Covering semigroups of topological *n*-ary semigroups

Wieslaw A. Dudek and Vladimir V. Mukhin

Abstract. We construct a topology on the covering (enveloping) semigroup of an *n*-ary topological semigroup, and study the properties of the constructed topology. Conditions under which this covering semigroup is a topological semigroup are obtained too.

1. Introduction

An n-ary semigroup (G, []) with a topology τ is called a *topological n-ary semi*group if (G, τ) is a topological space such that the *n*-ary operation [] defined on G is continuous (in all variables together). Such n-ary semigroups and groups were studied by many authors in various directions. Cupona [4] proved that each topological n-ary group (G, []) can be embedded into some topological (binary) group called the *universal covering group* of (G, []). Moreover, on this universal covering group G^* of (G, []) one can define a topology τ such that G^* , endowed with this topology, is a topological group (cf. [4]). The base of this topology is formed by sets of the form $U_1 \cdot U_2 \cdot \ldots \cdot U_k$, where U_i , $i = 1, 2, \ldots, k < n$ are open subsets of G. Crombez and Six [3] showed that each topological n-ary group is homeomorphic to some topological group. Stronger result was obtained by Endres [8]: a topological n-ary group and a normal subgroup of index n-1 of the corresponding covering group are homeomorphic. On the other hand, any topological *n*-ary group is uniquely determined by some topological group and some its homeomorphism (cf. [14]). Hence topological properties of topological groups may be moved to topological *n*-ary groups and conversely.

In the case of *n*-ary semigroups the situation is more complicated. Similarly as in case of *n*-ary groups, for any topological *n*-ary semigroup can be constructed the covering semigroup. Connections between the topology of this covering semigroup and the topology of its initial an *n*-ary semigroup are described in [10] (see also [7] and [11]). In some cases an *n*-ary semigroup with a locally compact topology can be topologically embedded into a locally compact binary group as an open set (for deteils see [10]). If additionally, this *n*-ary semigroup is cancellative and commutative, and all its inner translations (shifts), i.e., mappings of the form $\varphi_i(x) = [a_1 l dots, a_{i-1}, x, a_{i+1}, \ldots, a_n]$, where a_1, \ldots, a_n are fixed elements,

²⁰¹⁰ Mathematics Subject Classification: 20N15, 22A15, 22A30

Keywords: topological *n*-ary semigroup, topological semigroup, free covering semigroup.

are both continuous and open, then this n-ary semigroupis can be topologically embedded into a locally compact n-ary group as an open n-ary subsemigroup [12].

In this paper, the construction of a free covering semigroup of a topological n-ary semigroup presented in [6] is generalized to an arbitrary covering semigroup. On this covering semigroup is constructed a topology with the following properties: the right and left shifts are continuous mappings (Theorem 2.2); if an n-ary operation is continuous in all variables, then this n-ary semigroup is an open subspace of the corresponding covering semigroup (Theorem 3.1). In Theorem 3.3 are given sufficient conditions under which a Hausdorff topology of an n-ary semigroup can be extended to a Hausdorff topology of its covering semigroup. An explicit description of a base of a topology of an n-ary topological semigroup with some open translations is presented in Theorem 3.7.

2. Topologies on covering semigroups

Let (G, []) be an *n*-ary semigroup with n > 2. The symbol $[x_1, \ldots, x_s]$ means that s = k(n-1) + 1 and the operation [] is applied k times to the sequence x_1, \ldots, x_s . Consequently, [x] means x.

By G^k we denote the Cartesian product of G. If G is a subset of a semigroup (S, \cdot) , then by $G^{(k)}$ we denote the set $G \cdot G \cdot \ldots \cdot G$ (k times).

A binary semigroup (S, \cdot) is a covering (enveloping) semigroup of an n-ary semigroup (G, []) if S is generated by the set G and $[x_1, x_2, \ldots, x_n] = x_1 \cdot x_2 \cdot \ldots \cdot x_n$ for all $x_1, x_2, \ldots, x_n \in G$. If additionally, the sets $G, G^{(2)}, G^{(3)}, \ldots, G^{(n-1)}$ are disjoint and their union gives S, then (S, \cdot) is called the universal covering semigroup. For each n-ary semigroup there exists such universal covering semigroup [5].

Below we describe connections between the the topology of an *n*-ary semigroup and the topology of its free covering semigroup. For this we use the construction of free covering semigroup proposed in [5] and the following proposition from [2] (Chapter 1, §3, Proposition 6).

Proposition 2.1. Let ρ be an equivalence relation on a topological space X. Then a map f of X/ρ into a topological space Y is continuous if and only if $f \circ \varphi$, where φ is a cannonical map of X onto X/ρ , is continuous on X.

Let (S, \cdot) be a covering semigroup of an *n*-ary semigroup (G, []). Consider the free semigroup F over the set G. Then $F = \bigcup_{k=1}^{\infty} G^k$ and the operation on F is defined by

 $(x_1, \dots, x_p) \cdot (y_1, \dots, y_m) = (x_1, \dots, x_p, y_1, \dots, y_m).$ (1)

For any elements $\alpha = (x_1, x_2, \dots, x_p), \beta = (y_1, y_2, \dots, y_m)$ from F we define the relation Ω by putting:

$$\alpha\Omega\beta \iff x_1 \cdot x_2 \cdot \ldots \cdot x_p = y_1 \cdot y_2 \cdot \ldots \cdot y_m. \tag{2}$$

Such defined relation is a congruence on F. Thus, the set $\overline{F} = F/_{\Omega} = \{\overline{\alpha} : \alpha \in F\}$, where $\overline{\alpha} = \{\beta \in F : \alpha \Omega \beta\}$, with the operation $\overline{\alpha} * \overline{\beta} = \overline{\alpha \beta}$ is a semigroup. $\varphi : \alpha \mapsto \overline{\alpha}$ is a canonical mapping from F onto \overline{F} . Moreover, the mapping $\pi : \overline{\alpha} \mapsto x_1 \cdot x_2 \cdot \ldots \cdot x_p$ is an isomorphism of semigroups $(\overline{F}, *)$ and (S, \cdot) . Because $\pi(\varphi(G^i)) = G^{(i)}$ for $i = 1, 2, \ldots, n-1$ and the union of all $\varphi(G^i)$ covers \overline{F} , then, in the case when (S, \cdot) is the universal covering semigroup of (G, []), the sets $\varphi(G^i)$ are pairwise disjoint. So, the semigroups $(\overline{F}, *)$ and (S, \cdot) can be identified. Also can be assumed that $\varphi(G^i) = G^{(i)}$ for $i = 1, 2, \ldots, n-1$.

Let τ be a topology on G, $\tau_k = \tau \times \cdots \times \tau$ (k times) – a topology on G^k . By τ_F we denote this topology on F which is the union of all topologies τ_k . Then, obviously, the operation (1) is continuous in the topology τ_F . The quotient topology (with respect to the relation Ω) of the topology τ_F is denoted by $\overline{\tau}$. It is the strongest topology on \overline{F} for which the mapping φ is continuous.

Theorem 2.2. Let (G, []) be an n-ary semigroup with a free covering semigroup F and τ be a topology on G. Then each left and each right shift on $(\overline{F}, \overline{\tau})$ is a continuous mapping. Each set $\overline{F}_i = \varphi(G^i)$, i = 1, 2, ..., n-1, is open. If (S, \cdot) is the universal covering semigroup of (G, []), then each set \overline{F}_i is open-closed.

Proof. Let R_a and $r_{\overline{a}}$ be right shifts in F and \overline{F} , respectively. Then $\varphi \circ R_a = r_{\overline{a}} \circ \varphi$. Since φ and R_a are continuous, by Proposition 2.1, $r_{\overline{a}}$ is continuous too. Analogously we can prove the continuity of left shifts.

The second statement of the theorem follows from the fact that the sets $\varphi^{-1}(\overline{F_i})$

 $= \bigcup_{k=0}^{\infty} G^{k(n-1)+i} \in \tau_F \text{ are saturated with respect to the relation } \Omega.$

In the case when (S, \cdot) is a universal covering semigroup of (G, []) the open sets $\overline{F_i}$, $i = 1, \ldots, n-1$, form a partition of \overline{F} and, therefore, are open-closed. \Box

We will need also the following result proved in [9].

Proposition 2.3. Let S be a locally compact, σ -compact Hausdorff topological semigroup and θ be a closed congruence on S. Then S/θ is a topological semigroup.

3. Topologies on universal covering semigroups

An *n*-ary semigroup (G, []) with a topology τ is called a *topological n-ary semigroup* if (G, τ) is a topological space such that the *n*-ary operation [] is continuous (in all variables together).

Theorem 3.1. If $(G, [], \tau)$ is a topological n-ary semigroup, then topologies $\overline{\tau}$ and τ coincide on G.

Proof. Let $U \in \overline{\tau}$, $U \subset G$. Then $\varphi^{-1}(U) \in \tau_F$. Thus $U = \varphi^{-1}(U) \cap G \in \tau$.

Let now $U \in \tau$ and $\alpha = (a_1, \ldots, a_p) \in \varphi^{-1}(U)$. Then, $\overline{a}_1 * \ldots * \overline{a}_p \in U$, where p = k(n-1) + 1, and consequently, $[a_1, \ldots, a_p] = \overline{a}_1 * \ldots * \overline{a}_p \in U$. Since the operation [] is continuous in all variables, in the topology τ there are the neighborhoods V_1, \ldots, V_p of points $\overline{a}_1, \ldots, \overline{a}_p$ such that $[x_1, \ldots, x_p] \in U$ for all $x_i \in V_i, i = 1, \ldots, p$. Therefore, $\varphi(x_1, \ldots, x_p) = \overline{x}_1 * \ldots * \overline{x}_p = [x_1, \ldots, x_p] \in U$. Consequently, $\varphi^{-1}(U) \supset V_1 \times \ldots \times V_p \in \tau_F$. So $\varphi^{-1}(U) \in \tau_F$. This together with saturation of $\varphi^{-1}(U)$ gives $U \in \overline{\tau}$.

Example 3.2. Consider on the real interval $G = (1, +\infty)$ the ternary operation $[x_1, x_2, x_3] = x_1 + x_2 + x_3$ and the topology τ which is a union on the topology τ_1 on (1, 2], the discrete topology on (2, 3] and the usual topology on $(3, +\infty)$, where the sets (a, b] with $1 \leq a \leq b \leq 2$ form the basis of the topology τ_1 . Such defined ternary operation is continuous in all variables together and the semigroup (G, +) is the covering semigroup for (G, []). The shift $x \mapsto x + 1.5$ is not a continuous map, since the preimage of the open set $\{3\}$ is not an open set. So, on the set G the topologies $\overline{\tau}$ and τ are different.

Note that the topology $\overline{\tau}$ is the union of the usual topology on $(3, +\infty)$ and the topology on (1, 3] with the base of the form (a, b], where $1 \leq a \leq b \leq 3$.

Consider the set $S = G \cup G_1$, where $G_1 = (2, +\infty) \times \{0\}$, with the commutative binary operation * defined for $x, y \in G$ in the following way:

$$\begin{aligned} x*y &= (x+y,0), \\ x*(y,0) &= (y,0)*x = x+y, \\ (x,0)*(y,0) &= (x+y,0). \end{aligned}$$

It is easy to verify that (S, *) a commutative universal covering semigroup of an *n*-ary semigroup (G, []). On G the topology $\overline{\tau}$ coincides with the topology τ , but the restriction of $\overline{\tau}$ to G_1 gives the topology with the base formed by sets $(a, b] \times \{0\}$ and $(c, d) \times \{0\}$, where $2 \leq a \leq b \leq 4 \leq c \leq d$.

Theorem 3.3. If in the universal covering semigroup (S, \cdot) of an n-ary semigroup (G, []) with the Hausdorff topology τ for any $x_1, \ldots, x_i, y_1, \ldots, y_i \in G$ such that $x_1 \cdot \ldots \cdot x_i \neq y_1 \cdot \ldots \cdot y_i$, where $1 \leq i < n$, there are $z_{i+1}, \ldots, z_n \in G$ such that

$$x_1 \cdot \ldots \cdot x_i \cdot z_{i+1} \cdot \ldots \cdot z_n \neq y_1 \cdot \ldots \cdot y_i \cdot z_{i+1} \cdot \ldots \cdot z_n \quad or$$

$$z_{i+1} \cdot \ldots \cdot z_n \cdot x_1 \cdot \ldots \cdot x_i \neq z_{i+1} \cdot \ldots \cdot z_n \cdot y_1 \cdot \ldots \cdot y_i,$$

then the topology $\overline{\tau}$ on \overline{F} is the Hausdorff topology, too.

Proof. Consider the first case when for some $x_1, \ldots, x_i, y_1, \ldots, y_i, z_{i+1}, \ldots, z_n \in G$ we have $\tilde{x} = x_1 \cdot \ldots \cdot x_i \neq y_1 \cdot \ldots \cdot y_i = \tilde{y}$ and $x = x_1 \cdot \ldots \cdot x_i \cdot z_{i+1} \cdot \ldots \cdot z_n \neq y_1 \cdot \ldots \cdot y_i \cdot z_{i+1} \cdot \ldots \cdot z_n = y$. τ is the Hausdorff topology, so there are neighborhoods U_x and U_y of x and y such that $U_x \cap U_y = \emptyset$. Since shifts in $(\overline{F}, \overline{\tau})$ are continuous and $x = \tilde{x} \cdot \tilde{z}, y = \tilde{y} \cdot \tilde{z}$ for $\tilde{z} = z_{i+1} \cdot \ldots \cdot z_n$, there are neighborhoods W_x and W_y of points \tilde{x} and \tilde{y} such that $W_x \cdot \tilde{z} \subset U_x$ and $W_y \cdot \tilde{z} \subset U_y$. So, $W_x \cap W_y = \emptyset$. Thus $\overline{\tau}$ is the Hausdorff topology.

The second case can be proved analogously. $\hfill \square$

Corollary 3.4. If the universal covering semigroup of an n-ary semigroup (G, []) with the Hausdorff topology τ is left or right cancellative, then the topology $\overline{\tau}$ on \overline{F} is the Hausdorff topology.

Theorem 3.5. If the universal covering semigroup (S, \cdot) of a topological n-ary semigroup (G, []) with the Hausdorff topology τ has at least one left or right cancellable element, then the congruence Ω is a closed subset in a topological space $(F \times F, \tau_F \times \tau_F)$.

Proof. Suppose that in $(F \times F, \tau_F \times \tau_F)$ the sequence $(\alpha_{\xi}, \beta_{\xi})_{\xi \in A} \in \Omega$ converges to (α, β) . This means that in the topological space (F, τ_F) the sequences $(\alpha_{\xi})_{\xi \in A}$ and $(\beta_{\xi})_{\xi \in A}$ converge to α and β , respectively.

Let $\alpha = (x_1, \ldots, x_p) \in G^p$, $\beta = (y_1, \ldots, y_q) \in G^q$. Since G^p , G^q are disjoint open-closed subsets in (F, τ_F) , there is an index $\xi_0 \in A$ such that $\alpha_{\xi} = (x_1^{\xi}, \ldots, x_p^{\xi}) \in G^p$ and $\beta_{\xi} = (y_1^{\xi}, \ldots, y_q^{\xi}) \in G^q$ for all $\xi > \xi_0$. Therefore, for $\xi > \xi_0$ we have $x_1^{\xi} \cdot \ldots \cdot x_p^{\xi} = y_1^{\xi} \cdot \ldots \cdot y_q^{\xi}$. Consequently,

$$a^f \cdot x_1^{\xi} \cdot \ldots \cdot x_p^{\xi} = a^f \cdot y_1^{\xi} \cdot \ldots \cdot y_q^{\xi} \tag{3}$$

for any left cancellable element $a \in S$ and all natural f.

Obviously, $a = a_1 \cdot \ldots \cdot a_k$ for some $a_1, \ldots, a_k \in G$ and k < n. Moreover, for each natural f such that $fk \ge n$ there is a natural r satisfying the condition $r(n-1)+1 \le fk+p < (r+1)(n-1)+1$. Thus fk+p-s = r(n-1)+1 for some $0 \le s < k$. Consequently,

$$a_{1} \cdot \ldots a_{s} \cdot [a_{s+1}, \ldots, a_{k}, \underbrace{a_{1}, \ldots, a_{k}, \ldots, a_{1}, \ldots, a_{k}}_{f-1 \ times}, x_{1}^{\xi}, \ldots, x_{p}^{\xi}] = a_{1} \cdot \ldots a_{s} \cdot [a_{s+1}, \ldots, a_{k}, \underbrace{a_{1}, \ldots, a_{k}, \ldots, a_{1}, \ldots, a_{k}}_{f-1 \ times}, y_{1}^{\xi}, \ldots, y_{p}^{\xi}].$$

By previous results, $\overline{\tau}$ is the Hausdorff topology which on G coincides with τ and each left shift in $(\overline{F}, \overline{\tau})$ is a continuous mapping. So, if in (G, τ) the sequence $(x_i^{\xi})_{\xi \in A}$ converge to x_i and $(y_i^{\xi})_{\xi \in A}$ converge to y_i , then (3) implies $a \cdot x_1 \cdot \ldots \cdot x_p =$ $a \cdot y_1 \cdot \ldots \cdot y_q$, which, by the cancellativity of a, gives $x_1 \cdot \ldots \cdot x_p = y_1 \cdot \ldots \cdot y_q$. Thus $(\alpha, \beta) \in \Omega$ and Ω is a closed subset of $(F \times F, \tau_F \times \tau_F)$.

For a right cancellable element the proof is similar.

Theorem 3.6. If the universal covering semigroup (S, \cdot) of a topological n-ary semigroup (G, []) with the locally compact and σ -compact Hausdorff topology τ has at least one left or right cancellable element, then $(\overline{F}, *)$ is a topological semigroup with respect to the topology $\overline{\tau}$.

Proof. Note that the topology τ_F on F is a locally compact, σ -compact, and the congruence Ω is a closed subset of F. Then, by Proposition 2.3, $(\overline{F}, *, \overline{\tau})$ is a topological semigroup.

Theorem 3.7. Let in a topological n-ary semigroup $(G, [], \tau)$ for certain $1 \le p < n$ all translations $x \mapsto [c_1, \ldots, c_p, x, c_{p+1}, \ldots, c_{n-1}]$ be continuous. If the universal covering semigroup (S, \cdot) of (G, []) is cancellative, then $(\overline{F}, *, \overline{\tau})$ is a topological semigroup, G is an open-closed subset in \overline{F} and the family

 $\mathcal{B} = \{A_1 \cdot \ldots \cdot A_k : A_1, \ldots, A_k \in \tau, \ k = 1, \ldots, n-1\}$

forms the base of the topology $\overline{\tau}$.

Proof. Let A_1, \ldots, A_k be open sets in τ . We will show that the set $A_1 \cdot \ldots \cdot A_k$ is open in $\overline{\tau}$.

Let $a \in G$, $a_1 \in A_1, \ldots, a_k \in A_k$. Then

$$\begin{bmatrix} (l) \\ a, a_1, \dots, a_{i-1}, A_i, a_{i+1}, \dots, a_k, \begin{bmatrix} (n-k-l) \\ a \end{bmatrix} \subset \begin{bmatrix} (l) \\ a, A_1, \dots, A_k, \begin{bmatrix} (n-k-l) \\ a \end{bmatrix}$$

for all $k + l \leq n$, $i \leq k$ and l + i = p + 1, where $a^{(s)}$ means the sequence a, \ldots, a (s times). By hypothesis, the set $\begin{bmatrix} a \\ a \end{bmatrix}, a_1, \ldots, a_{i-1}, A_i, a_{i+1}, \ldots, a_k, \begin{bmatrix} a \\ a \end{bmatrix}$ is open in G. Since

$$\begin{bmatrix} (l) \\ a, A_1, \dots, A_k, & a \end{bmatrix} = \bigcup_{\substack{i=1\\a_j \in A_j}}^k \begin{bmatrix} (l) \\ a, a_1, \dots, a_{i-1}, A_i, a_{i+1}, \dots, a_k, & a \end{bmatrix},$$

the set $\begin{bmatrix} l \\ a \end{bmatrix}, A_1, \ldots, A_k, \begin{bmatrix} n-k-l \\ a \end{bmatrix}$ also is open in G. As was noted earlier, $(\overline{F}, *)$ as a semigroup isomorphic to (S, \cdot) , can be identified

with (S, \cdot) and treated as a cancellative semigroup.

Consider the translation $\lambda: \overline{F} \to \overline{F}$ defined by $\lambda(x) = a^p x a^{n-p-1}$. We have

$$\lambda^{-1}([{}^{(p)}_{a}, A_{1} \cdot \ldots \cdot A_{k}, {}^{(n-p-1)}_{a}]) = A_{1} \cdot \ldots \cdot A_{k}.$$
(4)

Indeed, if $x \in \lambda^{-1}(\begin{bmatrix} p \\ a \end{bmatrix}, A_1 \cdot \ldots \cdot A_k, \begin{bmatrix} n-p-1 \\ a \end{bmatrix})$, then $\lambda(x) = a^{p} x a^{n-p-1} \in [a^{(p)}, A_{1} \cdot \ldots \cdot A_{k}, a^{(n-p-1)}] = a^{p} \cdot A_{1} \cdot \ldots \cdot A_{k} \cdot a^{n-p-1} = a^{p} y a^{n-p-1}$ for some $y \in A_1 \cdot \ldots \cdot A_k$, which, by cancellativity, implies x = y. So, $x \in A_1 \cdot \ldots \cdot A_k$.

On the other hand, if $x \in A_1 \cdot \ldots \cdot A_k$, then

$$a^{p}xa^{n-p-1} \in a^{p} \cdot A_{1} \cdot \ldots \cdot A_{k} \cdot a^{n-p-1} = \begin{bmatrix} p \\ a \end{pmatrix} \cdot A_{1} \cdot \ldots \cdot A_{k} \cdot \begin{bmatrix} p \\ a \end{bmatrix}$$

Thus $x \in \lambda^{-1}(\begin{bmatrix} p \\ a \end{pmatrix}, A_1 \cdot \ldots \cdot A_k, \begin{bmatrix} n-p-1 \\ a \end{bmatrix})$. This completes the proof of (4). The set $\begin{bmatrix} p \\ a \end{pmatrix}, A_1 \cdot \ldots \cdot A_k, \begin{bmatrix} n-p-1 \\ a \end{bmatrix}$ is open in G, hence, by Theorem 3.1, it is open in $(\overline{F}, \overline{\tau})$. By Theorem 2.2, the mapping λ is continuous and therefore $A_1 \cdot \ldots \cdot A_k = 1$

 $\lambda^{-1}([\stackrel{(p)}{a}, A_1 \cdot \ldots \cdot A_k, \stackrel{(n-p-1)}{a}]) \in \overline{\tau}.$ If $U \subset G^{(k)}, U \in \overline{\tau}$ and $a_1, \ldots, a_k \in G$ such that $a_1 \cdot \ldots \cdot a_k \in U$, then $W = \varphi^{-1}(U) \in \overline{\tau}$, where $\varphi(x) = a_1 \cdot \ldots \cdot a_k \cdot x$ is a left shift in \overline{F} . Consequently $W \in \tau$, because $W \subset G$. So, for any $a \in G$, the set

$$\begin{bmatrix} {}^{(n-k+p)} \\ a \end{bmatrix}, a_1, \dots, a_{k-1}, W, \begin{bmatrix} {}^{(n-p-1)} \\ a \end{bmatrix} = \begin{bmatrix} {}^{(p-1)} \\ a \end{bmatrix}, \begin{bmatrix} {}^{(n-k+1)} \\ a \end{bmatrix}, a_1, \dots, a_{k-1} \end{bmatrix}, W, \begin{bmatrix} {}^{(n-p-1)} \\ a \end{bmatrix}$$

is an open subset of G.

Since in (G, τ) the *n*-ary operation [] is continuous in all variables, there exist the family of open neighborhoods U_1, \ldots, U_k of the points a_1, \ldots, a_k , respectively, such that

$$[a^{(n-k+p)}, U_1, \dots, U_k, a^{(n-p-1)}] \subset [a^{(n-k+p)}, a_1, \dots, a_{k-1}, W, a^{(n-p-1)}].$$

Thus, in \overline{F} , we have

 $a^{n-k+p} \cdot U_1 \cdot \ldots \cdot U_k \cdot a^{n-p-1} \subset a^{n-k+p} \cdot a_1 \cdot \ldots \cdot a_{k-1} \cdot W \cdot a^{n-p-1}$.

Because $a_1 \cdot \ldots \cdot a_{k-1} \cdot W \subset U$, the last implies

$$a^{n-k+p} \cdot U_1 \cdot \ldots \cdot U_k \cdot a^{n-p-1} \subset a^{n-k+p} \cdot U \cdot a^{n-p-1}$$

This, in view of the cancellativity, gives $U_1 \cdot \ldots \cdot U_k \subset U$.

By virtue of the arbitrariness of the point $a_1 \cdot \ldots \cdot a_k \in U$, we conclude that the family \mathcal{B} is a base of the topology $\overline{\tau}$ on \overline{F} .

Now we will show that the binary operation defined in \overline{F} is continuous in the topology $\overline{\tau}$. Let $g = s \cdot t$ for some $s = a_1 \cdot \ldots \cdot a_i$, $t = b_1 \cdot \ldots \cdot b_j$, where $a_1, \ldots, a_i, b_1, \ldots, b_j \in G$ and $1 \leq i, j < n$. If $C \in \mathcal{B}$ and $g \in C$, then $C = C_1 \cdot \ldots \cdot C_k$ for some k < n and $\emptyset \neq C_i \in \tau$. Let $g = c_1 \cdot \ldots \cdot c_k$ for some $c_i \in C_i$. If i + j < n, then $s \cdot t = a_1 \cdot \ldots \cdot a_i \cdot b_1 \cdot \ldots \cdot b_j = c_1 \cdot \ldots \cdot c_k$. Thus i + j = k.

From the cancellativity of the binary operation in \overline{F} and the continuity of the *n*-ary operation [], we conclude that there exist open neighborhoods A_1, \ldots, A_i of the points a_1, \ldots, a_i , respectively, and open neighborhoods B_1, \ldots, B_j of the points b_1, \ldots, b_j such that $A_1 \cdot \ldots \cdot A_i \cdot B_1 \cdot \ldots \cdot B_j \subset C_1 \cdot \ldots \cdot C_k = C$. Since $A = A_1 \cdot \ldots \cdot A_i$ and $B = B_1 \cdot \ldots \cdot B_j$ are open neighborhoods of the points s, t, respectively, the last inclusion implies $A \cdot B \subset C$.

In the case $i+j \ge n$ we have $c_1 \cdot \ldots \cdot c_k = a_1 \cdot \ldots \cdot a_i \cdot b_1 \cdot \ldots \cdot b_j = a \cdot b_{n-i+1} \cdot \ldots \cdot b_j$ for $a = [a_1, \ldots, a_i, b_1, \ldots, b_{n-i}]$. So, as above, we conclude that k = i + j - n and there are open neighborhoods $D, B_{n-i+1}, \ldots, B_j$ of the points $a, b_{n-i+1}, \ldots, b_j$, respectively, such that $D \cdot B_{n-i+1} \cdot \ldots \cdot B_j \subset C_1 \cdot \ldots \cdot C_k = C$. Since the *n*-ary operation [] is continuous, then there are open neighborhoods A_1, \ldots, A_i of the points a_1, \ldots, a_i and open neighborhoods B_1, \ldots, B_{n-i} of the points b_1, \ldots, b_{n-i} such that $[A_1, \ldots, A_i, B_1, \ldots, B_{n-i}] \subset D$. Thus, for $A = A_1 \cdot \ldots \cdot A_i, B = B_1 \cdot \ldots \cdot B_j$ we have $A, B, \in \mathcal{B}, A \cdot B \subset C$ and $s \in A, t \in B$. This proves that the binary multiplication defined in \overline{F} is continuous in the topology $\overline{\tau}$.

Corollary 3.8. If $(G, [], \tau)$ is a topological n-ary group, then its universal covering group $(\overline{F}, *)$ is a topological group with the topology $\overline{\tau}$.

The proof follows immediately from the preceding theorem and the results of [4], where is proved that the operation of taking inverse element is continuous if the family \mathcal{B} is a base of the corresponding topology.

References

- H. Boujouf, The topology in the n-ary semigroups, definable by the deflection systems, (Russian), Voprosy Algebry 10 (1996), 187 - 189.
- [2] N. Bourbaki, Topologie générale. Structures topologiques, Hermann, Pais, 1965.
- [3] G. Crombez, G. Six, On topological n-groups, Abh. Math. Sem. Univ. Hamburg 41 (1974), 115-124.
- [4] G. Čupona, On topological n-group, Bull. Soc. Math. Phys. R. S. Macedoine 22 (1971), 5-10.
- [5] G. Čupona, N. Celakoski, On representation of n-associatives into semigroups, Makedon. Akad. Nauk. Umet. Oddel. Prirod. Mat. Nauk. Prilozi 6 (1974), 23 – 34.
- [6] W.A. Dudek, V.V. Mukhin, On topological n-ary semigroups, Quasigroups and Related Systems 3 (1996), 73 - 88.
- [7] W.A. Dudek, V.V. Mukhin, Free covering semigroups of topological n-ary semigroups, Quasigroups and Related Systems 22 (2014), 67 - 70.
- [8] N. Endres, On topological n-groups and their corresponding groups, Discuss. Math. Algebra Stochastic Methods 15 (1995), 163 - 169.
- [9] J.D. Lawson, B.L. Madison, On congruences and cones, Math. Zeitshrift 120 (1971), 18-24.
- [10] V.V. Mukhin, On topological n-semigroups, Quasigroups and Related Systems 4 (1997), 39-49.
- [11] V.V. Mukhin, Topological covering semigroups of topological n-ary semigroups, (Russian), Proc. Confer. Theoretical and applied aspects of mathematics, science and education, Akhangelsk (2014), 248 - 252.
- [12] V.V. Mukhin, Kh. Buzhuf, On the embedding of n-ary abelian topological semigroups into n-ary topological groups, (Russian) Problems in Algebra 9 (1996), 157-160.
- [13] M.S. Pop, On the boundary in topological n-semigroups, Mathematica (Cluj) 22(45) (1980), 127-130.
- [14] M. Žižović, A topological analogue of the Hosszú-Gluskin theorem, (Serbo-Croatian) Mat. Vesnik 13(28) (1976), no. 2, 233 – 235.

Received January 03, 2017

W.A. Dudek

Faculty of Pure and Applied Mathematics, Wroclaw University of Science and Technology, Wroclaw, Poland

E-mail: wieslaw.dudek@pwr.edu.pl

V.V. Mukhin

Vologda Institute of Law and Economics of the Federal Penal Service of Russia, Vologda, Russia E-mail: mukhinv1945@yandex.ru