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On bi-bases of a semigroup

Pisit Kummoon and Thawhat Changphas

Abstract. Based on the results of bi-ideals generated by a non-empty subset of a semigroup

S, we introduce the concept which is called bi-bases of the semigroup S. Using the quasi-order

de�ned by the principal bi-ideals of S, we give a characterization when a non-empty subset of S

is a bi-base of S.

1. Preliminaries

Let S be a semigroup. A subset A of the semigroup S is called a two-sided base

(or simply base) of S if it satis�es the following two conditions:

(i) S = A ∪ SA ∪AS ∪ SAS;

(ii) if B is a subset of A such that S = B ∪ SB ∪BS ∪ SBS, then B = A.

This notion was �rst introduced and studied by I. Fabrici [3]. In fact, using the
quasi-order de�ned by principal two-sided ideals of S, the author gave a charac-
terization when a non-empty subset of S is a base of S. Moreover, the structure of
semigroups containing two-sided bases was described. Indeed, using the concepts
of left ideals and right ideals generated by a non-empty set, the concepts of left
bases and right bases of a semigroup were introduced by T. Tamura before the
concept of two-sided bases (see [7]). In [2], I. Fabrici studied the structure of a
semigroup containing one-sided bases. In [4], I. Fabrici and T. Kepka showed that
there is a relation between bases and maximal ideals of a semigroup. The results
obtaind by I. Fabrici [3] have been extended to ordered semigroups by T. Chang-
phas and P. Summaprab (see [1]). As in the line of I. Fabrici ([3], [2]) mentioned
before, the main purpose of this paper is to introduce the concept which is called
bi-bases of a semigroup. We also de�ne the quasi-order using principal bi-ideals
of S, and give a characterization when a non-empty subset of S is a bi-base of S.

Let S be a semigroup, and A,B non-empty subsets of S. The set product AB
of A and B is de�ned to be the set of all elements ab with a in A and b in B. That
is

AB = {ab | a ∈ A, b ∈ B}.

For a ∈ S, we write Ba for B{a}, and similarly for aB.
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A subsemigroup B of a semigroup S is called a bi-ideal ([5], [6]) of S if

BSB ⊆ B.

This notion generalizes the notion of one-sided ideals and two-sided ideals of a
semigroup.

Let S be a semigroup, and Bi a bi-ideal of S for each i in an indexed set I. It is

known that if
⋂
i∈I

Bi 6= ∅, then
⋂
i∈I

Bi is a bi-ideal of S. Moreover, for a non-empty

subset A of S, the intersection of all bi-ideals of S containing A, denoted by (A)b,
is the smallest bi-ideal of S containing A. And it is of the form

(A)b = A ∪AA ∪ASA.

In particular, for A = {a}, we write ({a})b by (a)b (see [6]).

2. Main Results

We begin this section with the following de�nition of bi-bases of a semigroup.

De�nition 2.1. Let S be a semigroup. A subset B of S is called a bi-base of S
if it satis�es the following two conditions:

(i) S = (B)b (i.e. S = B ∪BB ∪BSB);

(ii) if A is a subset of B such that S = (A)b, then A = B.

Example 2.2. Let S = {r, s, t, u} be a semigroup with the binary operation
de�ned by:

· r s t u
r r s r r
s s r s s
t r s t u
u r s u t

We have that the bi-bases of S are: B1 = {t} and B2 = {u}.

Example 2.3. Let S = {p, q, r, s} be a semigroup with the binary operation
de�ned by:

· p q r s
p p p p p
q p p p p
r p p q q
s p p q q

It is a routine matter to check that S has only one bi-base: B = {r, s}.
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Example 2.4. Let S = {a, b, c, d, x, y} be a semigroup with the binary operation
de�ned by:

· a b c d x y
a a b c d x y
b b c a y d x
c c a d x y d
d d x y a b c
x x y d c a b
y y d x b c a

We have that the singleton sets consisting of an element of S are bi-bases of S.

First, we have the following useful lemma:

Lemma 2.5. Let B be a bi-base of a semigroup S, and a, b ∈ B. If a ∈ bb ∪ bSb,
then a = b.

Proof. Assume that a ∈ bb ∪ bSb, and suppose that a 6= b. We consider

A = B \ {a}.

Then A ⊂ B. Since a 6= b, b ∈ A. We will show that (A)b = S. Clearly, (A)b ⊆ S.
Let x ∈ S. Then, by (B)b = S, we have x ∈ B ∪ BB ∪ BSB. There are three
cases to consider:

Case 1: x ∈ B.
Subcase 1.1: x 6= a. Then x ∈ B \ {a} = A ⊆ (A)b.
Subcase 1.2: x = a. By assumption,

x = a ∈ bb ∪ bSb ⊆ AA ∪ASA ⊆ (A)b.

Case 2: x ∈ BB. Then x = b1b2 for some b1, b2 ∈ B.
Subcase 2.1: b1 = a and b2 = a. By assumption,

x = b1b2 ∈ (bb ∪ bSb)(bb ∪ bSb) = bbbb ∪ bbbSb ∪ bSbbb ∪ bSbbSb

⊆ AAAA ∪AAASA ∪ASAAA ∪ASAASA ⊆ ASA ⊆ (A)b.

Subcase 2.2: b1 6= a and b2 = a. By assumption and A = B \ {a}, we have

x = b1b2 ∈ (B \ {a})(bb ∪ bSb) = (B \ {a})bb ∪ (B \ {a})bSb
⊆ AAA ∪AASA ⊆ ASA ⊆ (A)b.

Subcase 2.3: b1 = a and b2 6= a. By assumption and A = B \ {a}, we have

x = b1b2 ∈ (bb ∪ bSb)(B \ {a}) = bb(B \ {a}) ∪ bSb(B \ {a})
⊆ AAA ∪ASAA ⊆ ASA ⊆ (A)b.
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Subcase 2.4: b1 6= a and b2 6= a. From A = B \ {a},

x = b1b2 ∈ (B \ {a})(B \ {a}) = AA ⊆ (A)b.

Case 3: x ∈ BSB. Then x = b3sb4 for some b3, b4 ∈ B and s ∈ S.
Subcase 3.1: b3 = a and b4 = a. By assumption,

x = b3sb4 ∈ (bb ∪ bSb)S(bb ∪ bSb) = bbSbb ∪ bbSbSb ∪ bSbSbb ∪ bSbSbSb

⊆ AASAA ∪AASASA ∪ASASAA ∪ASASASA

⊆ ASA ⊆ (A)b.

Subcase 3.2: b3 6= a and b4 = a. By assumption and A = B \ {a}, we have

x = b3sb3 ∈ (B \ {a})S(bb ∪ bSb) = (B \ {a})Sbb ∪ (B \ {a})SbSb
⊆ ASAA ∪ASASA ⊆ ASA ⊆ (A)b.

Subcase 3.3: b3 = a and b4 6= a. By assumption and A = B \ {a}, we have

x = b3sb4 ∈ (bb ∪ bSb)S(B \ {a}) = bbS(B \ {a}) ∪ bSbS(B \ {a})
⊆ AASA ∪ASASA ⊆ ASA ⊆ (A)b.

Subcase 3.4: b3 6= a and b4 6= a. From A = B \ {a}, hence

x = b3sb4 ∈ (B \ {a})S(B \ {a}) = ASA ⊆ (A)b.

Hence, (A)b = S. And this is a contradiction. Thus a = b.

Lemma 2.6. Let B be a bi-base of a semigroup S. Let a, b, c ∈ B. If a ∈ cb∪ cSb,
then a = b or a = c.

Proof. Assume that a ∈ cb ∪ cSb, and suppose that a 6= b and a 6= c. We set

A = B \ {a}.

Then A ⊂ B. Since a 6= b and a 6= c, we have b, c ∈ A. We will show that
(A)b = S. Clearly, (A)b ⊆ S. Let x ∈ S. By (B)b = S, x ∈ B ∪BB ∪BSB.

We consider three cases:

Case 1: x ∈ B.
Subcase 1.1: x 6= a. Then x ∈ B \ {a} = A ⊆ (A)b.
Subcase 1.2: x = a. By assumption, x = a ∈ cb ∪ cSb ⊆ AA ∪ASA ⊆ (A)b.

Case 2: x ∈ BB. Then x = b1b2 for some b1, b2 ∈ B.
Subcase 2.1: b1 = a and b2 = a. By assumption,

x = b1b2 ∈ (cb ∪ cSb)(cb ∪ cSb) = cbcb ∪ cbcSb ∪ cSbcb ∪ cSbcSb

⊆ AAAA ∪AAASA ∪ASAAA ∪ASAASA

⊆ ASA ⊆ (A)b.
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Subcase 2.2: b1 6= a and b2 = a. By assumption and A = B \ {a}, we have

x = b1b2 ∈ (B \ {a})(cb ∪ cSb) = (B \ {a})cb ∪ (B \ {a})cSb
⊆ AAA ∪AASA ⊆ ASA ⊆ (A)b.

Subcase 2.3: b1 = a and b2 6= a. By assumption and A = B \ {a}, we have

x = b1b2 ∈ (cb ∪ cSb)(B \ {a}) = cb(B \ {a}) ∪ cSb(B \ {a})
⊆ AAA ∪ASAA ⊆ ASA ⊆ (A)b.

Subcase 2.4: b1 6= a and b2 6= a. From A = B \ {a}, hence

x = b1b2 ∈ (B \ {a})(B \ {a}) = AA ⊆ (A)b.

Case 3: x ∈ BSB. Then x = b3sb4 for some b3, b4 ∈ B and s ∈ S.
Subcase 3.1: b3 = a and b4 = a. By assumption we have

x = b3sb4 ∈ (cb ∪ cSb)S(cb ∪ cSb) = cbScb ∪ cbScSb ∪ cSbScb ∪ cSbScSb

⊆ AASAA ∪AASASA ∪ASASAA ∪ASASASA

⊆ ASA ⊆ (A)b.

Subcase 3.2: b3 6= a and b4 = a. By assumption and A = B \ {a}, we have

x = b3sb3 ∈ (B \ {a})S(cb ∪ cSb) = (B \ {a})Scb ∪ (B \ {a})ScSb
⊆ ASAA ∪ASASA ⊆ ASA ⊆ (A)b.

Subcase 3.3: b3 = a and b4 6= a. By assumption and A = B \ {a}, we have

x = b3sb4 ∈ (cb ∪ cSb)S(B \ {a}) = cbS(B \ {a}) ∪ cSbS(B \ {a})
⊆ AASA ∪ASASA ⊆ ASA ⊆ (A)b.

Subcase 3.4: b3 6= a and b4 6= a. From A = B \ {a}, hence

x = b3sb4 ∈ (B \ {a})S(B \ {a}) = ASA ⊆ (A)b.

Hence (A)b = S. This is a contradiction, and thus a = b.

To give a characterization when a non-empty subset of a semigroup is a bi-base
of the semigroup we need the quasi-order de�ned as follows:

De�nition 2.7. Let S be a semigroup. De�ne a quasi-order on S by, for any

a, b ∈ S,

a 6b b :⇔ (a)b ⊆ (b)b.

The following example shows that the relation 6b de�ned above is not, in
general, a partial order.
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Example 2.8. From Example 2.4, we have that (a)b ⊆ (b)b (i.e., a 6b b) and
(b)b ⊆ (a)b (i.e., b 6b a), but a 6= b. Thus, 6b is not a partial order on S.

Lemma 2.9. Let B be a bi-base of a semigroup S. If a, b ∈ B such that a 6= b,
then neither a 6b b, nor b 6b a.

Proof. Assume that a, b ∈ B such that a 6= b. Suppose that a 6b b; then

a ∈ (a)b ⊆ (b)b.

By assumption we have a 6= b, so a ∈ bb ∪ bSb. By Lamma 2.5, a = b. This is a
contradiction. The case b 6b a can be proved similarly.

Lemma 2.10. Let B be a bi-base of a semigroup S. Let a, b, c ∈ B and s ∈ S:

(1) If a ∈ bc ∪ bcbc ∪ bcSbc, then a = b or a = c.

(2) If a ∈ bsc ∪ bscbsc ∪ bscSbsc, then a = b or a = c.

Proof. (1). Assume that a ∈ bc ∪ bcbc ∪ bcSbc, and suppose that a 6= b and a 6= c.
Let

A = B \ {a}.

Then A ⊂ B. Since a 6= b and a 6= c, we have b, c ∈ A. We will show that
(B)b ⊆ (A)b, if su�ces to show that B ⊆ (A)b. Let x ∈ B. If x 6= a, then x ∈ A,
and so x ∈ (A)b. If x = a, then by assumption we have

x = a ∈ bc ∪ bcbc ∪ bcSbc ⊆ AA ∪AAAA ∪AASAA ⊆ ASA ⊆ (A)b.

Thus, B ⊆ (A)b. This implies (B)b ⊆ (A)b. Since B is a bi-base of S,

S = (B)b ⊆ (A)b ⊆ S.

Therefore S = (A)b. This is a contradiction.
(2). Assume that a ∈ bsc∪ bscbsc∪ bscSbsc, and suppose that a 6= b and a 6= c.

Let
A = B \ {a}.

Then A ⊂ B. Since a 6= b and a 6= c, we have b, c ∈ A. We will show that
(B)b ⊆ (A)b, if su�ces to show that B ⊆ (A)b. Let x ∈ B. If x 6= a, then x ∈ A,
and so x ∈ (A)b. If x = a, then by assumption we have

x = a ∈ bsc ∪ bscbsc ∪ bscSbsc ⊆ ASA ∪ASAASA ∪ASASASA

⊆ ASA ⊆ (A)b.

Thus, B ⊆ (A)b. This implies (B)b ⊆ (A)b. Since B is a bi-base of S,

S = (B)b ⊆ (A)b ⊆ S.

Therefore, S = (A)b. This is a contradiction.
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Lemma 2.11. Let B be a bi-base of a semigroup S.

(1) For any a, b, c ∈ B, if a 6= b and a 6= c, then a 
b bc.

(2) For any a, b, c ∈ B and s ∈ S, if a 6= b and a 6= c, then a 
b bsc.

Proof. (1). For any a, b, c ∈ B, let a 6= b and a 6= c. Suppose that a 6b bc, we have

a ∈ (a)b ⊆ (bc)b = bc ∪ bcbc ∪ bcSbc.

By Lamma 2.10 (1), it follows that a = b or a = c. This contradicts to assumption.
(2). For any a, b, c ∈ B and s ∈ S, let a 6= b and a 6= c. Suppose that a 6b bsc,

we have a ∈ (a)b ⊆ (bsc)b = bsc∪ bscbsc∪ bscSbsc. By Lamma 2.10 (2), it follows
that a = b or a = c. This contradicts to assumption.

We now prove the main result of this paper.

Theorem 2.12. A non-empty subset B of a semigroup S is a bi-base of S if and

only if B satis�es the following conditions:

(1) For any x ∈ S,

(1.a) there exists b ∈ B such that x 6b b; or

(1.b) there exist b1, b2 ∈ B such that x 6b b1b2; or

(1.c) there exist b3, b4 ∈ B, s ∈ S such that x 6b b3sb4.

(2) For any a, b, c ∈ B, if a 6= b and a 6= c, then a 
b bc.

(3) For any a, b, c ∈ B and s ∈ S, if a 6= b and a 6= c, then a 
b bsc.

Proof. Assume �rst that B is a bi-base of S; then S = (B)b. To show that (1)
holds, let x ∈ S. Then x ∈ B ∪BB ∪BSB.

We consider three cases:
Case 1: x ∈ B. Then x = b for some b ∈ B. This implies (x)b ⊆ (b)b. Hence

x 6b b.
Case 2: x ∈ BB. Then x = b1b2 for some b1, b2 ∈ B. This implies (x)b ⊆

(b1b2)b. Hence x 6b b1b2.
Case 3: x ∈ BSB. Then x = b3sb4 for some b3, b4 ∈ B, s ∈ S. This implies

(x)b ⊆ (b3sb4)b. Hence x 6b b3sb4.
The validity of (2) and (3) follow, respectively, from Lemma 2.11 (1), and

Lemma 2.11 (2).
Conversely, assume that the conditions (1), (2) and (3) hold. We will show

that B is a bi-base of S. Clearly, (B)b ⊆ S. By (1), S ⊆ (B)b, and S = (B)b. It
remains to show that B is a minimal subset of S with the property S = (B)b.

Suppose that S = (A)b for some A ⊂ B. Since A ⊂ B, there exists b ∈ B \ A.
Since b ∈ B ⊆ S = (A)b and b /∈ A, it follows that b ∈ AA ∪ASA.

There are two cases to consider:
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Case 1: b ∈ AA. Then b = a1a2 for some a1, a2 ∈ A. We have a1, a2 ∈ B.
Since b /∈ A, so b 6= a1 and b 6= a2. Since b = a1a2, so (b)b ⊆ (a1a2)b. Hence
b 6b a1a2. This contradicts to (2).

Case 2: b ∈ ASA. Then b = a3sa4 for some a3, a4 ∈ A and s ∈ S. Since
b /∈ A, we have b 6= a3 and b 6= a4. Since A ⊂ B, a3, a4 ∈ B. Since b = a3sa4, so
(b)b ⊆ (a3sa4)b. Hence, b 6b a3sa4. This contradicts to (3).

Therefore, B is a bi-base of S as required, and the proof is completed.

In Example 2.2, we have that {u} is a bi-base of S where as it is not a sub-
semigroup of S. So, we �nd a condition in order that a bi-base is a subsemigroup.

Theorem 2.13. Let B be a bi-base of a semigroup S. Then B is a subsemigroup

of S if and only if B satis�es the following conditions: For any b, c ∈ B, bc = b or

bc = c.

Proof. By Lemma 2.6, and B is a subsemigroup of S implies for any b, c ∈ B,
bc = b or bc = c. The opposit direction is clear.

Question. It was proved in [3] (Theorem 3) that for any two two-sided bases of a
semigroup have the same cardinality. This is hold true for an ordered semigroup
(see [1], Theorem 2.10). Here, we ask for bi-bases of a semigroup. Indeed, is it

true that for any two bi-bases of a semigroup have the same cardinality?
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