# On bi-bases of a semigroup 

Pisit Kummoon and Thawhat Changphas


#### Abstract

Based on the results of bi-ideals generated by a non-empty subset of a semigroup $S$, we introduce the concept which is called bi-bases of the semigroup $S$. Using the quasi-order defined by the principal bi-ideals of $S$, we give a characterization when a non-empty subset of $S$ is a bi-base of $S$.


## 1. Preliminaries

Let $S$ be a semigroup. A subset $A$ of the semigroup $S$ is called a two-sided base (or simply base) of $S$ if it satisfies the following two conditions:
(i) $S=A \cup S A \cup A S \cup S A S$;
(ii) if $B$ is a subset of $A$ such that $S=B \cup S B \cup B S \cup S B S$, then $B=A$.

This notion was first introduced and studied by I. Fabrici [3]. In fact, using the quasi-order defined by principal two-sided ideals of $S$, the author gave a characterization when a non-empty subset of $S$ is a base of $S$. Moreover, the structure of semigroups containing two-sided bases was described. Indeed, using the concepts of left ideals and right ideals generated by a non-empty set, the concepts of left bases and right bases of a semigroup were introduced by T. Tamura before the concept of two-sided bases (see [7]). In [2], I. Fabrici studied the structure of a semigroup containing one-sided bases. In [4], I. Fabrici and T. Kepka showed that there is a relation between bases and maximal ideals of a semigroup. The results obtaind by I. Fabrici [3] have been extended to ordered semigroups by T. Changphas and P. Summaprab (see [1]). As in the line of I. Fabrici ([3], [2]) mentioned before, the main purpose of this paper is to introduce the concept which is called bi-bases of a semigroup. We also define the quasi-order using principal bi-ideals of $S$, and give a characterization when a non-empty subset of $S$ is a bi-base of $S$.

Let $S$ be a semigroup, and $A, B$ non-empty subsets of $S$. The set product $A B$ of $A$ and $B$ is defined to be the set of all elements $a b$ with $a$ in $A$ and $b$ in $B$. That is

$$
A B=\{a b \mid a \in A, b \in B\}
$$

For $a \in S$, we write $B a$ for $B\{a\}$, and similarly for $a B$.

A subsemigroup $B$ of a semigroup $S$ is called a bi-ideal ([5], [6]) of $S$ if

$$
B S B \subseteq B
$$

This notion generalizes the notion of one-sided ideals and two-sided ideals of a semigroup.

Let $S$ be a semigroup, and $B_{i}$ a bi-ideal of $S$ for each $i$ in an indexed set $I$. It is known that if $\bigcap_{i \in I} B_{i} \neq \emptyset$, then $\bigcap_{i \in I} B_{i}$ is a bi-ideal of $S$. Moreover, for a non-empty subset $A$ of $S$, the intersection of all bi-ideals of $S$ containing $A$, denoted by $(A)_{b}$, is the smallest bi-ideal of $S$ containing $A$. And it is of the form

$$
(A)_{b}=A \cup A A \cup A S A
$$

In particular, for $A=\{a\}$, we write $(\{a\})_{b}$ by $(a)_{b}$ (see [6]).

## 2. Main Results

We begin this section with the following definition of bi-bases of a semigroup.
Definition 2.1. Let $S$ be a semigroup. A subset $B$ of $S$ is called a bi-base of $S$ if it satisfies the following two conditions:
(i) $S=(B)_{b}$ (i.e. $S=B \cup B B \cup B S B$ );
(ii) if $A$ is a subset of $B$ such that $S=(A)_{b}$, then $A=B$.

Example 2.2. Let $S=\{r, s, t, u\}$ be a semigroup with the binary operation defined by:

| $\cdot$ | $r$ | $s$ | $t$ | $u$ |
| :--- | :--- | :--- | :--- | :--- |
| $r$ | $r$ | $s$ | $r$ | $r$ |
| $s$ | $s$ | $r$ | $s$ | $s$ |
| $t$ | $r$ | $s$ | $t$ | $u$ |
| $u$ | $r$ | $s$ | $u$ | $t$ |

We have that the bi-bases of $S$ are: $B_{1}=\{t\}$ and $B_{2}=\{u\}$.
Example 2.3. Let $S=\{p, q, r, s\}$ be a semigroup with the binary operation defined by:

| $\cdot$ | $p$ | $q$ | $r$ | $s$ |
| :--- | :--- | :--- | :--- | :--- |
| $p$ | $p$ | $p$ | $p$ | $p$ |
| $q$ | $p$ | $p$ | $p$ | $p$ |
| $r$ | $p$ | $p$ | $q$ | $q$ |
| $s$ | $p$ | $p$ | $q$ | $q$ |

It is a routine matter to check that $S$ has only one bi-base: $B=\{r, s\}$.

Example 2.4. Let $S=\{a, b, c, d, x, y\}$ be a semigroup with the binary operation defined by:

| $\cdot$ | $a$ | $b$ | $c$ | $d$ | $x$ | $y$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $a$ | $a$ | $b$ | $c$ | $d$ | $x$ | $y$ |
| $b$ | $b$ | $c$ | $a$ | $y$ | $d$ | $x$ |
| $c$ | $c$ | $a$ | $d$ | $x$ | $y$ | $d$ |
| $d$ | $d$ | $x$ | $y$ | $a$ | $b$ | $c$ |
| $x$ | $x$ | $y$ | $d$ | $c$ | $a$ | $b$ |
| $y$ | $y$ | $d$ | $x$ | $b$ | $c$ | $a$ |

We have that the singleton sets consisting of an element of $S$ are bi-bases of $S$.
First, we have the following useful lemma:
Lemma 2.5. Let $B$ be a bi-base of a semigroup $S$, and $a, b \in B$. If $a \in b b \cup b S b$, then $a=b$.

Proof. Assume that $a \in b b \cup b S b$, and suppose that $a \neq b$. We consider

$$
A=B \backslash\{a\}
$$

Then $A \subset B$. Since $a \neq b, b \in A$. We will show that $(A)_{b}=S$. Clearly, $(A)_{b} \subseteq S$. Let $x \in S$. Then, by $(B)_{b}=S$, we have $x \in B \cup B B \cup B S B$. There are three cases to consider:
Case 1: $x \in B$.
Subcase 1.1: $x \neq a$. Then $x \in B \backslash\{a\}=A \subseteq(A)_{b}$.
Subcase 1.2: $x=a$. By assumption,

$$
x=a \in b b \cup b S b \subseteq A A \cup A S A \subseteq(A)_{b} .
$$

Case 2: $x \in B B$. Then $x=b_{1} b_{2}$ for some $b_{1}, b_{2} \in B$.
Subcase 2.1: $b_{1}=a$ and $b_{2}=a$. By assumption,

$$
\begin{aligned}
x=b_{1} b_{2} & \in(b b \cup b S b)(b b \cup b S b)=b b b b \cup b b b S b \cup b S b b b \cup b S b b S b \\
& \subseteq A A A A \cup A A A S A \cup A S A A A \cup A S A A S A \subseteq A S A \subseteq(A)_{b} .
\end{aligned}
$$

Subcase 2.2: $b_{1} \neq a$ and $b_{2}=a$. By assumption and $A=B \backslash\{a\}$, we have

$$
\begin{aligned}
x=b_{1} b_{2} & \in(B \backslash\{a\})(b b \cup b S b)=(B \backslash\{a\}) b b \cup(B \backslash\{a\}) b S b \\
& \subseteq A A A \cup A A S A \subseteq A S A \subseteq(A)_{b} .
\end{aligned}
$$

Subcase 2.3: $b_{1}=a$ and $b_{2} \neq a$. By assumption and $A=B \backslash\{a\}$, we have

$$
\begin{aligned}
x=b_{1} b_{2} & \in(b b \cup b S b)(B \backslash\{a\})=b b(B \backslash\{a\}) \cup b S b(B \backslash\{a\}) \\
& \subseteq A A A \cup A S A A \subseteq A S A \subseteq(A)_{b} .
\end{aligned}
$$

Subcase 2.4: $b_{1} \neq a$ and $b_{2} \neq a$. From $A=B \backslash\{a\}$,

$$
x=b_{1} b_{2} \in(B \backslash\{a\})(B \backslash\{a\})=A A \subseteq(A)_{b}
$$

Case 3: $x \in B S B$. Then $x=b_{3} s b_{4}$ for some $b_{3}, b_{4} \in B$ and $s \in S$.
Subcase 3.1: $b_{3}=a$ and $b_{4}=a$. By assumption,

$$
\begin{aligned}
x=b_{3} s b_{4} & \in(b b \cup b S b) S(b b \cup b S b)=b b S b b \cup b b S b S b \cup b S b S b b \cup b S b S b S b \\
& \subseteq A A S A A \cup A A S A S A \cup A S A S A A \cup A S A S A S A \\
& \subseteq A S A \subseteq(A)_{b} .
\end{aligned}
$$

Subcase 3.2: $b_{3} \neq a$ and $b_{4}=a$. By assumption and $A=B \backslash\{a\}$, we have

$$
\begin{aligned}
x=b_{3} s b_{3} & \in(B \backslash\{a\}) S(b b \cup b S b)=(B \backslash\{a\}) S b b \cup(B \backslash\{a\}) S b S b \\
& \subseteq A S A A \cup A S A S A \subseteq A S A \subseteq(A)_{b} .
\end{aligned}
$$

Subcase 3.3: $b_{3}=a$ and $b_{4} \neq a$. By assumption and $A=B \backslash\{a\}$, we have

$$
\begin{aligned}
x=b_{3} s b_{4} & \in(b b \cup b S b) S(B \backslash\{a\})=b b S(B \backslash\{a\}) \cup b S b S(B \backslash\{a\}) \\
& \subseteq A A S A \cup A S A S A \subseteq A S A \subseteq(A)_{b}
\end{aligned}
$$

Subcase 3.4: $b_{3} \neq a$ and $b_{4} \neq a$. From $A=B \backslash\{a\}$, hence

$$
x=b_{3} s b_{4} \in(B \backslash\{a\}) S(B \backslash\{a\})=A S A \subseteq(A)_{b}
$$

Hence, $(A)_{b}=S$. And this is a contradiction. Thus $a=b$.
Lemma 2.6. Let $B$ be a bi-base of a semigroup $S$. Let $a, b, c \in B$. If $a \in c b \cup c S b$, then $a=b$ or $a=c$.

Proof. Assume that $a \in c b \cup c S b$, and suppose that $a \neq b$ and $a \neq c$. We set

$$
A=B \backslash\{a\}
$$

Then $A \subset B$. Since $a \neq b$ and $a \neq c$, we have $b, c \in A$. We will show that $(A)_{b}=S$. Clearly, $(A)_{b} \subseteq S$. Let $x \in S$. By $(B)_{b}=S, x \in B \cup B B \cup B S B$.

We consider three cases:
Case 1: $x \in B$.
Subcase 1.1: $x \neq a$. Then $x \in B \backslash\{a\}=A \subseteq(A)_{b}$.
SUBCASE 1.2: $x=a$. By assumption, $x=a \in c b \cup c S b \subseteq A A \cup A S A \subseteq(A)_{b}$.
Case 2: $x \in B B$. Then $x=b_{1} b_{2}$ for some $b_{1}, b_{2} \in B$.
Subcase 2.1: $b_{1}=a$ and $b_{2}=a$. By assumption,

$$
\begin{aligned}
x=b_{1} b_{2} & \in(c b \cup c S b)(c b \cup c S b)=c b c b \cup c b c S b \cup c S b c b \cup c S b c S b \\
& \subseteq A A A A \cup A A A S A \cup A S A A A \cup A S A A S A \\
& \subseteq A S A \subseteq(A)_{b} .
\end{aligned}
$$

Subcase 2.2: $b_{1} \neq a$ and $b_{2}=a$. By assumption and $A=B \backslash\{a\}$, we have

$$
\begin{aligned}
x=b_{1} b_{2} & \in(B \backslash\{a\})(c b \cup c S b)=(B \backslash\{a\}) c b \cup(B \backslash\{a\}) c S b \\
& \subseteq A A A \cup A A S A \subseteq A S A \subseteq(A)_{b} .
\end{aligned}
$$

Subcase 2.3: $b_{1}=a$ and $b_{2} \neq a$. By assumption and $A=B \backslash\{a\}$, we have

$$
\begin{aligned}
x=b_{1} b_{2} & \in(c b \cup c S b)(B \backslash\{a\})=c b(B \backslash\{a\}) \cup c S b(B \backslash\{a\}) \\
& \subseteq A A A \cup A S A A \subseteq A S A \subseteq(A)_{b} .
\end{aligned}
$$

Subcase 2.4: $b_{1} \neq a$ and $b_{2} \neq a$. From $A=B \backslash\{a\}$, hence

$$
x=b_{1} b_{2} \in(B \backslash\{a\})(B \backslash\{a\})=A A \subseteq(A)_{b}
$$

Case 3: $x \in B S B$. Then $x=b_{3} s b_{4}$ for some $b_{3}, b_{4} \in B$ and $s \in S$.
Subcase 3.1: $b_{3}=a$ and $b_{4}=a$. By assumption we have

$$
\begin{aligned}
x=b_{3} s b_{4} & \in(c b \cup c S b) S(c b \cup c S b)=c b S c b \cup c b S c S b \cup c S b S c b \cup c S b S c S b \\
& \subseteq A A S A A \cup A A S A S A \cup A S A S A A \cup A S A S A S A \\
& \subseteq A S A \subseteq(A)_{b} .
\end{aligned}
$$

Subcase 3.2: $b_{3} \neq a$ and $b_{4}=a$. By assumption and $A=B \backslash\{a\}$, we have

$$
\begin{aligned}
x=b_{3} s b_{3} & \in(B \backslash\{a\}) S(c b \cup c S b)=(B \backslash\{a\}) S c b \cup(B \backslash\{a\}) S c S b \\
& \subseteq A S A A \cup A S A S A \subseteq A S A \subseteq(A)_{b} .
\end{aligned}
$$

Subcase 3.3: $b_{3}=a$ and $b_{4} \neq a$. By assumption and $A=B \backslash\{a\}$, we have

$$
\begin{aligned}
x=b_{3} s b_{4} & \in(c b \cup c S b) S(B \backslash\{a\})=c b S(B \backslash\{a\}) \cup c S b S(B \backslash\{a\}) \\
& \subseteq A A S A \cup A S A S A \subseteq A S A \subseteq(A)_{b} .
\end{aligned}
$$

Subcase 3.4: $b_{3} \neq a$ and $b_{4} \neq a$. From $A=B \backslash\{a\}$, hence

$$
x=b_{3} s b_{4} \in(B \backslash\{a\}) S(B \backslash\{a\})=A S A \subseteq(A)_{b}
$$

Hence $(A)_{b}=S$. This is a contradiction, and thus $a=b$.
To give a characterization when a non-empty subset of a semigroup is a bi-base of the semigroup we need the quasi-order defined as follows:
Definition 2.7. Let $S$ be a semigroup. Define a quasi-order on $S$ by, for any $a, b \in S$,

$$
a \leqslant_{b} b: \Leftrightarrow(a)_{b} \subseteq(b)_{b}
$$

The following example shows that the relation $\leqslant_{b}$ defined above is not, in general, a partial order.

Example 2.8. From Example 2.4, we have that $(a)_{b} \subseteq(b)_{b}$ (i.e., $a \leqslant_{b} b$ ) and $(b)_{b} \subseteq(a)_{b}$ (i.e., $b \leqslant_{b} a$ ), but $a \neq b$. Thus, $\leqslant_{b}$ is not a partial order on $S$.

Lemma 2.9. Let $B$ be a bi-base of a semigroup $S$. If $a, b \in B$ such that $a \neq b$, then neither $a \leqslant_{b} b$, nor $b \leqslant_{b} a$.

Proof. Assume that $a, b \in B$ such that $a \neq b$. Suppose that $a \leqslant_{b} b$; then

$$
a \in(a)_{b} \subseteq(b)_{b}
$$

By assumption we have $a \neq b$, so $a \in b b \cup b S b$. By Lamma 2.5, $a=b$. This is a contradiction. The case $b \leqslant_{b} a$ can be proved similarly.

Lemma 2.10. Let $B$ be a bi-base of a semigroup $S$. Let $a, b, c \in B$ and $s \in S$ :
(1) If $a \in b c \cup b c b c \cup b c S b c$, then $a=b$ or $a=c$.
(2) If $a \in b s c \cup b s c b s c \cup b s c S b s c$, then $a=b$ or $a=c$.

Proof. (1). Assume that $a \in b c \cup b c b c \cup b c S b c$, and suppose that $a \neq b$ and $a \neq c$. Let

$$
A=B \backslash\{a\}
$$

Then $A \subset B$. Since $a \neq b$ and $a \neq c$, we have $b, c \in A$. We will show that $(B)_{b} \subseteq(A)_{b}$, if suffices to show that $B \subseteq(A)_{b}$. Let $x \in B$. If $x \neq a$, then $x \in A$, and so $x \in(A)_{b}$. If $x=a$, then by assumption we have

$$
x=a \in b c \cup b c b c \cup b c S b c \subseteq A A \cup A A A A \cup A A S A A \subseteq A S A \subseteq(A)_{b}
$$

Thus, $B \subseteq(A)_{b}$. This implies $(B)_{b} \subseteq(A)_{b}$. Since $B$ is a bi-base of $S$,

$$
S=(B)_{b} \subseteq(A)_{b} \subseteq S
$$

Therefore $S=(A)_{b}$. This is a contradiction.
(2). Assume that $a \in b s c \cup b s c b s c \cup b s c S b s c$, and suppose that $a \neq b$ and $a \neq c$. Let

$$
A=B \backslash\{a\} .
$$

Then $A \subset B$. Since $a \neq b$ and $a \neq c$, we have $b, c \in A$. We will show that $(B)_{b} \subseteq(A)_{b}$, if suffices to show that $B \subseteq(A)_{b}$. Let $x \in B$. If $x \neq a$, then $x \in A$, and so $x \in(A)_{b}$. If $x=a$, then by assumption we have

$$
\begin{aligned}
x=a \in b s c \cup b s c b s c \cup b s c S b s c & \subseteq A S A \cup A S A A S A \cup A S A S A S A \\
& \subseteq A S A \subseteq(A)_{b} .
\end{aligned}
$$

Thus, $B \subseteq(A)_{b}$. This implies $(B)_{b} \subseteq(A)_{b}$. Since $B$ is a bi-base of $S$,

$$
S=(B)_{b} \subseteq(A)_{b} \subseteq S
$$

Therefore, $S=(A)_{b}$. This is a contradiction.

Lemma 2.11. Let $B$ be a bi-base of a semigroup $S$.
(1) For any $a, b, c \in B$, if $a \neq b$ and $a \neq c$, then $a \not \Varangle_{b} b c$.
(2) For any $a, b, c \in B$ and $s \in S$, if $a \neq b$ and $a \neq c$, then $a \not{ }_{\nless} b s c$.

Proof. (1). For any $a, b, c \in B$, let $a \neq b$ and $a \neq c$. Suppose that $a \leqslant_{b} b c$, we have

$$
a \in(a)_{b} \subseteq(b c)_{b}=b c \cup b c b c \cup b c S b c
$$

By Lamma 2.10 (1), it follows that $a=b$ or $a=c$. This contradicts to assumption.
(2). For any $a, b, c \in B$ and $s \in S$, let $a \neq b$ and $a \neq c$. Suppose that $a \leqslant_{b} b s c$, we have $a \in(a)_{b} \subseteq(b s c)_{b}=b s c \cup b s c b s c \cup b s c S b s c$. By Lamma 2.10 (2), it follows that $a=b$ or $a=c$. This contradicts to assumption.

We now prove the main result of this paper.
Theorem 2.12. A non-empty subset $B$ of a semigroup $S$ is a bi-base of $S$ if and only if $B$ satisfies the following conditions:
(1) For any $x \in S$,
(1.a) there exists $b \in B$ such that $x \leqslant_{b} b$; or
(1.b) there exist $b_{1}, b_{2} \in B$ such that $x \leqslant_{b} b_{1} b_{2}$; or
(1.c) there exist $b_{3}, b_{4} \in B, s \in S$ such that $x \leqslant_{b} b_{3} s b_{4}$.
(2) For any $a, b, c \in B$, if $a \neq b$ and $a \neq c$, then $a \nless b b c$.
(3) For any $a, b, c \in B$ and $s \in S$, if $a \neq b$ and $a \neq c$, then $a \not{ }_{\star} b s c$.

Proof. Assume first that $B$ is a bi-base of $S$; then $S=(B)_{b}$. To show that (1) holds, let $x \in S$. Then $x \in B \cup B B \cup B S B$.

We consider three cases:
Case 1: $x \in B$. Then $x=b$ for some $b \in B$. This implies $(x)_{b} \subseteq(b)_{b}$. Hence $x \leqslant{ }_{b} b$.

Case 2: $x \in B B$. Then $x=b_{1} b_{2}$ for some $b_{1}, b_{2} \in B$. This implies $(x)_{b} \subseteq$ $\left(b_{1} b_{2}\right)_{b}$. Hence $x \leqslant_{b} b_{1} b_{2}$.

Case 3: $x \in B S B$. Then $x=b_{3} s b_{4}$ for some $b_{3}, b_{4} \in B, s \in S$. This implies $(x)_{b} \subseteq\left(b_{3} s b_{4}\right)_{b}$. Hence $x \leqslant_{b} b_{3} s b_{4}$.

The validity of (2) and (3) follow, respectively, from Lemma 2.11 (1), and Lemma 2.11 (2).

Conversely, assume that the conditions (1), (2) and (3) hold. We will show that $B$ is a bi-base of $S$. Clearly, $(B)_{b} \subseteq S$. By (1), $S \subseteq(B)_{b}$, and $S=(B)_{b}$. It remains to show that $B$ is a minimal subset of $S$ with the property $S=(B)_{b}$.

Suppose that $S=(A)_{b}$ for some $A \subset B$. Since $A \subset B$, there exists $b \in B \backslash A$. Since $b \in B \subseteq S=(A)_{b}$ and $b \notin A$, it follows that $b \in A A \cup A S A$.

There are two cases to consider:

CASE 1: $b \in A A$. Then $b=a_{1} a_{2}$ for some $a_{1}, a_{2} \in A$. We have $a_{1}, a_{2} \in B$. Since $b \notin A$, so $b \neq a_{1}$ and $b \neq a_{2}$. Since $b=a_{1} a_{2}$, so $(b)_{b} \subseteq\left(a_{1} a_{2}\right)_{b}$. Hence $b \leqslant b a_{1} a_{2}$. This contradicts to (2).

Case 2: $b \in A S A$. Then $b=a_{3} s a_{4}$ for some $a_{3}, a_{4} \in A$ and $s \in S$. Since $b \notin A$, we have $b \neq a_{3}$ and $b \neq a_{4}$. Since $A \subset B, a_{3}, a_{4} \in B$. Since $b=a_{3} s a_{4}$, so $(b)_{b} \subseteq\left(a_{3} s a_{4}\right)_{b}$. Hence, $b \leqslant_{b} a_{3} s a_{4}$. This contradicts to (3).

Therefore, $B$ is a bi-base of $S$ as required, and the proof is completed.
In Example 2.2, we have that $\{u\}$ is a bi-base of $S$ where as it is not a subsemigroup of $S$. So, we find a condition in order that a bi-base is a subsemigroup.

Theorem 2.13. Let $B$ be a bi-base of a semigroup $S$. Then $B$ is a subsemigroup of $S$ if and only if $B$ satisfies the following conditions: For any $b, c \in B, b c=b$ or $b c=c$.

Proof. By Lemma 2.6, and $B$ is a subsemigroup of $S$ implies for any $b, c \in B$, $b c=b$ or $b c=c$. The opposit direction is clear.

Question. It was proved in [3] (Theorem 3) that for any two two-sided bases of a semigroup have the same cardinality. This is hold true for an ordered semigroup (see [1], Theorem 2.10). Here, we ask for bi-bases of a semigroup. Indeed, is it true that for any two bi-bases of a semigroup have the same cardinality?

## References

[1] T. Changphas and P. Summaprab, On two-sided bases of an ordered semigroup, Quasigroups and Related Systems 22 (2014), $59-66$.
[2] I. Fabrici, One-sided bases of semigroups, Matematický casopis, 22 (1972), no. 4, 286--290.
[3] I. Fabrici, Two-sided bases of semigroups, Matematický c̆asopis, 3 (2009), 181 --188.
[4] I. Fabrici and T. Kepka, On bases and maximal ideals in semigroups, Math. Slovaca, 31 (1981), 115 - 120.
[5] R.A. Good and D.R. Hughes, Associated groups for a semigroup, Bull. Amer. Math. Soc., 58 (1952), $624-625$.
[6] O. Steinfeld, Quasi-ideals in rings and semigroups, With a foreword by L. Rédei. Disquisitiones Mathematicae Hungaricae [Hungarian Mathematics Investigations], 10. Akadémiai Kiadó, Budapest, 1978.
[7] T. Tamura, One-sided bases and translations of a semigroup, Math. Japan. 3 (1955), $137-141$.

Received April 19, 2017
Department of Mathematics, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
Centre of Excellence in Mathematics, CHE, Si Ayuttaya Rd., Bangkok 10400, Thailand
E-mail: thacha@kku.ac.th

