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On some algebraic properties

of order of an element of a multigroup

Johnson Aderemi Awolola and Paul Augustine Ejegwa

Abstract. The concept of multigroups is a generalization of groups whereby the underlying

structure is a multiset over a group X. As a continuation of the study of various algebraic

structures of multisets, the concept of order of an element with respect to multigroup is introduced

and some of its related results outlined. Also, the Lagrange's theorem for regular multigroup

is described, and the restriction to regular multigroup makes the theorem �exible showing an

analogy to that of group theory.

1. Introduction

The conception of multiset was introduced by N.G. de Bruijn under the idea of
classical set theory. According to George Cantor,

By a set we are to understand any collection M of de�nite and distinct objects m
of our intuition or thought (which will be called the "element" of M) into a whole.

One unavoidable consequence of Cantor's de�nition is that no element can
occur more than once in a classical set. Indeed, this aspect of Cantorian set
theory does not go hand in hand with many situations arising in solving real
world problems. For example, the repeated roots of x2 − 2x + 1 = 0, repeated
observations in statistical samples, repeated hydrogen atoms in a water molecule,
H2O, etc. need to be considered signi�cant. Once we admit the restriction of
de�niteness on the nature of objects forming a set, we have multisets. Details on
fundamentals of multiset, multiset applications and various algebraic structures
de�ned via multiset can be found in [3], [6], [7], [8], [9].

Very recently, [4] introduced multigroups as a natural generalization of the con-
cept of groups which di�ers from the earlier de�nition given in [2], and established
some of its fundamental properties. The recent de�nition of multigroup which
follows [5] is adopted for the results presented in this paper. The aim of this paper
is to present the notion of order of an element with respect to multigroup and
outline some of its related results.
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2. Preliminaries

De�nition 2.1. A multiset (mset) A drawn from a crisp (ordinary) set X is
represented by a count function CA de�ned as CA : X → D = {0, 1, 2, . . .}.

For x ∈ X, CA(x) denotes the number of times the element x in the mset A
occurs. The representation of the mset A drawn from X = {x1, x2, . . . , xn} is

[x1, x2, ...xn]m1,m2,...mn

such that xi appears mi (i = 1, 2, ..., n) times in A.

De�nition 2.2. An mset is called regular or constant if all its elements occur with
the same multiplicity.

De�nition 2.3. Let X be a group. A multiset A over X is called a multigroup

over X if the count function A or CA satis�es the following conditions.

(i) CA(xy) > CA(x) ∧ CA(y), ∀x, y ∈ X,

(ii) CA(x−1) > CA(x), ∀x ∈ X.

The set of all multigroups over X is denoted by MG(X).

If A ∈MG(X), it follows that CA(x−1) = CA(x) and CA(e) > CA(x) .

De�nition 2.4. Let H ∈MG(X). For any x ∈ X, xH and Hx de�ned by

CxH(y) = CH(x−1y)

and
CHx(y) = CH(yx−1), ∀y ∈ X,

are respectively called the left and right mcosets of H in X.

De�nition 2.5. Let A ∈MG(X). Then A is called regular if the count function
A occurs with the same multiplicity. The set of all regular multigroups over X is
denoted by RMG(X).

Proposition 2.6. (cf. [4]) Let A ∈ MG(X). Then the following assertions are

equivalent.

(i) CA(xy) = CA(yx), ∀x, y ∈ X.

(ii) CA(xyx−1) = CA(y), ∀x, y ∈ X.

(iii) CA(xyx−1) > CA(y), ∀x, y ∈ X.

(iv) CA(xyx−1) 6 CA(y), ∀x, y ∈ X.

Other de�nitions and facts one can �nd in [1].
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3. Order of an element of a multigroup

De�nition 3.7. Let A ∈MG(X) and x ∈ X. If there exists a positive integer n
such that CA(xn) = CA(e), then the least such positive integer is called the order

of an element x with respect to A. If no such n exists, x is said to be of in�nite
order with respect to A. The order of an element x with respect to A is denoted
by OA(x).

Example 3.8. LetX = (R−{0}, ·) and A = [1,−1]3,2. Then CA((−1)2) = CA(1).
Therefore OA(−1) = 2. But for any x ∈ R − {1, 0,−1}, @ n ∈ Z+ such that
CA(xn) = CA(1). Therefore OA(x) =∞, ∀x ∈ R− {1, 0,−1}.

Equality of O(x) = O(y) does not imply OA(x) = OA(y), as shown in the
below.

Example 3.9. Let {e, a, b, c} be the Klein's 4-group and A = [e, a, b, c]3,2,3,2.
Clearly, O(a) = O(b) but OA(a) = 2 and OA(b) = 1, since CA(b) = CA(e).

Remark 3.10. If H = {x ∈ X | CA(x) = CA(e)} 6 X, then OA(x) = ~, the
order of x relative to H (i.e., the smallest positive integer n such that xn ∈ H, if
∃ such a positive integer). In particular, if H is trivial subgroup {e} of X, then
OA(x) = O(x), the (classical) order of x in X.

De�nition 3.11. Let A ∈ MG(X). The order of A denoted by O(A) is de�ned
as O(A) = Σx∈XCA(x), i.e., the total number of all multiplicities of its element.

Proposition 3.12. If H 6 X and A ∈ MG(X), then O(A|H) 6 O(A), where

A|H means A restricted to H.

Proof. Straightforward.

Proposition 3.13. (Lagrange's theorem for RMG)
Let H 6 X, A|H ∈ RMG(H) and A ∈ RMG(X). Then O(A|H)|O(A).

Proof. Let O(A) = n. By Proposition 2.6, we have O(A|H) 6 n. If O(A|H) = n,
then the result is trivial. Now, we assume that O(A|H) < n. Let O(A|H) = m,
∀x ∈ H. Then if k is the count function of each left mcoset A in X, then O(A) =
CxA(y) · O(A|H) ∀y ∈ X. By Lagrange's theorem for regular multigroup, n|m.
Hence the proof.

Example 3.14. Consider the subgroup H = {1,−1} of X = {1,−1, i,−i} such
that A = [1,−1, i,−i]2,2,2,2 and A|H = [1,−1]2,2. Then O(A) = 8, O(A|H) = 4
and CiA(−i) = CA(1) = 2. Hence, O(A|H)|O(A).

Corollary 3.15. If H 6 X, x ∈ H and A|H ∈ RMG(H), then OA|H(x)|O(A|H).

Proof. Since A|H ∈ RMG(H), for some positive integer m we have CA|H(xm) =
CA|H(e). Hence, OA|H(x) = m. Now, H is a subgroup of X and A|H ∈ RMG(H)
such that O(A|H) = n. If for any x ∈ H, r = Cx(A|H)(y) = CA|H(x−1y) ∀y ∈ H,
then n = rm. Hence n|m.
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Proposition 3.16. Let A ∈MG(X). Then OA(x) = OA(x−1).

Proof. By de�nition, OA(x) = n. So, CA(xn) = CA(e). Thus, CA((xn)−1) =
CA(e−1), i.e., CA((x−1)n) = CA(e), which implies OA(x−1) > n. Hence m > n.

Also, OA(x−1) = m implies CA((x−1)m) = CA(e). So, CA((xm)−1) = CA(e),
i.e., CA(xm) = CA(e). Thus, OA(x) > m. Hence n > m. Therefore, n = m.

Proposition 3.17. If x ∈ X and A ∈ MG(X) such that O(A) is even, then

CA(xO(A)) = CA(e).

Proof. Let OA(x) = n. Then O(A) = m ·OA(x), where

xO(A) = xm ·OA(x) = (xn)m.
Then

CA(xO(A)) = CA((Xn)m) > CA(xn) = CA(e).

Therefore, CA(xO(A)) > CA(e).
Since A ∈ MG(X), then CA(e) > CA(y) ∀y ∈ X. So, CA(xO(A)) 6 CA(e).

Hence, CA(xO(A)) = CA(e).

Proposition 3.18. Let A ∈ MG(X) and x ∈ X. If there exists m ∈ Z+, such

that CA(xm) = CA(e), then OA(x)|m.

Proof. Let OA(x) = n. By division algorithm, there exists integers s and t such
that m = ns + t, 0 6 t < n. Then

CA(xt) = CA(xm−ns) = CA(xm(xn)−s) > CA(xm) ∧ CA((xn)−s)

= CA(e) ∧ CA((xns)−1) = CA((xns)−1)

= CA(xns) = CA((xn)s) > CA(xn) = CA(e).

Thus, CA(xt) = CA(e). Hence, t = 0 by minimality of n, i.e., m = ns.

Proposition 3.19. Let A ∈MG(X) and let x, y ∈ X be such that (OA(x), OA(y))
= 1 and xy = yx. If CA(xy) = CA(e), then CA(x) = CA(y) = CA(e).

Proof. Let OA(x) = n and OA(y) = m. Then

CA(e) = CA(xy) 6 CA((xy)m) = CA(xmym).

Hence, CA(xmym) = CA(e). Now,

CA(xm) = CA(xmymy−m) > CA(xmym) ∧ CA(y−m) = CA(e) ∧ CA(e) = CA(e).

Thus, CA(xm) = CA(ym) = CA(e). Therefore, n|m by Proposition 3.18. But
(n,m) = 1. Thus, n = 1 i.e., CA(x) = CA(xn) = CA(e). Similarly, CA(y) =
CA(e).

Proposition 3.20. Let A ∈MG(X). Then OA(xm) 6 OA(x).
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Proof. By de�nition, OA(x) = n means CA(xn) = CA(e). Then CA((xn)m) =
CA(em), hence CA(xnm) = CA(e). So, CA((xm)n) = CA(e), i.e, OA(xm) 6 n.
Consequently, OA(xm) 6 OA(x).

Proposition 3.21. Let A ∈MG(X). Then OA(xyx−1) 6 OA(y).

Proof. Let OA(xyx−1) = m and OA(y) = n. Then

CA((xyx−1)2) = CA((xyx−1)(xyx−1)) = CA(xy(x−1x)yx−1)

= CA(x(ye)yx−1) = CA(xy2x−1).

In general, CA((xyx−1)n) = CA(xynx−1) 6 CA(yn) = CA(e) = OA(y).

Remark 3.22. If A ∈MG(X), then OA(xyx−1) = OA(y).

Proposition 3.23. Let A ∈ MG(X) and OA(x) = n, where x ∈ X. If m ∈ Z
with (m,n) = d, then OA(xm) = n

d .

Proof. Let OA(xm) = t. Now, for m
d = k ∈ Z+,

CA((xm)
n
d ) = CA(xnk) > CA(xn) = CA(e).

By Proposition 3.18, t|(n
d ). Since (m,n) = d, then ∃ i, j ∈ Z such that ni+mj = d.

Therefore,

CA(xtd) = CA(xt(ni+mj)) > CA((xn)ti) ∧ CA(((xm)t)j)

> CA(xn) ∧ CA((xm)t)

> CA(e) ∧ CA(e) = CA(e).

Thus, n|( t
d ) by Proposition 3.18, this implies (n

d )|t, consequently t = n
d .

Putting in the above Proposition d = 1 we obtain

Corollary 3.24. Let A ∈ MG(X) and OA(x) = n, where x ∈ X. If m ∈ Z with

(m,n) = 1, then OA(xm) = OA(x).

Proposition 3.25. Let A ∈MG(X) and OA(x) = n, where x ∈ X. Then for all

i ≡ j(mod n), i, j ∈ Z, we have OA(xi) = OA(xj).

Proof. Let OA(xi) = t and OA(xj) = s. Assume i = j + nk and k ∈ Z. Then

CA((xi)s) = CA((xj+nk)s) > CA((xj)s) ∧ CA((xn)ks)

> CA(e) ∧ CA(e) = CA(e)

implies CA((xi)s) = CA(e). Therefore, t|s. Similarly, by CA((xj)t) = CA(e) we
obtain s|t. Thus, t = s.
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