of S. Moreover, if ψ is surjective, then ψ
is surjective too by Corollary 4.3. The �in particular� statement is clear since
Ker(ψ) ⊆ J(S) = mS , where mS is a maximal ideal.

Corollary 4.9. Let ψ : S → R be a surjective ring homomorphism. Then
ψ : GS → GR is a full homomorphism if and only if the map ψ∗ : Max(R) →
Max(S) is surjective.

Proof. Let ψ be a surjective full homomorphism. Then Ker(ψ) ⊆ J(S) by the
above theorem. Now, ψ∗ is a surjective map because if Ker(ψ) contained in the
every maximal ideal and ψ is surjective, then ψ(mS) and ψ−1(mR) are maximal
ideals for mS ∈Max(S) and mR ∈Max(R). Conversely, by the proof of Proposi-
tion 4.7, ψ is a full homomorphism.

Recall that a ring homomorphism S → R is called �at (faithfully �at) if R is
�at(faithfully �at) as an S-module.

Theorem 4.10. Let ψ : S → R be a surjective �at homomorphism. Then
ψ : GS → GR is full if and only if ψ is faithfully �at.

Proof. Let ψ be a surjective full homomorphism, then Ker(ψ) ⊆ J(S), by Theo-
rem 4.8. Also, ψ∗ : Max(R) → Max(S) is surjective and so for all m ∈ Max(S),
R/ψ(m) is nonzero by Corollary 4.9. Therefore, by [10, Lemma 10.38.15], ψ : S →
R is faithfully �at. Conversely, the induced map on Spec is surjective by [10,
Lemma 10.38.16]. Therefore, by Proposition 4.7, ψ is a full homomorphism.
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Lemma 4.11. If φ in Remark 4.2 is an injective homomorphism of modules, then
φ is a full injective homomorphism of graphs. Moreover, ΥR(φ) is a full injective
homomorphism of graphs too.

Proof. It is clear by Corollary 4.3 and Remark 4.6.

Theorem 4.12. Let M and N be R-modules where R is an integral domain and
let φ : M → N be an R-module homomorphism. Then Ker(φ) ⊆ T (M) if and
only if Υt(φ) = φ : TΓR(M)→ TΓR(N) is a full homomorphism of graph.

Proof. Suppose φ(m) ∈ T (N) for some m ∈ M . Then rφ(m) = φ(rm) = 0
for some r ∈ R. Hence rm ∈ T (M) since Ker(φ) ⊆ T (M). Therefore m ∈
T (M) since R is an integral domain. Conversely, if φ is full, then inverse map
of any torsion elements of N is a torsion element in M by Remark 4.6. Hence,
φ−1(0) = Ker(φ) ⊆ T (M).

Remark 4.13. A homomorphism ϕ of a graph G into H gives rise to an equiv-
alence relation ≡ϕ. In other words, the kernel of ϕ, de�ned on V by u ≡ϕ v if
and only if ϕ(u) = ϕ(v). Therefore, a homomorphism of graphs ϕ : G → H is
surjective and faithful if and only if ω : G/Kϕ → H is an isomorphism.

Theorem 4.14. According to the assumptions of Remark 4.2, let ψ and φ be
faithful homomorphisms of graphs. Then

(1) Υu(S/Ker(ψ)) ∼= GS/Kψ,

(2) Υt(M/Ker(φ)) ∼= TΓR(M)/Kφ,

(3) ΥR(M/Ker(φ)) ∼= ΥR(M)/Kφ×id.

Proof. (1). By the above remark, if ψ : GS → GR is a faithful homomor-
phism, then GS/Kψ ∼= ψ(GS). Since the diagram commutes in Remark 4.2(a),

ψ(Υu(S)) = Υu(ψ(S)). Therefore GS/Kψ ∼= ψ(GS) ∼= Υu(S/Ker(ψ)).

(2) The proof is similar to the proof of part (1).
(3) Let φ be faithful and φ×id : ΥR(M)→ ΥR(N) be the graph homomorphism

induced by φ. Then φ× id is faithful by Remark 4.6. Hence

(φ× id)(ΥR(M)) ∼= ΥR(M)/Kφ×id,

by the above remark. Since the diagram is commutative in Remark 4.2,

(φ× id)(ΥR(M)) = ΥR(φ(M)) ∼= ΥR(M/Ker(φ)).

Therefore ΥR(M/Ker(φ)) ∼= ΥR(M)/Kφ×id.

Corollary 4.15. Let I and N be the partitions of ring S and R-module M which
generated by the equivalence relation modulo I as an ideal of S and N as a sub-
module of M , respectively. Let ψ : GS → GS/I and φ : TΓR(M) → TΓR(M/N)
be faithful. Then
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(1) Υu(S/I) ∼= GS/I,

(2) Υt(M/N) ∼= TΓR(M)/N ,

(3) ΥR(M/N) ∼= TΓR(M)/N ×GR.

Proof. Let ψ : S → S/I and φ : M →M/N are ring and module homomorphism,
respectively. Then I = Kψ and N = Kφ. Hence the three parts are clear by the
above theorem.

Example 4.16. (a). Let n ≥ 4 be an integer and ψ : Z → Z/nZ be a ring
homomorphism. Then ψ−1(m̄) ∩ U(Z) = ∅, where −1, 1 6= m̄ ∈ U(Zn). Hence
ψ : GZ → GZn is not faithful by Remark 4.6.

(b). Let θ : Z6 → Z6/3Z6 be the canonical homomorphism of rings. Then
θ−1(m̄) ∩ U(Z6) 6= ∅ and θ−1(m̄) * U(Z6) for m = 1, 2. Hence the graph ho-
momorphism θ : GZ6

→ GZ3
is faithful, but is not full by Remark 4.6. Also,

consider θ as a homomorphism of Z6-modules, then θ−1(m̄) ∩ T (Z6) 6= ∅ and
θ−1(m̄) * T (Z6) for m = 0, 1, 2. Therefore, θ : TΓZ6

(Z6) → TΓZ6
(Z3) is faith-

ful, but is not full by Remark 4.6. Moreover, let θ × idZ6 : ΥZ6(Z6)→ ΥZ6(Z3).
Since idZ6 is a full homomorphism of graph and θ is faithful, θ× idZ6 is a faithful
homomorphism of graph by Remark 4.6.

(c). Let R be a Noetherian ring and let f =
∑∞
n=0 anx

n ∈ R[[x]], where
an is nilpotent and Let R be the partition of ring R[[x]] which generated by
the equivalence relation modulo Nil(R) as an ideal of nilpotent elements. Then
{f |an ∈ Nil(R)} = Nil(R[[x]]) ⊆ J(R[[x]]) =

∑∞
n=0 bnx

n where b0 ∈ J(R) by Ex-
ercise 2 in [7, p. 84] and Exercise 5 in [7, p. 11]. Therefore ψ : GR[[x]] → GR[[x]]/R
is a full homomorphism of graphs by Theorem 4.8 and Corollary 4.15.

Let C and D be categories. A covariant functor F : C → D is said to be
faithful if the mapping HomC(A,A′)→ HomD(F (A), F (A′)) is injective for all
A,A′ ∈ C, and it will be called full if this mapping is surjective.

Example 4.17. Let φ : Z2 → Z2 × Z2 be an Z2-module homomorphism and
let ϕ : ΥZ2

(Z2)→ ΥZ2
(Z2 × Z2) be a graph homomorphism with ϕ(x0) = a0,

ϕ(x1) = a2 and ϕ(yi) = a1 for i = 1, 2 by the following �gure:
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then there is not a module homomorphism such that φ× idZ2 = ϕ since Im(φ) is
a submodule of Z2 × Z2.

Corollary 4.18. The functor ΥR : MR → Cay(G,C) is faithful. But is not full.

Proof. The �rst part follows directly from the de�nition. By the above example,
a homomorphism of graph is not a module homomorphism in general. Therefore
the functor Υ is not full.

Let Ri be a commutative ring for 1 6 i 6 t. The element (u1, u2, . . . , ut) is a
unit of

⊕
Ri if and only if each ui is a unit element in Ri. Hence G⊕

Ri
∼=

∏
GRi .

Remark 4.19. (1). Note that unlike in group theory, the inverse of a bijective
homomorphism of graph need not be a homomorphism. For example, any bijec-
tive homomorphism from Kn to Kn. A faithful bijective homomorphism is an
isomorphism of graphs.

(2). Since T (N ⊕M) ⊆ T (N)× T (M), the map

i : TΓR(N ⊕M)→ TΓR(N)× TΓR(M)

is a graph homomorphism.

Proposition 4.20. Let R be an integral domain and let M and N be R-modules.
Then ΥR(N ⊕M) ∼= TΓR(N)×ΥR(M).

Proof. Consider the map ι : ΥR(N⊕M)→ TΓR(N)×ΥR(M) given by ι(n,m, r) =
(n, (m, r)). Hence by Remark 4.19(2), it is a bijective homomorphism of graph.
Since R is an integral domain, (n,m) ∈ T (N ⊕M) if and only if n ∈ T (N) and
m ∈ T (M). Therefore ι is faithful and ΥR(N ⊕M) ∼= TΓR(N)×ΥR(M).

De�nition 4.21. Suppose that {Gi}i∈Z is a family of groups where ei is the
identity element of Gi. A sequence of Cayley graphs

· · · → Cay(Gi−1, Ci−1)
ϕi−1−−−→ Cay(Gi, Ci)

ϕi−→ Cay(Gi+1, Ci+1)→ · · · , (2)

is called exact if ϕ−1
i (ei+1) = Im(ϕi−1) and ϕj(Cj) ⊆ Cj+1 for all i, j ∈ Z. In

particular, the short exact sequence of Cayley graph is an exact sequence in the
form

Cay(G1, C1)
ϕ1−→ Cay(G2, C2)

ϕ2−→ Cay(G3, C3),

such that ϕ1 and ϕ2 are injective and surjective, respectively.

The above de�nition may be extended to the Cayley graph with loop on all
vertices (i.e., ei ∈ Ci).

Remark 4.22. By the above de�nition and Corollary 4.3, the functors Υu and
Υt are exact. Let

· · · →Mi−1
φi−1−−−→Mi

φi−→Mi+1 → · · ·
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is an exact sequence of R-modules and R-homomorphisms, then

· · · → ΥR(Mi−1)
φi−1

−−−→ ΥR(Mi)
φi
−→ ΥR(Mi+1)→ · · ·

is not the exact sequence since Ker(φi) $ Im(φi−1), where φ = (φ, id). Also if

(2) is the sequence of Cayley graphs such that Im(ϕi−1) = ϕ−1
i (gi+1) for some

gi+1 ∈ Gi+1 and every i ∈ Z, then it can be turned into an exact sequence
whenever ϕi's replace with σi+1ϕiσ

−1
i , where σi is an automorphism of vertex

transitive graph Cay(Gi, Ci) with σi(gi) = ei+1, for all i ∈ Z.

Theorem 4.23. Let R be a commutative ring and

0 M1 M2 M3 0

0 M ′1 M ′2 M ′3 0

η1

φ1

η2

φ2

η3

φ′1 φ′2

a commutative diagram of R-modules and R-module homomorphisms such that
each row is a short exact sequence. Consider the commutative diagram:

TUCR(M1) TUCR(M2) TUCR(M3)

TUCR(M ′1) TUCR(M ′2) TUCR(M ′3)

(η1,idR)

(φ1,idR)

(η2,idR)

(φ2,idR)

(η3,idR)

(φ′1,idR) (φ′2,idR)

.

(1) If η1 and η3 are injective then so is (η2, idR).

(2) If η1 and η3 are surjective then so is (η2, idR).

(3) If η1 and η3 are isomorphism of module then (η2, idR) is an isomorphism of
graph.

Proof. Parts (1) and (2) follow directly from Corollary 4.3 and Short Five Lemma
(Note that by the above remark, rows of the second diagram in this theorem is
not the short exact sequences of Cayley graphs).

(3). This follows directly from parts above, Lemma 4.11 and Remark 4.6.

Let R be a ring and let 0→M1
φ1−→M2

φ2−→M3 → 0 be a short exact sequence
of R-modules. The sequence is said to be split if φ1(M1) is a direct summand of
M2. Up to isomorphism, one has M2 = M1 ⊕M3.
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Theorem 4.24. Let

0→M1
φ1−→M2

φ2−→M3 → 0 (3)

be a split short exact sequence of R-modules and let T (M2) be a submodule of M2.
Then

ΥR(M2) ∼= TΓR(M1)×ΥR(M3) ∼= TΓR(M3)×ΥR(M1).

Proof. Since (3) is a split short exact sequence of R-module, there are R-module
homomorphisms ψ1 : M2 → M1 and ψ2 : M3 → M2 such that ψ1 ◦ φ1 = idM1

and φ2 ◦ ψ2 = idM3 . Consider map ϕ : ΥR(M2) → TΓR(M1) × ΥR(M3) given
by ϕ(m2, r) = (ψ1(m2), φ2 × idR(m2, r)). Since ψ1 and φ2 × idR are homomor-
phisms of graph, so is ϕ. Let ϕ(m2, r) = ϕ(m′2, r

′), then ψ1(m2) = ψ1(m′2) and
φ2 × idR(m2, r) = φ2 × idR(m′2, r

′). So ψ1(m2 − m′2) = 0, m2 − m′2 ∈ Ker(φ2)
and r = r′ since (φ2(m2), r) = (φ2(m′2), r′). Hence m2 −m′2 ∈ Im(φ1) since (3)
is a short exact sequence of R-modules. So m2 = m′2 since ψ1 ◦ φ1 = idM1 and
ψ1(m2−m′2) = 0. Therefore (m2, r) = (m′2, r

′) and ϕ is injective. Moreover, ϕ is a
surjective homomorphism of graph because if (m1, (m3, r)) ∈ TΓR(M1)×ΥR(M3),
then ϕ(φ1(m1) + ψ2(m3)− φ1 ◦ ψ1 ◦ ψ2(m3), r) = (m1, (m3, r)) since φ2 ◦ φ1 = 0,
ψ1◦φ1 = idM1 and φ2◦ψ2 = idM3 . Also we need to prove that ϕ is faithful for being
an isomorphism of graphs. Suppose that vertices a = (ψ1(m2), φ2 × idR(m2, r))
and b = (ψ1(m′2), φ2 × idR(m′2, r

′)) are adjacent in TΓR(M1) × ΥR(M3), then
m′1 = ψ1(m2 −m′2) ∈ T (M1) and m′3 = φ2(m2 −m′2) ∈ T (M3). Since T (M2) is
a submodule of M2, (φ1(m′1) + ψ2(m′3) − φ1 ◦ ψ1 ◦ ψ2(m′3) ∈ T (M2). Therefore
the vertices ϕ−1(a) = (φ1 ◦ ψ1(m2) + ψ2 ◦ φ2(m2)− φ1 ◦ ψ1 ◦ ψ2 ◦ φ2(m2), r) and
ϕ−1(b) = (φ1 ◦ ψ1(m′2) + ψ2 ◦ φ2(m′2) − φ1 ◦ ψ1 ◦ ψ2 ◦ φ2(m′2), r′) are adjacent in
ΥR(M2).

Corollary 4.25. Let (3) be a split short exact sequence of R-module and T (M2)
is a submodule of M2. Then

ΥR(M2) ∼= ΥR(M1 ⊕M3) ∼= TΓR(M1)×ΥR(M3) ∼= TΓR(M3)×ΥR(M1).

Proof. By Theorem 4.23 and the above theorem, it is clear.

Example 4.26. Let T (M) be a proper submodule of R-module M such that
|T (M)| = α and |M/T (M)| = β. If R is a principal ideal domain, then the short
exact sequence of R-modules

0→ T (M)→M →M/T (M)→ 0 (4)

splits, so M ∼= T (M) ⊕M/T (M) as a direct sum of a torsion module and a free
module. Then

ΥR(M) ∼= TΓR(T (M))× TΓR(M/T (M))×GR = βK◦α ×GR

by the above corollary and [3, Theorem 7(1)]. But if ring R is not a domain,
then M/T (M) is torsion by [6, Theorem 2.8]. By [3, Theorem 7(1)], TΓR(M) =
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K◦α × βK◦1 = βK◦α. Hence Υt(M) � TΓR(T (M)) × TΓR(M/T (M)) because if
ring R is not a domain, then TΓR(T (M)) × TΓR(M/T (M)) = K◦α × K◦β (let
K◦α × K◦β = K◦α × βK◦1 . By [9, Proposition 9.6], K◦β = βK◦1 , so β = 1 and
M = T (M)).

As an applications of the algebraic graph theory in modules theory, the follow-
ing corollary hold by the above example.

Corollary 4.27. Suppose that the short exact sequence of R-modules (4) splits,
then R is a domain.
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