
Quasigroups and Related Systems 25 (2017), 51− 58

Covering semigroups

of topological n-ary semigroups

Wieslaw A. Dudek and Vladimir V. Mukhin

Abstract. We construct a topology on the covering (enveloping) semigroup of an n-ary topo-

logical semigroup, and study the properties of the constructed topology. Conditions under which

this covering semigroup is a topological semigroup are obtained too.

1. Introduction

An n-ary semigroup (G, [ ]) with a topology τ is called a topological n-ary semi-
group if (G, τ) is a topological space such that the n-ary operation [ ] de�ned on
G is continuous (in all variables together). Such n-ary semigroups and groups
were studied by many authors in various directions. �upona [4] proved that each
topological n-ary group (G, [ ]) can be embedded into some topological (binary)
group called the universal covering group of (G, [ ]). Moreover, on this universal
covering group G∗ of (G, [ ]) one can de�ne a topology τ such that G∗, endowed
with this topology, is a topological group (cf. [4]). The base of this topology is
formed by sets of the form U1 · U2 · . . . · Uk, where Ui, i = 1, 2, . . . , k < n are open
subsets of G. Crombez and Six [3] showed that each topological n-ary group is
homeomorphic to some topological group. Stronger result was obtained by Endres
[8]: a topological n-ary group and a normal subgroup of index n− 1 of the corre-
sponding covering group are homeomorphic. On the other hand, any topological
n-ary group is uniquely determined by some topological group and some its home-
omorphism (cf. [14]). Hence topological properties of topological groups may be
moved to topological n-ary groups and conversely.

In the case of n-ary semigroups the situation is more complicated. Similarly
as in case of n-ary groups, for any topological n-ary semigroup can be constructed
the covering semigroup. Connections between the topology of this covering semi-
group and the topology of its initial an n-ary semigroup are described in [10]
(see also [7] and [11]). In some cases an n-ary semigroup with a locally compact
topology can be topologically embedded into a locally compact binary group as
an open set (for deteils see [10]). If additionaly, this n-ary semigroup is cancella-
tive and commutative, and all its inner translations (shifts), i.e., mappings of the
form ϕi(x) = [a1ldots, ai−1, x, ai+1, . . . , an], where a1, . . . , an are �xed elements,
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are both continuous and open, then this n-ary semigroupis can be topologically
embedded into a locally compact n-ary group as an open n-ary subsemigroup [12].

In this paper, the construction of a free covering semigroup of a topological
n-ary semigroup presented in [6] is generalized to an arbitrary covering semigroup.
On this covering semigroup is constructed a topology with the following proper-
ties: the right and left shifts are continuous mappings (Theorem 2.2); if an n-ary
operation is continuous in all variables, then this n-ary semigroup is an open sub-
space of the corresponding covering semigroup (Theorem 3.1). In Theorem 3.3 are
given su�cient conditions under which a Hausdor� topology of an n-ary semigroup
can be extended to a Hausdor� topology of its covering semigroup. An explicit
description of a base of a topology of an n-ary topological semigroup with some
open translations is presented in Theorem 3.7.

2. Topologies on covering semigroups

Let (G, [ ]) be an n-ary semigroup with n > 2. The symbol [x1, . . . , xs] means that
s = k(n−1)+1 and the operation [ ] is applied k times to the sequence x1, . . . , xs.
Consequently, [x] means x.

By Gk we denote the Cartesian product of G. If G is a subset of a semigroup
(S, ·), then by G(k) we denote the set G·G· . . . ·G (k times).

A binary semigroup (S, ·) is a covering (enveloping) semigroup of an n-ary semi-
group (G, [ ]) if S is generated by the set G and [x1, x2, . . . , xn] = x1 · x2 · . . . · xn
for all x1, x2, . . . , xn ∈ G. If additionally, the sets G, G(2), G(3), . . . , G(n−1) are
disjoint and their union gives S, then (S, ·) is called the universal covering semi-
group. For each n-ary semigroup there exists such universal covering semigroup
[5].

Below we describe connections between the the topology of an n-ary semigroup
and the topology of its free covering semigroup. For this we use the construction
of free covering semigroup proposed in [5] and the following proposition from [2]
(Chapter 1, �3, Proposition 6).

Proposition 2.1. Let ρ be an equivalence relation on a topological space X. Then
a map f of X/ρ into a topological space Y is continuous if and only if f ◦ ϕ,
where ϕ is a cannonical map of X onto X/ρ, is continuous on X.

Let (S, ·) be a covering semigroup of an n-ary semigroup (G, [ ]). Consider the

free semigroup F over the set G. Then F =
∞⋃
k=1

Gk and the operation on F is

de�ned by
(x1, . . . , xp) · (y1, . . . , ym) = (x1, . . . , xp, y1, . . . , ym). (1)

For any elements α = (x1, x2, . . . , xp), β = (y1, y2, . . . , ym) from F we de�ne the
relation Ω by putting:

αΩβ ⇐⇒ x1 · x2 · . . . · xp = y1 · y2 · . . . · ym. (2)
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Such de�ned relation is a congruence on F . Thus, the set F = F/Ω = {α : α ∈ F},
where α = {β ∈ F : αΩβ}, with the operation α ∗ β = αβ is a semigroup.
ϕ : α 7→ α is a canonical mapping from F onto F . Moreover, the mapping
π : α 7→ x1 · x2 · . . . · xp is an isomorphism of semigroups (F , ∗) and (S, ·). Because
π(ϕ(Gi)) = G(i) for i = 1, 2, . . . , n−1 and the union of all ϕ(Gi) covers F , then, in
the case when (S, ·) is the universal covering semigroup of (G, [ ]), the sets ϕ(Gi)
are pairwise disjoint. So, the semigroups (F , ∗) and (S, ·) can be identi�ed. Also
can be assumed that ϕ(Gi) = G(i) for i = 1, 2, . . . , n− 1.

Let τ be a topology on G, τk = τ×· · ·×τ (k times) � a topology on Gk. By τF we
denote this topology on F which is the union of all topologies τk. Then, obviously,
the operation (1) is continuous in the topology τF . The quotient topology (with
respect to the relation Ω) of the topology τF is denoted by τ . It is the strongest
topology on F for which the mapping ϕ is continuous.

Theorem 2.2. Let (G, [ ]) be an n-ary semigroup with a free covering semigroup
F and τ be a topology on G. Then each left and each right shift on (F , τ) is a
continuous mapping. Each set F i = ϕ(Gi), i = 1, 2, . . . , n− 1, is open. If (S, ·) is
the universal covering semigroup of (G, [ ]), then each set F i is open-closed.

Proof. Let Ra and ra be right shifts in F and F , respectively. Then ϕ ◦ Ra =
ra ◦ ϕ. Since ϕ and Ra are continuous, by Proposition 2.1, ra is continuous too.
Analogously we can prove the continuity of left shifts.

The second statement of the theorem follows from the fact that the sets ϕ−1(Fi)

=
∞⋃
k=0

Gk(n−1)+i ∈ τF are saturated with respect to the relation Ω.

In the case when (S, ·) is a universal covering semigroup of (G, [ ]) the open
sets Fi, i = 1, . . . , n− 1, form a partition of F and, therefore, are open-closed.

We will need also the following result proved in [9].

Proposition 2.3. Let S be a locally compact, σ-compact Hausdor� topological
semigroup and θ be a closed congruence on S. Then S/θ is a topological semigroup.

3. Topologies on universal covering semigroups

An n-ary semigroup (G, [ ]) with a topology τ is called a topological n-ary semigroup
if (G, τ) is a topological space such that the n-ary operation [ ] is continuous (in
all variables together).

Theorem 3.1. If (G, [ ], τ) is a topological n-ary semigroup, then topologies τ and
τ coincide on G.

Proof. Let U ∈ τ , U ⊂ G. Then ϕ−1(U) ∈ τF . Thus U = ϕ−1(U) ∩G ∈ τ .
Let now U ∈ τ and α = (a1, . . . , ap) ∈ ϕ−1(U). Then, a1 ∗ . . . ∗ ap ∈ U ,

where p = k(n − 1) + 1, and consequently, [a1, . . . , ap] = a1 ∗ . . . ∗ ap ∈ U . Since
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the operation [ ] is continuous in all variables, in the topology τ there are the
neighborhoods V1, . . . , Vp of points a1, . . . , ap such that [x1, . . . , xp] ∈ U for all
xi ∈ Vi, i = 1, . . . , p. Therefore, ϕ(x1, . . . , xp) = x1 ∗ . . . ∗ xp = [x1, . . . , xp] ∈ U.
Consequently, ϕ−1(U) ⊃ V1 × . . .× Vp ∈ τF . So ϕ−1(U) ∈ τF . This together with
saturation of ϕ−1(U) gives U ∈ τ .

Example 3.2. Consider on the real interval G = (1,+∞) the ternary operation
[x1, x2, x3] = x1 + x2 + x3 and the topology τ which is a union on the topology τ1
on (1, 2], the discrete topology on (2, 3] and the usual topology on (3,+∞), where
the sets (a, b] with 1 6 a 6 b 6 2 form the basis of the topology τ1. Such de�ned
ternary operation is continuous in all variables together and the semigroup (G,+)
is the covering semigroup for (G, [ ]). The shift x 7→ x + 1.5 is not a continuous
map, since the preimage of the open set {3} is not an open set. So, on the set G
the topologies τ and τ are di�erent.

Note that the topology τ is the union of the usual topology on (3,+∞) and
the topology on (1, 3] with the base of the form (a, b], where 1 6 a 6 b 6 3.

Consider the set S = G∪G1, where G1 = (2,+∞)×{0}, with the commutative
binary operation ∗ de�ned for x, y ∈ G in the following way:

x ∗ y = (x+ y, 0),
x ∗ (y, 0) = (y, 0) ∗ x = x+ y,

(x, 0) ∗ (y, 0) = (x+ y, 0).

It is easy to verify that (S, ∗) a commutative universal covering semigroup of
an n-ary semigroup (G, [ ]). On G the topology τ coincides with the topology τ ,
but the restriction of τ to G1 gives the topology with the base formed by sets
(a, b]× {0} and (c, d)× {0}, where 2 6 a 6 b 6 4 6 c 6 d.

Theorem 3.3. If in the universal covering semigroup (S, ·) of an n-ary semigroup
(G, [ ]) with the Hausdor� topology τ for any x1, . . . , xi, y1, . . . , yi ∈ G such that
x1 · . . . · xi 6= y1 · . . . · yi, where 1 6 i < n, there are zi+1, . . . , zn ∈ G such that

x1 · . . . · xi · zi+1 · . . . · zn 6= y1 · . . . · yi · zi+1 · . . . · zn or

zi+1 · . . . · zn · x1 · . . . · xi 6= zi+1 · . . . · zn · y1 · . . . · yi,

then the topology τ on F is the Hausdor� topology, too.

Proof. Consider the �rst case when for some x1, . . . , xi, y1, . . . , yi, zi+1, . . . zn ∈ G
we have

∼
x= x1 · . . . · xi 6= y1 · . . . · yi =

∼
y and x = x1 · . . . · xi · zi+1 · . . . · zn 6=

y1 · . . . ·yi ·zi+1 · . . . ·zn = y. τ is the Hausdor� topology, so there are neighborhoods
Ux and Uy of x and y such that Ux ∩Uy = ∅. Since shifts in (F , τ) are continuous

and x =
∼
x · ∼z , y =

∼
y · ∼z for

∼
z= zi+1 · . . . · zn, there are neighborhoods Wx and Wy

of points
∼
x and

∼
y such that Wx·

∼
z⊂ Ux and Wy·

∼
z⊂ Uy. So, Wx ∩Wy = ∅. Thus

τ is the Hausdor� topology.
The second case can be proved analogously.
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Corollary 3.4. If the universal covering semigroup of an n-ary semigroup (G, [ ])
with the Hausdor� topology τ is left or right cancellative, then the topology τ on
F is the Hausdor� topology.

Theorem 3.5. If the universal covering semigroup (S, ·) of a topological n-ary
semigroup (G, [ ]) with the Hausdor� topology τ has at least one left or right can-
cellable element, then the congruence Ω is a closed subset in a topological space
(F×F, τF×τF ).

Proof. Suppose that in (F ×F, τF ×τF ) the sequence (αξ, βξ)ξ∈A ∈ Ω converges
to (α, β). This means that in the topological space (F, τF ) the sequences (αξ)ξ∈A
and (βξ)ξ∈A converge to α and β, respectively.

Let α = (x1, . . . , xp) ∈ Gp, β = (y1, . . . , yq) ∈ Gq. Since Gp, Gq are dis-
joint open-closed subsets in (F, τF ), there is an index ξ0 ∈ A such that αξ =

(xξ1, . . . , x
ξ
p) ∈ Gp and βξ = (yξ1, . . . , y

ξ
q) ∈ Gq for all ξ > ξ0. Therefore, for ξ > ξ0

we have xξ1 · . . . · xξp = yξ1 · . . . · yξq . Consequently,

af · xξ1 · . . . · xξp = af · yξ1 · . . . · yξq (3)

for any left cancellable element a ∈ S and all natural f .
Obviously, a = a1 · . . . · ak for some a1, . . . , ak ∈ G and k < n. Moreover,

for each natural f such that fk > n there is a natural r satisfying the condition
r(n − 1) + 1 6 fk + p < (r + 1)(n − 1) + 1. Thus fk + p − s = r(n − 1) + 1 for
some 0 6 s < k. Consequently,

a1 · . . . as · [as+1, . . . , ak, a1, . . . , ak︸ ︷︷ ︸, . . . , a1, . . . , ak︸ ︷︷ ︸︸ ︷︷ ︸
f−1 times

, xξ1, . . . , x
ξ
p] =

a1 · . . . as · [as+1, . . . , ak, a1, . . . , ak︸ ︷︷ ︸, . . . , a1, . . . , ak︸ ︷︷ ︸︸ ︷︷ ︸
f−1 times

, yξ1, . . . , y
ξ
p].

By previous results, τ is the Hausdor� topology which on G coincides with τ
and each left shift in (F , τ) is a continuous mapping. So, if in (G, τ) the sequence
(xξi )ξ∈A converge to xi and (yξi )ξ∈A converge to yi, then (3) implies a ·x1· . . . ·xp =
a · y1· . . . · yq, which, by the cancellativity of a, gives x1· . . . · xp = y1· . . . · yq. Thus
(α, β) ∈ Ω and Ω is a closed subset of (F×F, τF×τF ).

For a right cancellable element the proof is similar.

Theorem 3.6. If the universal covering semigroup (S, ·) of a topological n-ary
semigroup (G, [ ]) with the locally compact and σ-compact Hausdor� topology τ has
at least one left or right cancellable element, then (F , ∗) is a topological semigroup
with respect to the topology τ .

Proof. Note that the topology τF on F is a locally compact, σ-compact, and the
congruence Ω is a closed subset of F . Then, by Proposition 2.3, (F , ∗, τ) is a
topological semigroup.
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Theorem 3.7. Let in a topological n-ary semigroup (G, [ ], τ) for certain 1 6 p < n
all translations x 7→ [c1, . . . , cp, x, cp+1. . . . , cn−1] be continuous. If the universal
covering semigroup (S, ·) of (G, [ ]) is cancellative, then (F , ∗, τ) is a topological
semigroup, G is an open-closed subset in F and the family

B = {A1 · . . . ·Ak : A1, . . . , Ak ∈ τ, k = 1, . . . , n− 1}
forms the base of the topology τ .

Proof. Let A1, . . . , Ak be open sets in τ . We will show that the set A1 · . . . ·Ak is
open in τ .

Let a ∈ G, a1 ∈ A1, . . . , ak ∈ Ak. Then

[
(l)
a , a1, . . . , ai−1, Ai, ai+1, . . . , ak,

(n−k−l)
a ] ⊂ [

(l)
a ,A1, . . . , Ak,

(n−k−l)
a ]

for all k + l 6 n, i 6 k and l+ i = p+ 1, where
(s)
a means the sequence a, . . . , a (s

times). By hypothesis, the set [
(l)
a , a1, . . . , ai−1, Ai, ai+1, . . . , ak,

(n−k−l)
a ] is open in

G. Since

[
(l)
a ,A1, . . . , Ak,

(n−k−l)
a ] =

k⋃
i=1

aj∈Aj

[
(l)
a , a1, . . . , ai−1, Ai, ai+1, . . . , ak,

(n−k−l)
a ],

the set [
(l)
a ,A1, . . . , Ak,

(n−k−l)
a ] also is open in G.

As was noted earlier, (F , ∗) as a semigroup isomorphic to (S, ·), can be identi�ed
with (S, ·) and treated as a cancellative semigroup.

Consider the translation λ : F → F de�ned by λ(x) = apxan−p−1. We have

λ−1([
(p)
a ,A1 · . . . ·Ak,

(n−p−1)
a ]) = A1 · . . . ·Ak. (4)

Indeed, if x ∈ λ−1([
(p)
a ,A1 · . . . ·Ak,

(n−p−1)
a ]), then

λ(x) = apxan−p−1∈ [
(p)
a ,A1· . . . ·Ak,

(n−p−1)
a ] = ap ·A1 · . . . ·Ak ·an−p−1 = apyan−p−1

for some y ∈ A1· . . . ·Ak, which, by cancellativity, implies x = y. So, x ∈ A1 · . . . ·Ak.
On the other hand, if x ∈ A1 · . . . ·Ak, then

apxan−p−1 ∈ ap ·A1 · . . . ·Ak · an−p−1 = [
(p)
a ,A1 · . . . ·Ak,

(n−p−1)
a ].

Thus x ∈ λ−1([
(p)
a ,A1 · . . . ·Ak,

(n−p−1)
a ]). This completes the proof of (4).

The set [
(p)
a ,A1· . . . ·Ak,

(n−p−1)
a ] is open in G, hence, by Theorem 3.1, it is open

in (F , τ). By Theorem 2.2, the mapping λ is continuous and therefore A1· . . . ·Ak =

λ−1([
(p)
a ,A1 · . . . ·Ak,

(n−p−1)
a ]) ∈ τ .

If U ⊂ G(k), U ∈ τ and a1, . . . , ak ∈ G such that a1 · . . . · ak ∈ U, then
W = ϕ−1(U) ∈ τ , where ϕ(x) = a1 · . . . · ak · x is a left shift in F . Consequently
W ∈ τ , because W ⊂ G. So, for any a ∈ G, the set



Covering semigroups of topological n-ary semigroups 57

[
(n−k+p)

a , a1, . . . , ak−1,W,
(n−p−1)

a ] = [
(p−1)
a , [

(n−k+1)
a , a1, . . . , ak−1],W,

(n−p−1)
a ]

is an open subset of G.
Since in (G, τ) the n-ary operation [ ] is continuous in all variables, there exist

the family of open neighborhoods U1, . . . , Uk of the points a1, . . . , ak, respectively,
such that

[
(n−k+p)

a , U1, . . . , Uk,
(n−p−1)

a ] ⊂ [
(n−k+p)

a , a1, . . . , ak−1,W,
(n−p−1)

a ].

Thus, in F , we have

an−k+p ·U1 · . . . · Uk · an−p−1 ⊂ an−k+p · a1 · . . . · ak−1 ·W · an−p−1.

Because a1 · . . . · ak−1 ·W ⊂ U , the last implies

an−k+p · U1 · . . . · Uk · an−p−1 ⊂ an−k+p · U · an−p−1.

This, in view of the cancellativity, gives U1 · . . . ·Uk ⊂ U .
By virtue of the arbitrariness of the point a1· . . . ·ak ∈ U, we conclude that the

family B is a base of the topology τ on F .
Now we will show that the binary operation de�ned in F is continuous in

the topology τ . Let g = s · t for some s = a1 · . . . · ai, t = b1 · . . . · bj , where
a1, . . . , ai, b1, . . . , bj ∈ G and 1 6 i, j < n. If C ∈ B and g ∈ C, then C = C1 ·. . .·Ck
for some k < n and ∅ 6= Ci ∈ τ . Let g = c1 · . . . · ck for some ci ∈ Ci. If i+ j < n,
then s · t = a1 · . . . · ai · b1 · . . . · bj = c1 · . . . · ck. Thus i+ j = k.

From the cancellativity of the binary operation in F and the continuity of the
n-ary operation [ ], we conclude that there exist open neighborhoods A1, . . . , Ai
of the points a1, . . . , ai, respectively, and open neighborhoods B1, . . . , Bj of the
points b1, . . . , bj such that A1 · . . . · Ai · B1 · . . . · Bj ⊂ C1 · . . . · Ck = C. Since
A = A1 · . . . · Ai and B = B1 · . . . · Bj are open neighborhoods of the points s, t,
respectively, the last inclusion implies A ·B ⊂ C.

In the case i+j > n we have c1 · . . . ·ck = a1 · . . . ·ai ·b1 · . . . ·bj = a ·bn−i+1 · . . . ·bj
for a = [a1, . . . , ai, b1, . . . , bn−i]. So, as above, we conclude that k = i+ j − n and
there are open neighborhoods D,Bn−i+1, . . . , Bj of the points a, bn−i+1, . . . , bj ,
respectively, such that D · Bn−i+1 · . . . · Bj ⊂ C1 · . . . · Ck = C. Since the n-ary
operation [ ] is continuous, then there are open neighborhoods A1, . . . , Ai of the
points a1, . . . , ai and open neighborhoods B1, . . . , Bn−i of the points b1, . . . , bn−i
such that [A1, . . . , Ai, B1, . . . , Bn−i] ⊂ D. Thus, for A = A1·. . .·Ai, B = B1·. . .·Bj
we have A,B,∈ B, A · B ⊂ C and s ∈ A, t ∈ B. This proves that the binary
multiplication de�ned in F is continuous in the topology τ .

Corollary 3.8. If (G, [ ], τ) is a topological n-ary group, then its universal covering
group (F , ∗) is a topological group with the topology τ .

The proof follows immediately from the preceding theorem and the results of
[4], where is proved that the operation of taking inverse element is continous if the
family B is a base of the corresponding topology.
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