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Deniable-encryption protocols

based on commutative ciphers

Nicolai A. Moldovyan, Alexei V. Shcherbacov and Mikhail A. Eremeev

Abstract. There are considered three new deniable encryption protocols representing practical

interest. The sender-deniable and sender&receiver-deniable ones have been designed on the base

of combining commutative encryption function (Vernam cipher) with probabilistic public key

encryption (RSA algorithm), subexponential resistance to coercive attack being obtained. To

get exponential deniability it is proposed to use the ElGamal-like probabilistic algorithm based

on computational di�culty of discrete logarithm on elliptic curves instead of the RSA one. The

third DE protocol is based on the Pohlig−Hellman exponentiation cipher and represents a plan-

ahead shared-key bi-deniable scheme satisfying criterion of computational indistinguishability

from probabilistic encryption protocol. Each of the proposed deniable encryption schemes is a

three-pass protocol.

1. Introduction

1.1. Deniable encryption

Encryption is usually used to provide con�dentiality of the messages sent via inse-
cure public channels, when a potential adversary can intercepts the send messages.
In the case of intercepting the sent ciphertext he is unable to read the message un-
til disclosing the decryption key. The widely used private-key (AES, IDEA, RC5,
Serpent et. al.) and public-key (RSA, ElGamal et. al.) encryption algorithms [22]
provide computational infeasibility of disclosing the key while performing crypt-
analysis of the ciphertext. In some particular applications of the cryptographic
protocols it is required to provide security against potential coercive attacks. The
main feature of the model of the coercive adversary (coercer) consists in his having
power to force sender or/and receiver to open both the source message and the
decryption key [2]. After he gets the private key he can check that with the opened
key the intercepted ciphertext is decrypted into the opened message.

The notion of deniable encryption (DE) relates to cryptoschemes that are re-
sistant to coercive attacks. Deniability is provided with possibility to decrypt the
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ciphertext intercepted by the coercer in di�erent ways. The sender or/and the
receiver open a fake message instead of the secret one and the coercive adver-
sary is not able to disclose their lie. Practical application of the DE algorithms
and protocols is connected with providing data secrecy, secure communications
via public channels. They are also applicable for preventing vote buying in the
internet-voting systems [1, 12] and for providing secure multiparty computations
[9]. There are distinguished sender-deniable [4, 8, 19], receiver-deniable [13, 25],
and bi-deniable [20, 21], schemes in which coercer attacks the sender of secret
message, the receiver, and the both parties of the communication protocol, re-
spectively.

One should also mention the issue about time at which the attacked parties
have to decide on the fake message. In the plan-ahead DE protocols the fake
message is selected at time of encryption. There are known practical public-key
DE schemes [16, 17] and shared-key DE ones [18] in which the fake message is
�xed and selected before or during the encryption process. From theoretic point
of view the �exible DE protocols represent signi�cant interest, in which the fake
massage can be selected arbitrary at time of the coercive attack.

Signi�cant part of the papers devoted to the design and analysis of �exible DE
protocols consider the case of the sender-deniable public-key encryption protocols
[1, 4, 8]. A possible general scheme of such protocols is as follows. The secret
message M is encrypted with public-encryption algorithm E and public key P
using a random value r : C = EP (M, r), where C is the produced cryptogram
(ciphertext). While being coerced the sender (receiver) opens to adversary the fake
messageM ′ and another random value r′ (fake opening) such that EP (M

′, r′) = C,
where r′ 6= r. The value r contains some trapdoor information unavailable to
coercer, which is used by receiver to decide on the pair (M ′, r′) containing real
message. Papers [3, 11, 21] considered some problems connected with construction
of the �exible public key DE protocols having super-polynomial security. Recent
paper [24] gave the �rst construction of sender-deniable encryption schemes with
super-polynomial security, where a coercive adversary has negligible advantage in
distinguishing real and fake messages.

Present paper proposes a novel design of the DE protocols based on combin-
ing the probabilistic public encryption with the commutative encryption function
implemented with Vernam algorithm. The paper introduces a computationally
e�cient sender-deniable encryption protocol as well as sender&receiver deniable
one in which using respective fake key the ciphertext can be decrypted in arbitrary
fake message selected after performing the protocol, namely, at time of coercive
attack. The both protocols have super-polynomial security that is de�ned by sub-
exponential security of the RSA public encryption algorithm put into the base of
the protocols. The proposed protocols are based on combining the probabilistic
public encryption with commutative encryption implemented with the Vernam ci-
pher. The proposed design can be implemented with using the ElGamal-like public
encryption on elliptic curves, providing exponential resistance to coercive attack.
As compared with the known �exible public key DE protocols the proposed ones
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have the following merits: i) simplicity of the design, ii) su�ciently high perfor-
mance, iii) comparatively low overhead in terms of the ciphertext size, and iv)
using only one XOR operation to generate a fake opening at time of attack.

1.2. Commutative encryption

Encryption function E is called commutative if it satis�es the following condition

EK [EQ(M)] = EQ[EK(M)],

where K and Q are encryption keys and M is some plaintext, for arbitrary keys
K and Q 6= K. The property of commutativity of some encryption function is
exploited in Shamir's no key protocol (also called Shamir's three-pass protocol
[14]) described as follows. Suppose Alice wishes to send the secret message M to
Bob, using a public channel and no shared key. For this purpose they can use the
following protocol that provides privacy, but not authentication:

1. Alice chooses a random key K and encrypts the messageM using a commu-
tative encryption function E : C1 = EK(M), where C1 is the produced ciphertext.
Then she sends the ciphertext C1 to Bob.

2. Bob chooses a random key Q and encrypts the message the ciphertext
C1 using the function E as follows: C2 = EQ(C1), where C2 is the produced
ciphertext. Then he sends the ciphertext C2 to Alice.

3. Alice decrypts the ciphertext C2 obtaining the ciphertext C3 : C3 =
E−1K (C2). Then she sends the ciphertext C3 to Bob.

Having received the ciphertext C3 Bob computes the value M ′ = E−1Q (C3).
Due to commutativity of the encryption function the values M ′ and M are equal,
i.e., the protocol works correctly. Indeed, one has the following:

M ′ = E−1Q (C3) = E−1Q [E−1K (C2)] = E−1Q [E−1K [EQ(C1)]] =

E−1Q [E−1K [EQ(EK(M))]] = E−1Q [E−1K [EK(EQ(M))]] = E−1Q [EQ(M)] =M.

The described three-pass protocol provides security to passive attacks (po-
tential adversary only intercepts the values sent via public channel), if the used
commutative encryption function E is secure to the know-input-text attack.

Indeed, if the function E is not secure to such attack, then the passive adversary
(after his intercepting the ciphertexts C1, C2, and C3) is able to compute Bob's
local key Q from the equation C2 = EQ(C1) and then the secret message M =
E−1Q (C3).

The Vernam cipher represents the simplest commutative cipher. It consists in
simple adding the key to the message M in accordance with the formula

C =M ⊕K,

where K is the single-use random chosen key such that |K| = |M | (the bit-length
of some value x is denoted as |x|) and ⊕ is the bit-wise modulo 2 addition operation
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(the XOR operation). Unfortunately it cannot be used in frame of the Shamir's
three-pass protocol, since it is not secure to the known-plaintext attack.

The appropriate commutative encryption function is provided by the exponen-
tiation-encryption method proposed by Pohlig and Hellman in [7].

The last method is described as follows. Suppose p is a 2464-bit prime such
that number (p− 1) contains a large prime divisor q, for example, p = 2q + 1.

To select an encryption/decryption key (e, d) one needs to generate a random
256-bit number e that is mutually prime with (p − 1) and then to compute d =
e−1 mod p− 1. The encryption procedure is described with the formula

C =M−e mod p.

Decryption of the ciphertext C is performed as computing the value

M = C−d mod p.

The Pohlig-Hellman algorithm is secure against the known plaintext (cipher-
text) attack and can be used in Shamir's no-key protocol.

In the present paper it is also proposed bi-deniable shared-key protocol based
on commutative encryption implemented with the Pohlig-Hellman exponentiation
cipher. Justifying the bi-deniability of the proposed protocol is performed on the
base of the criterion of computational indistinguishability [18] from the probabilis-
tic three-pass protocol applied for encrypting a fake message.

2. Sender&reciever-deniable three pass protocol

In frame of the protocol described below the RSA cryptoscheme [23] is used for
performing the public encryption with receiver's (Bob's) public key (n, e) that is
generated simultaneously with his private key d as follows. Bob selects two strong
[6] primes p and q having large size (for example, 1232 bits). The value n is com-
puted as product of the primes: n = pq. Then it is selected a random number
e that is relatively prime to Euler phi function ϕ(n) = (p − 1)(q − 1) and has
comparatively small size (for example, 32 bits) to provide faster encryption. The
private key d is computed as follows d = e−1 mod ϕ(n). Probabilistic encryption
of some message M < (n div 2257) is performed with the public key as computing
the ciphertext C = (M ||ρ)e mod n, where || is the concatenation operation; ρ is a
random chosen bit string having size exacly equal to 256 bits. Decryption of the ci-
phertext C is performed using the private key as followsM =

(
Cd mod n

)
div 2256.

The random value ρ is an internal randomization parameter actual in frame of the
operation of probabilistic public encryption. The protocols described below do
not use any information contained in the value ρ destination of which consist only
in randomizing the ciphertext. The parameter ρ takes on di�erent values at each
step of the probabilistic RSA encryption and they are not to be saved in computer
or hardware memory.



Deniable-encryption protocols 99

The proposed sender-deniable public encryption protocol is described as fol-
lows.

1. To send the secret message M (|M | < |nB div 2257|, where (nB , eB) is
Bob's public key) Alice generates a random bit string K such that |K| = |M | and
computes the value C =M ⊕K and the ciphertext

C1 = (C||ρ)eB mod nB = ((M ⊕K)||ρ)eB mod nB .

Then she sends the value C1 to Bob.
2. Using his private key dB Bob decrypts the ciphertext C1: C||ρ = CdB1 mod

nB , generates a random bit string Q such that |Q| = |C| and computes the cipher-
text

C2 = C ⊕Q =M ⊕K ⊕Q.

Then he sends the value C2 to Alice.
3. Alice computes the ciphertext

C3 = ((C2 ⊕K)||ρ)eB mod nB = ((M ⊕Q)||ρ)eB mod nB

and sends the value C3 to Bob.
Bob decrypts the ciphertext C3 : (M ⊕ Q)||ρ = (C3)

dB mod nB and discloses
the secret message M as follows: M = (M ⊕Q)⊕Q.

If some coercive adversary intercepts the ciphertexts C1, C2, and C3 and then
forces Alice to open the secret message and her local key, then she chooses some
fake messageM ′ such that |M ′| = |M |, computes the fake local key K ′ =M⊕K⊕
M ′, and opens the values M ′ and K ′ as the values had been used at step 1 of the
protocol. From the ciphertext C2 coercer can compute the value Q′ = C2⊕M ′⊕K ′
for which the following inequality holds M ′ ⊕ Q′ 6= M ⊕ Q. However the coercer
has no computational possibility to disclose Alice's lie due to the probabilistic
encryption performed at step 3 which gives di�erent pseudo-random ciphertexts
while encrypting the same input value arbitrary number of times.

Thus, the coercer is unable to demonstrate inequality M ′ ⊕ Q′ 6= M ⊕ Q
performing public encryption of its left part, using Bob's public key, therefore the
described protocol is sender-deniable one. However the protocol is not a receiver-
deniable one, since while being coerced Bob should open both his local key Q and
his private key dB . Using the value dB the coercer is able to disclose Bob's lie, if
Bob will open fake key Q′ 6= Q.

The described protocol can be modi�ed into sender- and receiver-deniable one
with using Alice's public key (nA, eA) at step 2 of the protocol. The modi�ed
protocol looks as follows:

1. To send the secret messageM (|M | < |n div 2257|, where n = min{nA, nB},)
Alice generates a random bit stringK such that |K| = |M | and computes the value
C =M ⊕K and the ciphertext

C1 = (C||ρ)eB mod nB = ((M ⊕K)||ρ)eB mod nB .
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Then she sends the ciphertext C1 to Bob.

2. Using his private key dB Bob decrypts the ciphertext C1 : C||ρ = CdB1 mod
nB , generates a random bit string Q such that |Q| = |C| and computes the value
C ′2 = C ⊕Q =M ⊕K ⊕Q and the ciphertext

C2 = (C ′2||ρ)
eA mod nA = ((M ⊕K ⊕Q)||ρ)eA mod nA.

Then he sends the ciphertext C2 to Alice.

3. Alice computes the values C ′2||ρ = CdA2 mod nA and

C3 = (C ′′||ρ)eB mod nB = ((M ⊕Q)||ρ)eB mod nB

and sends the value C3 to Bob.

Bob decrypts the ciphertext C3 : (M ⊕ Q)||ρ = (C3)
dB mod nB and discloses

the secret message M as follows: M = (M ⊕Q)⊕Q.
Like the initial version, the modi�ed version of the protocol resists the sender-

side coercive attack. Besides, it is also a receiver-deniable protocol. Indeed, if
some coercive adversary intercepts the ciphertexts C1, C2, and C3 and then forces
Bob to open the secret message and his local key, then Bob chooses some fake
message M ′ such that |M ′| = |M |, computes the fake local key Q′ =M ⊕Q⊕M ′,
and opens the values M ′ and Q′ as the real values used during execution of the
protocol. The coercer can compute the value C =M ⊕K =M ′⊕K ′, where K ′ is
fake Alice's local key, from the ciphertext C1 and the value C ′′ =M ′⊕Q′ from the
ciphertext C2. For two di�erent messagesM ′ andM the following inequality holds
M ′⊕K ′⊕Q′ 6=M⊕K⊕Q. However, due to using probabilistic public encryption,
the coercer has no computational possibility to disclose Bob's lie performing many
times the encryption of the left part of the inequality with Aice's public key. The
coercer is also unable to compute the value M ⊕K ⊕Q performing decryption of
the ciphertext C2, since he does not know the Alice's private key.

It should be noted that the last protocol is not fully bi-deniable, since it does not
resist simultaneous coercive attack on both the sender and the receiver. Indeed,
while being simultaneously coerced Alice and Bob should open both their local
keys K and Q and their private keys dA and dB . Using the values dA and dB the
coercer is able to disclose Alice's and/or Bob's lie, if Alice and/or Bob will open
fake keys K ′ 6= K and/or Q′ 6= Q.

The described three-pass protocols are su�ciently practical since only four and
six modulo exponentiation operations are performed during the �rst and second
described protocols, respectively. The both protocols provide security de�ned by
computational di�culty of the factoring n problem (about 2128 modulo multi-
plications in the case of 2464-bit modulus n). The second protocol provides au-
thentication due to using both the Alice's public key and Bob's public key. The
�rst protocol provides authentication of one party of the protocol only, namely,
authentication of the receiver of the message.
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3. Bi-deniable three-pass protocol

For constructing a practical bi-deniable encryption protocol the following design
criteria have been used:

1) the protocol should use a key (128 to 2048 bits) shared by sender and receiver
of secrete message;

2) the base encryption procedure should be implemented as the modulo expo-
nentiation operation in the �nite �eld GF (2s), where s = 128 to 2048;

3) the protocol should provide bi-deniability, i.e., it should resist simultaneous
coercive attacks on the sender and on the receiver;

4) under coercive attack the parties of the protocol disclose a fake shared key
and their local fake keys as secret values; when using the fake keys, decryption
of the ciphertexts (sent during the deniable-encryption protocol) should recover a
fake message;

5) ciphertexts produced at all steps of the protocol should be computationally
indistinguishable from the ciphertexts produced by some probabilistic-encryption
protocol in the case when the last protocol is used for encrypting some fake message
using the disclosed keys.

Construction of the shared-key bi-deniable encryption protocols is connected
with the design of respective probabilistic three-pass protocol, which is associ-
ated with the �rst one. The next subsection introduces appropriate probabilistic-
encryption protocol.

3.1. Associated probabilistic-encryption protocol

Suppose Alice and Bob share a secret key representing an irreducible binary poly-
nomial µ(x) of the degree s = 128 to 1024. To encrypt some secret message
M Alice represents the message as sequence of the s-bit data blocks Mi : M =
(M1,M2, ,Mi, ,Mz). To send securely the message M to Bob she can use the
following probabilistic-encryption protocol.

1. Alice generates her local key as pair of values (eA, dA), where random value
eA is mutually prime with the value 2s − 1 and dA = e−1A mod 2s − 1. Then for
each value i = 1, 2, . . . , z she generates random binary polynomials ρA(x) of the
degree s − 1 and ηA(x) of the degree s such that ηA(x) 6= µ(x) and, considering
each data block as binary polynomial, encrypts the messageM in accordance with
the formula

CAi = {ηA(x)[η−1A (x)MeA
i mod µ(x)] + µ(x)[µ−1(x)ρA(x) mod ηA(x)]}

mod µ(x)ηA(x).
(1)

Then Alice sends the ciphertext

CA = (CA1, CA2, . . . , CAi, . . . , CAz)

to Bob.
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2. Bob generates his local key (eB , dB), where random value eB is mutually
prime with the value 2s − 1 and dB = e−1B mod 2s − 1. Then for each value
i = 1, 2, . . . , z he computes the value C ′Bi = CeBAi mod µ(x) = MeAeB

i mod µ(x),
generates random binary polynomials ρB(x) of the degree s− 1 and ηB(x) of the
degree s such that ηB(x) 6= µ(x) and encrypts each data block CAi mod µ(x) in
accordance with the formula

CBi = {ηB(x)[η−1B (x)C ′Bi mod µ(x)] + µ(x)[µ−1(x)ρB(x) mod ηB(x)]}
mod µ(x)ηB(x),

(2)

where i = 1, 2, . . . , z. Then Bob sends the ciphertext

CB = (CB1, CB2, . . . , CBi, . . . , CBz)

to Alice.
3. For each value i = 1, 2, . . . , z Alice computes the value CBi mod µ(x) =

MeAeB
i mod µ(x), generates random binary polynomials ρ′A(x) of the degree s− 1

and η′A(x) of the degree s such that η′A(x) 6= µ(x) and encrypts each data block
CBi mod µ(x) in accordance with the formula

C ′Ai = {η′A(x)[η′ −1A (x)CdABi mod µ(x)] + µ(x)[µ(x)−1ρ′A(x) mod η′A(x)]}
mod µ(x)η′A(x).

(3)

Then Alice sends the ciphertext

C ′A = (C ′A1, C
′
A2, . . . , C

′
Ai, . . . , C

′
Az)

to Bob. Bob discloses the secret message M = (M1,M2, . . . ,Mi, . . . ,Mz) comput-
ing the values C ′i = C ′Ai mod µ(x) =MeB

i mod µ(x) and Mi = C ′ dBi mod µ(x) for
i = 1, 2, . . . , z.

In the described protocol for probabilistic encryption the ciphertexts CA, CB ,
and C ′A sent via public channel have size that is exactly two times larger than
the size of the input data blocks Mi. Security of the protocol is provided due to
good confusion and di�usion properties of the exponentiation operation and due
to using the modulus µ(x) as secret key. It is worth to mention that in the case
of su�ciently large size of the key µ(x) (|µ(x)| > 1024 bits) the protocol resists
attacks based on the known shared key, i.e., if the adversary gets the key µ(x)
after the protocol have been performed, then he also will not be able to compute
the secret message M . However after the key µ(x) becomes known for potential
adversary the protocol will provide secrecy (in possible further use of the protocol)
but not authentication.

3.2. Bi-deniable encryption scheme

Suppose Alice and Bob share a secret key representing the pair of mutually ir-
reducible binary polynomials µ(x) and η(x) of the degree s = 128 to 1024. To
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encrypt some secret message T Alice represents the message as sequence of the
s-bit data blocks Ti : T = (T1, T2, . . . , Ti, . . . , Tz). To provide bi-deniability of
encrypting the secret message T they can use the following three-pass protocol.

1. Alice generates some fake message M = (M1,M2, . . . ,Mi, . . . ,Mz) repre-
sented as sequence of s-bit data blocks and two local keys (eA, dA) and (εA, δA)
such that dA = e−1A mod 2s − 1 and δA = ε−1A mod 2s − 1.

Then for each value i = 1, 2, . . . , z she computes the ciphertext block CAi as
follows:

1.1. Compute the intermediate ciphertext blocks C
(M)
Ai and C

(T )
Ai :

C
(M)
Ai =MeA

i mod µ(x) and C
(T )
Ai = T εAi mod η(x).

1.2. Compute the (2s)-bit ciphertext block CAi as solution of the system of
congruences {

CAi ≡ C(M)
Ai mod µ(x)

CAi ≡ C(T )
Ai mod η(x)

(4)

Then Alice sends the ciphertext CA = (CA1, CA2, . . . , CAi, . . . , CAz) to Bob.
2. Bob generates two local keys (eB , dB) and (εB , δB) such that dB = e−1B mod

2s − 1 and δB = ε−1B mod 2s − 1. Then for each value i = 1, 2, . . . , z he computes
the ciphertext block CBi as follows:

2.1. Compute the intermediate ciphertext blocks C
(M)
Ai and C

(T )
Ai :

C
(M)
Ai = CAi mod µ(x) and C

(T )
Ai = CAi mod η(x).

2.2. Compute the intermediate ciphertext blocks C
(M)
Bi and C

(T )
Bi :

C
(M)
Bi =

(
C

(M)
Ai

)eB
mod µ(x) =MeAeB

i mod µ(x) and

C
(T )
Bi =

(
C

(T )
Ai

)εB
mod η(x) = T εAεBi mod η(x).

2.3. Compute the (2s)-bit ciphertext block CBi as solution of the system of
congruences {

CBi ≡ C(M)
Bi mod µ(x)

CBi ≡ C(T )
Bi mod η(x).

(5)

Then Bob sends the ciphertext CB = (CB1, CB2, . . . , CBi, . . . , CBz) to Alice.
3. Then for each value i = 1, 2, . . . , z Alice computes the ciphertext block C ′Ai

as follows:
3.1. Compute the intermediate ciphertext blocks C

(M)
Bi and C

(T )
Bi : C

(M)
Bi =

CBi mod µ(x) and C
(T )
Bi = CBi mod η(x).

3.2. Compute the intermediate ciphertext blocksC
′ (M)
Ai and C

′ (T )
Ai : C

′ (M)
Ai =(

C
(M)
Bi

)dA
mod µ(x) =MeB

i mod µ(x) and C
′ (T )
Ai =

(
C

(T )
Bi

)δA
mod η(x) = T εBi mod

η(x).
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3.3. Compute the (2s)-bit ciphertext block C ′Ai as solution of the system of
congruences {

C ′Ai ≡ C
′ (M)
Ai mod µ(x)

C ′Ai ≡ C
′ (T )
Ai mod η(x).

(6)

Then Alice sends the ciphertext C ′A = (C ′A1, C
′
A2, . . . , C

′
Ai, . . . , C

′
Az) to Bob.

Bob discloses the secret message T = (T1, T2, . . . , Ti, . . . , Tz) computing the

values C
′ (T )
Ai = C ′Ai mod η(x) = T εBi mod η(x) and Ti =

(
C
′ (T )
Ai

)δB
mod η(x) for

i = 1, 2, . . . , z.

Respectively, Bob discloses the fake messageM computing the values C
′ (M)
Ai =

C ′Ai mod µ(x) =MeB
i mod µ(x) and Mi =

(
C
′ (M)
Ai

)dB
mod µ(x).

When being coerced simultaneously, Alice and Bob open the fake message
M = (M1,M2, . . . ,Mi, . . . ,Mz), the shared key µ(x), and their local keys (eA, dA)
and (eB , dB).

They also declare about using the three-pass probabilistic-encryption protocol
described in Subsection 3.1. Distinguishing the bi-deniable encryption protocol
from the probabilistic encryption protocol is a computationally di�cult problem,
therefore the protocol described in Subsection 3.2 provides bi-deniability.

4. Disscusion

Di�erent variants of the protocols described in Section 2 can be constructed using
di�erent variants of the commutative cipherEK with the single-use key K, and/or
di�erent public encryption algorithms.

For example, the encryption procedure EK can be de�ned with formula

C =M ∗K,

where ∗ is one of the following operations: modulo 2|M | addition (subtraction),
modulo n addition (subtraction), modulo n multiplication. Instead of the RSA
public encryption algorithm one can use the ElGamal algorithm [5]. The last
modi�cation is interesting from practical point of view since it gives possibility to
provide more secure encryption in the case of implementing the ElGamal public-
encryption algorithm with using elliptic curves [10]. Indeed, in the last case one can
provide exponential security of the deniable encryption and higher performance.
Besides the ElGamal algorithm is probabilistic in its nature. Using the Rabin
public-encryption algorithm [14] is also possible, but not so attractive.

One can note that the second �exible public key DE protocol from Section 2
resists the coercive attack on the sender or on the receiver, but it does not resist
coercive attack performed simultaneously on the both parties. Indeed, resistance
to last attack means that the sender and the receiver select the same fake mes-
sage, however to have such possibility they need some pre-agreed information that
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indicates what fake message should be selected. Appropriate modi�cation of the
source protocol is possible, however it becomes a plan-ahead DE protocol that
has no evident advantages as compared with protocols of such type introduced
in [16, 17].

As compared with the �exible sender-side DE protocols [1, 8] in which the
message is encrypted consecutively bit by bit (each bit is sent in form of the |n|-
bit pseudorandom number, |n| > 1024) in the proposed protocols the message is
transformed as a single data block that provides signi�cantly higher performance.
Besides, the proposed protocols provide simple and very fast procedure (perform-
ing one XOR operation) for computing the fake random input (sender's local key)
connected with the fake message.

The bi-deniable encryption scheme presented in Section 3 uses the Pohlig-
Hellman modulo-exponentiation cipher represented in a speci�c form in which the
modulus that is the binary polynomial µ(x) serves as shared key. Therefore such
implementation provides su�ciently high security even in the case when binary
polynomial µ(x) has su�ciently small degree (128 6 s 6 768). If the modulus
µ(x) has high degree (s > 1024), the protocol becomes resistant to the known-
key attacks. However, if the shared key is compromised the protocol will not
provide authentication, like in the case of the probabilistic-encryption algorithm
from Subsection 3.1.

Resistance to the simultaneous coercive attacks on Alice and Bob is provided
due to fact that Bob using the fake key is able to disclose correctly the fake
message M generated by Alice at the �rst step of the protocol. Besides, the
ciphertexts CA, CB , and C ′A computed at steps 1, 2, and 3, correspondingly,
look like the ciphertexts produced during performing the probabilistic-encryption
protocol from subsection 3.1, when M serves as input message. In other words
the proposed bi-deniable encryption protocol is computationally indistinguishable
from the proposed probabilistic encryption protocol for the coercer intercepting the
ciphertexts CA, CB , and C

′
A sent via communication channel. Indeed, computation

of each block CAi of the ciphertex CA in accordance with formula (1) gives solution
of the following system relatively unknown CAi{

CAi ≡MeA
i mod µ(x)

CAi ≡ ρA(x) mod ηA(x).

The �rst congruence coincide with the �rst congruence in system (4) and for given
value CAi and arbitrary ηA(x) of the degree s such that ηA(x) 6= µ(x) we have
one value ρA(x) that satis�es the second congruence of the last system (namely,
ρA(x) = CAi mod ηA(x)).

Computation of each block CBi of the ciphertex CB in accordance with formula
(2) gives solution of the following system relatively unknown CBi{

CBi ≡MeAeB
i mod µ(x)

CBi ≡ ρB(x) mod ηB(x).
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The �rst congruence coincide with the �rst congruence in system (5) and for given
value CBi and arbitrary ηB(x) of the degree s such that ηB(x) 6= µ(x) we have
one value ρB(x) that satis�es the second congruence of the last system (namely,
ρB(x) = CBi mod ηB(x)).

Computation of each block C ′Ai of the ciphertex CA in accordance with formula
(3) gives solution of the following system relatively unknown C ′Ai{

C ′Ai ≡ (Mi)
eB mod µ(x)

C ′Ai ≡ ρ′A(x) mod η′A(x).

The �rst congruence coincide with the �rst congruence in system (6) and for
given value C ′Ai and arbitrary η

′
A(x) of the degree s such that η

′
A(x) 6= µ(x) we have

one value ρ′A(x) that satis�es the second congruence of the last system (namely,
ρ′A(x) = C ′Ai mod η′A(x)).

Thus, the ciphertexts CA, CB , and C ′A produced during performing the bi-
deniable encryption protocol could be produced while performing the probabilistic-
encryption protocol. To prove the ciphertexts were produced with the three-pass
protocol for simultaneous encryption of two messages M and T , the coercer has
to disclose the secret message from the ciphertexts, however this seems to be a
computationally infeasible problem.

A possible modi�cation of the protocols from Section 3 can be get with using
the binary polynomials ηA(x), ηB(x), η

′
A(x), and η(x) having degree s′ < s (the

message T is to be divided into s′-bit data blocks Ti). In the modi�ed protocols
the ciphertext blocks have size s + s′ < 2s and for smaller values s′ applying the
bi-deniable encryption protocol looks more believably as applying the probabilistic-
encryption protocol. In the case of probabilistic-encryption protocol one can use
su�ciently small values s′ = 4 to 64. In the case of the bi-deniable encryption
protocol one has some restriction: 64 < s′ < s, where s = 128 to 1024. This
restriction is connected with using the value η(x) as shared secret key.

Indeed, to provide deniability the value η(x) and the local key εA (εA < 2s
′
)

should be su�ciently large, for example, |η(x)|+ |εA| > 128 bits. For small values
s′ (for example, for s′ = 4 to 16) the coercer using the values µ(x) and eA (that
are to be opened in the case of coercive attack) can �nd easily the secret values
η(x) and εA with help of the exhaustive-search method.

5. Conclusion

There have been proposed sender-deniable, sender&receiver-deniable, probabilis-
tic, and bi-deniable encryption schemes representing three-pass protocols based
on using commutative ciphers. The probabilistic-encryption protocol has been de-
signed as protocol associated with the bi-deniable encryption protocol, however it
has independent practical interest. To get higher performance of the bi-deniable
encryption protocol one can design its modi�cation on the base of commutative
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encryption operation implemented as multiplying points of elliptic curves de�ned
over �nite �elds GF (p) and GF (2s) [15].

The last remark can be attributed also to the design of two �exible public key
DE protocols from section 2 in the case of using the ElGamal public encryption
algorithm (that is a probabilistic one) in frame of the protocols. For such pro-
tocols, besides higher performance, such variants of the �exible sender-deniable
and sender&receiver-deniable public encryption DE protocols will provide expo-
nential resistance to coercive attacks in the case of implementing the ElGamal-like
algorithm on the base of elliptic curves.

Another interesting research problem is connected with using the commutative
encryption functions to design no-key DE protocols.
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