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A representation theorem for bounded distributive

hyperlattices

Abdelaziz Amroune and Ali Oumhani

Abstract. A representation theorem for bounded distributive hyperlattices is given. The equiva-

lence between the category of Priestley spaces and the dual of the category of bounded distributive

hyperlattices is established.

1. Introduction

The notion of hyperstructures was introduced 80 years ago [6], it has been studied
by several authors see for example [1, 4, 5, 10, 11, 12], this bibliography and the
references therein is not exhaustive.

Later, Koguep et al. [4], Konstantinidou [5] introduced respectively the notion
of hyperlattices and studied ideals and �lters in these structures. Prime ideals and
prime �lters in hyperlattices have been examined by R. Ameri et al. [1]. Rasouli
and Davvaz de�ned a fundamental relation on a hyperlattice to get a lattice from
a hyperlattice. Moreover, they de�ned a topology on the set of prime ideals of a
distributive hyperlattice [11, 12].

The Stone's representation theorems [13, 14] proved that every Boolean algebra
is isomorphic to a set of {Ia : a ∈ A} (where Ia denotes the set of prime ideals of
A not containing a). Since then, representation theorems for distributive lattices
has known a vast development.

H. A. Priestley developed another kind of duality for bounded distributive
lattices [8, 9]. Such representation theorems enable a deep and a concrete compre-
hension of the lattices as well as their structures. Our motivation �nds its place
in the following opinion:

"Stone's duality and its variants are central in making the link between syn-
tactical and semantic approaches to logic. Also in theoretical computer science,
this link is central as the two sides correspond to speci�cation languages and the
space of computational states. This ability to translate faithfully between alge-
braic speci�cation and spatial dynamics has often proved itself to be a powerful
theoretical tool as well as a handle for making practical problems decidable" see
[3].
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In this paper, we extend some results of [8, 9], where a representation theorem
of bounded distributive hyperlattices is presented. In other words, the category of
Priestley spaces is equivalent to the dual of the category of bounded distributive
hyperlattices.

2. Preliminaries

Let X be a nonempty set and P ∗(X) denotes the set of all nonempty subsets of
X. Maps f : X ×X → P ∗(X), are called hyperoperations [6].

De�nition 2.1. Let L be a nonempty set, ∧ be a binary operation and t be a
hyperoperation on L. L is called a hyperlattice if for all a, b, c ∈ L the following
conditions hold:

(i) a ∈ a t a, and a ∧ a = a;

(ii) a t b = b t a, and a ∧ b = b ∧ a;

(iii) a ∈ [a ∧ (a t b)] ∩ [a t (a ∧ b)];

(iv) a t (b t c) = (a t b) t c, and a ∧ (b ∧ c) = (a ∧ b) ∧ c;

(v) a ∈ a t b⇒ a ∧ b = b.

A hyperlattice L with the property

a ∧ (b t c) = (a ∧ b) t (a ∧ c)

is called distributive, where for all nonempty subsets A and B of L we de�ne

A tB = ∪{a t b | a ∈ A, b ∈ B} and A ∧B = {a ∧ b | a ∈ A, b ∈ B}.

The converse of condition (v) in De�nition 2.1 is true. Indeed using (iii) in
De�nition 2.1, we obtain a ∈ a t b by taking b = a ∧ b.

Hence, we can de�ne a partial order on L by:

a ≤ b⇔ b ∈ a t b⇔ a ∧ b = a.

A hyperlattice L is called bounded if there exist 0, 1 ∈ L such that for all a ∈ L,
0 ≤ a ≤ 1.

Consider a lattice (L,∧,∨). We de�ne the Nakano hyperoperation t on L
by x t y = {z ∈ L/z ∨ x = z ∨ y = x ∨ y} , for all x, y ∈ L. To the best of our
knowledge, the t hyperoperation was �rst introduced by Nakano in [7], which is
an investigation of hyperrings.

Lemma 2.2. If (L,∧,∨) is a distributive lattice, then (L,∧,t) is a distributive

hyperlattice where a t b = {x ∈ L | a ∨ b = a ∨ x = b ∨ x} for all a, b ∈ L.
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Proof. Straightforward.

Lemma 2.3. Let L = {0, 1}. Then, ({0, 1} ,∧,t) is a bounded distributive hyper-

lattice, where
∧ 0 1

0 0 0

1 0 1

and
t 0 1

0 {0} {1}
1 {1} {0, 1}

.

De�nition 2.4. [10] A nonempty subset I of a hyperlattice L is called an ideal if
the following conditions hold

(i) If a, b ∈ I, then a t b ⊆ I;

(ii) If a ∈ I, b ≤ a, and b ∈ L, then b ∈ I.

A proper ideal I is called prime if a ∧ b ∈ I implies a ∈ I or b ∈ I for all a, b ∈ L.

De�nition 2.5. [10] A nonempty subset F of a hyperlattice L is called a �lter if
the following conditions hold

(i) If a, b ∈ F , then a ∧ b ∈ F ;

(ii) If a ∈ F , a ≤ b, and b ∈ L, then b ∈ F .

A proper �lter F is called prime if for all a, b ∈ L (at b)∩F 6= ∅ implies a ∈ F or
b ∈ F .

Theorem 2.6. [1] If P is a prime ideal of a hyperlattice L, then L−P is a prime

�lter of L. Similarly, if F is a prime �lter of L, then L−F is a prime ideal of L.

Proposition 2.7. If δ is a nonempty subset of a hyperlattice L, then the smallest

�lter containing δ has the form

〈δ〉 = {x ∈ L | a1 ∧ ... ∧ an ≤ x, for some a1, .., an ∈ δ} .

Proof. First, we prove that 〈δ〉 is nonempty. Let a ∈ δ, since a ≤ a, then a ∈ 〈δ〉,
hence 〈δ〉 6= ∅. To proof that 〈δ〉 is a �lter let x ∈ 〈δ〉, y ∈ X such that x ≤ y, then
∧ni=1ai ≤ x ≤ y, so y ∈ F .

On the other hand, for x, y ∈ 〈δ〉, there exist a1, a2, . . . , an, b1, b2, . . . , bm such
that ∧ni=1ai ≤ x and ∧mj=1bj ≤ y. Then, (∧ni=1ai) ∧ (∧mj=1bj) ≤ x ∧ y. Therefore,
x ∧ y ∈ 〈δ〉.

Next, let a ∈ δ, since a ≤ a, we have a ∈ 〈δ〉. Then δ ⊆ 〈δ〉.
Finally, suppose that F is a �lter with δ ⊆ F . Then for any x ∈ 〈δ〉, then there

exist a1, a2, .., an ∈ δ such that ∧ni=1ai ≤ x, then x ∈ F . Therefore 〈δ〉 ⊆ F .

If δ = {a}, we write 〈δ〉 =↑ a = {x ∈ L | a ≤ x}.

Proposition 2.8. [10] Let (L,∧,t) be a distributive hyperlattice. If a ∈ L then

↓ a = {x ∈ L |x ≤ a} is an ideal.
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Theorem 2.9. Let X be a distributive hyperlattice, F be a �lter and I an ideal

of X. If F ∩ I = ∅, then there is a prime �lter P such that F ⊆ P and P ∩ I = ∅.

Proof. Let G be the family of those �lters F ′ which satisfy F ⊆ F ′ and F ′∩ I = ∅.
It follows from the Zorn's lemma that G has a maximal element P . Since P ∈ G it
remains to prove that the �lter P is prime. Since P ∩ I = ∅, P is proper. Suppose
P is not prime. Then there exist a, b ∈ X such that (a t b) ∩ P 6= ∅, and a /∈ P
and b /∈ P . Let a0 ∈ (a t b) ∩ P and let δ = P ∪ {a}. Then 〈δ〉 ∩ I 6= ∅, otherwise
P ⊆ 〈δ〉 ∈ G contradicting the maximality of P . Take x ∈ 〈δ〉 ∩ I. This implies
easily there exists p ∈ P that p ∧ a ≤ x, it follows that a0 ∧ p ∧ a ≤ x and since
x ∈ I, it follows that a0 ∧ p∧ a ∈ I. Similarly a0 ∧ q ∧ b ∈ I. Then, a0 ∧m∧ a ∈ I
and a0∧m∧b ∈ I such that m = p∧q, it follows that (a0∧m∧a)t(a0∧m∧b) ⊆ I,
which implies a0∧m ∈ (a0 ∧m)∧(a t b) ⊆ I, and a0∧m ∈ P , therefore I∩P 6= ∅,
which is a contradiction.

Corollary 2.10. Let L be a distributive hyperlattice. If I is an ideal and a ∈ L−I,
then there exists a prime �lter P such that a ∈ P and P ∩ I = ∅.

Proof. Let I be an ideal, a ∈ L − I and take F = 〈a〉, it follows F ∩ I = ∅. By
Theorem 2.9, there is a prime �lter P such that F ⊆ P and P ∩ I = ∅.

De�nition 2.11. Let L and L′ be two hyperlattices and f : L→ L′ be a mapping.

1. f is said to be a hyperlattices homomorphism if f(x ∧ y) = f(x) ∧ f(y) and
f(x t y) ⊆ f(x) t f(y), for all x, y ∈ L.

2. f is said to be a strong homomorphism of a hyperlattices, if f(x ∧ y) =
f(x) ∧ f(y) and f(x t y) = f(x) t f(y), for all x, y ∈ L. If f is a bijection,
then f is said to be a hyperlattices isomorphism (strong isomorphism).

Proposition 2.12. Let (L,∧,t) be a hyperlattice, ({0, 1} ,∧,t) be the hyperlattice

in Lemma 2.3 and F be a subset of L. If F is a prime �lter, then there is a

surjective hyperlattices homomorphism f : L→ {0, 1}, such that F = f−1 ({1}).

Proof. Set f(X) = 1 if X ⊆ F , and f(X) = 0 otherwise. Since (x t y) ∩ F 6= ∅ ⇔
(x ∈ F or y ∈ F ), then f(x t y) = 1⇒ x t y ⊆ F ⇒ (x t y) ∩ F 6= ∅ ⇒ x ∈ F or
y ∈ F ⇒ f(x) = 1 or f(y) = 1. Hence, f(x t y) ⊆ f(x) t f(y).

If f(x t y) = 0, we have x t y * F , it follows that (x t y) ∩ F = ∅, which
implies x /∈ F and y /∈ F , it follows that f(x) = 0 and f(y) = 0, which implies
f(x) t f(y) = 0. Therefore, f(x t y) ⊆ f(x) t f(y).

For the second homomorphism axiom, we have f (x ∧ y) = 0⇔ x∧y ⊆ L−F ⇔
(x ∈ L− F or y ∈ L− F )⇔ (f (x) = 0 or f (y) = 0)⇔ f (x) ∧ f (y) = 0. Hence,
f (x ∧ y) = f (x) ∧ f (y).

Corollary 2.13. Let L be a distributive hyperlattice. If a, b ∈ X are such that

a � b there is a prime �lter F such that a ∈ F and b /∈ F .

Proof. Take I =↓ b in Corollary 2.10.
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3. Priestley duality

De�nition 3.1. Let (L,≤) be a poset. A subset E ⊆ L is said to be increasing

(decreasing) if ∀x, y ∈ L, x ∈ E and x ≤ y (y ≤ x) implies y ∈ E.

De�nition 3.2. An ordered topological space is a triple (X, τ,≤) such that (X, τ)
is a topological space and (X,≤) is a poset. A clopen set in a topological space is
a set which is both open and closed. The ordered topological space is said to be
totally disconnected if for every x, y ∈ X such that x � y there exists an increasing
τ -clopen U and a decreasing τ -clopen V such that U ∩ V = ∅ with x ∈ U and
y ∈ V.

De�nition 3.3. A Priestley space is a compact totally disconnected ordered topo-

logical space.

If A is a bounded distributive hyperlattice, then its dual space is de�ned to be
T (A) = (X, τ,≤), whereX is the set of homomorphisms from A onto ({0, 1},∧,t),
preserving 0 and 1, τ is the product topology induced from {0, 1}A, and ≤ is the
partial order de�ned by f ≤ g in X if and only if f(a) ≤ g(a) for all a ∈ A. T (A)
is compact, and it is also totally order disconnected, i.e., a Priestley space.

De�nition 3.4. [2] Let (X, τ,≤), and (X ′, τ ′,�) be two Priestley spaces. Then
f : X → X ′ is called

1. increasing if for all x, y ∈ X, x ≤ y ⇒ f (x) � f (y).

2. a Priestley spaces homomorphism if is increasing and continuous. If it is a
bijection, then it is a Priestley spaces isomorphism.

Lemma 3.5. If δ = (X, τ,≤) is a Priestley space, then there exists a hyperoper-

ation t such that (L (δ) ,∩,t, ∅, X) is a bounded distributive hyperlattice, where

L (δ) = {Y ⊆ X |Y is increasing and τ -clopen} and t is de�ned by

A tB = {X ∈ L (δ) |A ∪B = A ∪X = B ∪X}

for all A,B ∈ L (δ).

Proof. By Lemma 2.2.

Lemma 3.6. Let A be a bounded distributive hyperlattice. Then FA : A→ L(T (A))
de�ned by FA (a) = {f ∈ X | f(a) = 1} is a hyperlattices isomorphism.

Proof. For all a, b ∈ A we have

FA (a ∧ b) = {f ∈ X | f(a ∧ b) = 1} = {f ∈ X | f(a) = 1} ∩ {f ∈ X | f(b) = 1}
= FA (a) u FA (b) ,

and
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FA (a t b) = {FA(t) | t ∈ a t b} = {{f ∈ X | f(a t b) = 1}}
⊆ {{f ∈ X | f(a) = 1} ∪ {f ∈ X | f(b) = 1}} = {FA (a) ∪ FA (b)}
⊆ FA (a) t FA (b) .

Suppose that a 6= b. If a � b, there exist a prime �lter F such that a ∈ F
and b /∈ F (Corollary 2.13). Thus, by Proposition 2.12, there is a hyperlattices
homomorphism f : A → {0, 1} such that a ∈ f−1 ({1}) and b /∈ f−1 ({1}), hence
f (a) = 1 and f (b) = 0, i.e., FA (a) � FA (b).

Similarly, b � a gives FA (b) � FA (a). Hence, a 6= b implies FA (a) 6= FA (b)
i.e., FA is injective.

To prove that FA is surjective, let U ∈ L (T (A)). Then, for all f ∈ U and
g ∈ L (T (A)) − U , since U is increasing, we have g < f . Thus, f (afg) = 1 and
g (afg) = 0 for some afg ∈ A. Hence, f ∈ FA (afg) and g ∈ L (T (A))− FA (afg).

For �xed f ∈ U we have g ∈ L (T (A)) − U ⊆
n
∪
i=1

(L (T (A))− FA (afgi)) =

L (T (A))−FA
n

( ∧
i=1
afgi) (because L (T (A))−U is compact). For af =

n
∧
i=1
afgi =, we

have FA (af ) = FA
n

( ∧
i=1
afgi) ⊂ U . On the other hand, f (af ) = 1, thus f ∈ FA (af ).

Therefore, U = ∪f∈UFA (af ). We �nd again a �nite covering U =
n
∪
j=1

FA (afj).

Hence, {U} ⊇
n
t
j=1

FA (afj) ⊇ FA(
n
t
j=1

afj), (since B ⊂ B′ ⇒ F−1A (B) ⊂ F−1A (B′)

and FA injective). Consequently, F−1A (FA(
n
t
j=1

afj)) =
n
t
j=1

afj)).

We have
n
t
j=i
afj ⊆ F−1A (U), since

n
t
j=1

afj ∈ P∗ (A), i.e., ∅ 6=
n
t
j=1

afj ⊆ A, i.e.,

FA is surjective. Since FA is injective, there exists a ∈ A such that U = FA (a).
Therefore, FA is a hyperlattices isomorphism.

Lemma 3.7. If f : A1 → A2 is a hyperlattices homomorphism, then the map

T (f) : T (A1)→ T (A2) de�ned by T (f)(g) = g ◦ f is a homomorphism of Priestley

spaces.

Proof. For all g1, g2 ∈ T (A1) , from g1 ≤ g2 it follows g1 ◦ f ≤ g2 ◦ f . Hence T (f)
is increasing. The continuity of T (f) follows from the fact that for every a ∈ A1,

T (f)
−1

(FA1 (a)) = {g ∈ T (A2) /T (f) (g) ∈ FA1 (a)}
= {g ∈ T (A2) /g ◦ f (a) = 1} = {g ∈ T (A2) /g (f (a)) = 1}
= FA2 (f (a)) .

This completes the proof.

Lemma 3.8. If δ = (X, τ, r) is a Priestley space, then the map Gδ : δ → T (L(δ))
de�ned by

Gδ(x)(Y ) =

{
1 if x ∈ Y,
0 if x /∈ Y,

for all Y ∈ L(δ), is an isomorphism of Priestley spaces.
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Proof. To prove the surjectivity, for each f ∈ T (L(δ)) we consider the sets U =
{Y ∈ L (δ) | f (Y ) = 1}, V = {Z ∈ L (δ) | f (Z) = 0}, A = ∩Y ∈UY and B =
∪Z∈V Z. Suppose that A−B = ∅. Then (∩Y ∈UY ) ∩(∪Z∈V Z)c = ∅, consequently
(∩Y ∈UY ) ∩ (∩Z∈V ZC) = ∅. Since X is compact, we have (

n
∩
i=1
Yi) ∩ (

m
∩
j=1

ZCj ) = ∅.

Thus,
n
∩
i=1
Yi ⊆

m
∪
j=1

Zj and f(
m
∪
j=1

Zj) = 1, a contradiction because f(
m
∪
j=1

Zj) =

m
∨
j=i
f (Zj) = 0. Hence A − B 6= ∅. Then, there exists x ∈ A − B such that

Gδ (x) = f. Therefore Gδ (x) (Y ) = 1 ⇔ x ∈ Y ⇔ Y ∈ U ⇔ f (Y ) = 1. So, Gδ is
surjective.

Let x1, x2 ∈ δ, x1 6= x2. If x1 � x2, then there exists Y0 ∈ L (δ) such that
x1 ∈ Y0 and x2 /∈ Y0, hence Gδ(x1)(Y0) 6= Gδ(x2)(Y0). If x2 � x1, then there
exists Y1 ∈ L (δ) such that x2 ∈ Y1 and x1 /∈ Y1, hence Gδ(x2)(Y1) 6= Gδ(x1)(Y1).
Thus x1 6= x2 implies Gδ(x1)(Y ) 6= Gδ(x2)(Y ), so Gδ is injective.

To prove that Gδ is continuous, let Z be a τ -clopen subset of T (L (δ)) . Then,
there exists y ∈ L (δ) such that Y = FL(δ) (y). Thus

G−1δ (Y ) = G−1δ (FL(δ) (y)) =
{
x ∈ X/Gδ(x) ∈ FL(δ) (y)

}
= {x ∈ X/Gδ(x) (y) = 1} = {x ∈ X/x ∈ y} = X ∩ y = y.

Hence, Gδ is continuous.

Note that, since Y ∈ L(δ) are increasing, x ≤ y implies Gδ(x)(Y ) ≤ Gδ(y)(Y ).

Lemma 3.9. If h : δ1 → δ2 is a homomorphism of Priestley spaces, then the

map L(h) : L(δ2) → L(δ1) de�ned by L(h)(y) = h−1(y) for every y ∈ L(δ2) is a

hyperlattices homomorphism.

Proof. For all y ∈ L(δ2) we have L(h)(y) ∈ L(δ1). For all y, z ∈ L(δ2) since h−1
commutes with set-theoretical operations we have,

L(h)(y t z) ⊆
{
h−1 (x) |h−1(y ∪ z) = h−1 (y ∪ x) = h−1 (z ∪ x)

}
=

{
h−1 (x) |h−1(y) ∪ h−1(z) = h−1 (y) ∪ h−1(x) = h−1 (z) ∪ h−1(x)

}
⊆ L(h)(y) t L(h)(z).

and L(h)(y ∩ z) = h−1(y ∩ z) = h−1(y) ∩ h−1(z) = L(h)(y) ∩ L(h)(z).
Hence, L(h) is a hyperlattices homomorphism.

Theorem 3.10. L (T (f)) ◦ FA1
= FA2

◦ f for any hyperlattices homomorphism

f : A1 → A2.

f
A1

- A2

FA1
?

FA2
?

L(T (A1))
- L(T (A2))

L(T (f))
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Proof. For all a ∈ A1,

(L (T (f)) ◦ FA1) (a) = L (T (f)) (FA1 (a)) = T−1 (f) (FA1 (a))

= {g ∈ T (A2) |T (f) (g) ∈ FA1 (a)}
= {g ∈ T (A2) | g ◦ f ∈ FA1 (a)}
= {g ∈ T (A2) | g (f (a)) = 1}
= FA2 (f (a)) = (FA2 ◦ f) (a) ,

which completes the proof.

Theorem 3.11. For any homomprphism h : δ1 → δ2 of Priestley spaces, we have

T (L (h)) ◦Gδ1 = Gδ2 ◦ h.
h

δ1 - δ2

Gδ1
?

Gδ2
?

L(T (δ1))
- L(T (δ2))

L(T (h))

Proof. (T (L (h)) ◦Gδ1) (f) = T (L (h)) (Gδ1 (f)) = Gδ1 (f) ◦ L (h) for all f ∈ δ1.
Hence for all y ∈ L (δ2) we have

(T (L (h)) ◦Gδ1) (f) (y) = (Gδ1 (f) ◦ L (h)) (y) = Gδ1 (f)
(
h−1 (y)

)
=

{
1 if f ∈ h−1 (y)
0 if f /∈ h−1 (y) =

{
1 if h (f) ∈ y
0 if h (f) /∈ y

= Gδ2 (h (f)) (y) = (Gδ2 ◦ h) (f) (y) .
This completes the proof.

Theorem 3.12. The dual of the category of Priestley spaces is equivalent to the

category of distributive hyperlattices.

Proof. By Lemma 3.6, Lemma 3.8, Theorem 3.10 and Theorem 3.11.

4. Examples

Example 4.1. Let A = {0, a, b, 1}. Consider the following Cayley tables

∧ 0 a b 1

0 0 0 0 0
a 0 a 0 a
b 0 0 b b
1 0 a b 1

t 0 a b 1

0 {0} {a} {b} {1}
a {a} {0, a} {1} {b, 1}
b {b} {1} {0, b} {a, 1}
1 {1} {b, 1} {a, 1} A

Then (A,∧,t, 0, 1) is a bounded distributive hyperlattice. T (A) is the set
of homomorphisms from A onto {0, 1} = {f1, f2} and its bidual is: L(T (A)) =
{∅, {f1}, {f2}, {f1, f2}}, where
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0 a b 1

f1 0 1 0 1

f2 0 0 1 1

t ∅ {f1} {f2} {f1, f2}
∅ ∅ {f1} {f2} {f1, f2}
{f1} {f1} {∅, {f1}} {f1, f2} {{f2}, {f1, f2}}
{f2} {f2} {f1, f2} {∅, {f2}} {{f1}, {f1, f2}}
{f1, f2} {f1, f2} {{f2}, {f1, f2}} {{f1}, {f1, f2}} {∅, {f1}, {f2}, {f1, f2}}

Then (L(T (A)),∩,t, ∅, X) is a bounded distributive hyperlattice with X =
{f1, f2}. FA : A → L(T (A)) is given by FA(0) = ∅, FA(a) = {f1}, FA(b) = {f2},
FA(1) = {f1, f2}.

Example 4.2. Let D(30) = {1, 2, 3, 5, 6, 10, 15, 30} be the set of positive divisors
of 30 and (D(30),∧,∨) the lattice where a∧b and a∨b are respectively the greatest
common divisor and the least common multiplier of a and b. De�ne on D (30) the
hyperoperation by: a t b = {x ∈ D(30)|a ∨ b = a ∨ x = b ∨ x}, for all a, b ∈ L.
Then (D (30) ,∧,t, 1, 30) is a bounded distributive hyperlattice. T (D (30)) is the
set of homomorphisms from D(30) onto {0, 1} = {f1, f2, f3}.

D (30) 1 2 3 5 6 10 15 30

f1 0 1 0 0 1 1 0 1

f2 0 0 1 0 1 0 1 1

f3 0 0 0 1 0 1 1 1

Its bidual is: L(T (D (30))) = {∅, {f1}, {f2}, {f3}, {f1, f2}, {f1, f3}, {f2, f3}, X},
where X = {f1, f2, f3}.

t ∅ {f1} {f2} {f3}
∅ ∅ {f1} {f2} {f3}
{f1} {f1} {∅, {f1}} {f1, f2} {f1, f3}
{f2} {f2} {f1, f2} {∅, {f2}} {f2, f3}
{f3} {f3} {f1, f3} {f2, f3} {∅, {f3}}
{f1, f2} {f1, f2} {{f2} , {f1, f2}} {{f1} , {f1, f2}} {X
{f1, f3} {f1, f3} {{f3} , {f1, f3}} X {{f1} , {f1, f3}}
{f2, f3} {f2, f3} {X} {{f3} , {f2, f3}} {{f2} , {f2, f3}}

X X {{f2, f3}, X} {{f1, f3} , X} {{f1, f2} , X}
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t {f1, f2} {f1, f3}
∅ {f1, f2} {f1, f3}
{f1} {{f2}, {f1, f2}} {{f3} , {f1, f3}}
{f2} {{f1}, {f1, f2}} X

{f3} X {{f1} , {f1, f3}}
{f1, f2} {∅, {f1}, {f2}, {f1, f2}} {{f2, f3} , X}
{f1, f3} {{f2, f3}, X} {∅, {f1} , {f3} , {f1, f3}}
{f2, f3} {{f1, f3}, X} {{f1, f2}, X}

X {{f3}, {f1, f3}, {f2, f3}, X} {{f2} , {f1, f2}, {f2, f3}, X}

t {f2, f3} X

∅ {f2, f3} X

{f1} X {{f2, f3}, X}
{f2} {{f3}, {f2, f3}} {{f1, f3}, X}
{f3} {{f2} , {f2, f3}} {{f1, f2}, X}
{f1, f2} {{f1, f3}, X} {{f3} , {f1, f3}, {f2, f3}, X}
{f1, f3} {{f1, f2}, X} {{f2} , {f1, f2}, {f2, f3}, X}
{f2, f3} {∅, {f2} , {f3} , {f2, f3}} {{f1} , {f1, f2} , {f1, f3} , X}

X {{f1} , {f1, f2} , {f1, f3} , X} L(T (A))

Then (L(T (A)),∩,t, ∅, X) is a bounded distributive hyperlattice. FA(1) = ∅,
FA(2) = {f1}, FA(3) = {f2}, FA(5) = {f3}, FA(6) = {f1, f2}, FA(10) = {f1, f3},
FA(15) = {f2, f3}, FA(30) = X.

Example 4.3. Let (X, τ,≤) be a Priestley space, where X = {a, b, c} and ≤ is
given by

≤ a b c

a 1 0 1
b 0 1 1
c 0 0 1

and L(X) = {∅, {c} , {a, c} , {b, c} , X}, where

t ∅ {c} {a, c} {b, c} X

∅ ∅ {c} {a, c} {b, c} X

{c} {c} {∅, {c}} {a, c} {b, c} X

{a, c} {a, c} {a, c} {∅, {c}, {a, c}} X {{b, c} , X}
{b, c} {b, c} {b, c} X {∅, {c}, {b, c}} {{a, c} , X}
X X X {{b, c}, X} {{a, c} , X} L(X)

≤ ∅ {c} {a, c} {b, c} X

∅ 1 1 1 1 1
{c} 0 1 1 1 1
{a, c} 0 0 1 0 1
{b, c} 0 0 0 1 1
X 0 0 0 0 1
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and T (L(X)) = {f1, f2, f3} such that

L(X) f1 f2 f3
∅ 0 0 0
{c} 0 0 1
{a, c} 1 0 1
{b, c} 0 1 1
X 1 1 1

The isomorphism GX : X → T (L(X)) is de�ned by GX(a) = f1, GX(b) = f2,
GX(c) = f3.

Conclusion

In this paper, we propose a new way to represent distributive hyperlattices. It is
shown that the dual of the category of Priestley spaces is equivalent to the category
of bounded distributive hyperlattices.

For further investigations, we give the following open question.

Question. Is there a relation between the category of bounded distributive hyper-

lattices and the category of bounded distributive lattices?
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