On nuclei and conuclei of S-quantales

Xia Zhang and Tingyu Li

Abstract. S-quantales have been proved to be injectives in the category of S-posets with Ssubmultiplicative order-preserving mappings as morphisms. In this work, algebraic investigations on S-quantales are presented. A representation theorem of an S-quantale according to nuclei is obtained, quotients of an S-quantale with respect to nuclei and congruences are completely studied. Simultaneously, the relationship between S-subquantales and conuclei of an S-quantale is established.

1. Preliminary

Various quantale-like structures (quantales, locales, quantale modules, quantale algebras, unital quantales etc.) have been studied for decades and they have useful applications in algebra, logic and computer science ([3], [6], [11], [12]). In [11], algebraic properties and applications of quantales are well studied. The idea was then extended to groupoid quantales [7], involutive quantales [9], [5], sup-lattices [10], quantale mudules [4], [14], [13], and quantale algebras [15], [8], etc. Recently, Zhang and Laan in [16] introduced a new kind of quantale-like structure, named S-quantales. It has been shown that S-quantles play an important role in the theory of injectivity on the category of S-posets with S-submultiplicative order-preserving mappings as morphisms. In fact, injectives in this category are exactly S-quantales. The purpose of this paper is to make a contribution on algebraic investigations of S-quantales. Lets us first recall some basic definitions.

In this work, S is always a *pomonoid*, i.e., a monoid S equipped with a partial order \leq such that $ss' \leq tt'$ whenever $s \leq t, s' \leq t'$ in S. A poset (A, \leq) together with a mapping $A \times S \to A$ (under which a pair (a, s) maps to an element of A denoted by as) is called a *right S-poset*, denoted by A_S , if for any $a, b \in A, s, t \in S$,

2. a1 = a,

3. $a \leq b, s \leq t$ imply that $as \leq bt$.

A left S-poset can be defined similarly. In this paper we only consider right S-posets, therefore we will omit the word "right".

^{1.} a(st) = (as)t,

²⁰¹⁰ Mathematics Subject Classification: 06F99

Keywords: S-quantale, Nucleus, Conucleus, S-poset

This research is supported by Natural Science Foundation of Guangdong Province, China (No. 2016A030313832), the Science and Technology Program of Guangzhou, China (No. 201607010190).

Let A_S and B_S be S-posets. A mapping $f : A_S \to B_S$ is said to be Ssubmultiplicative if $f(a)s \leq f(as)$ for any $a \in A_S$, $s \in S$. We call f an S-poset homomorphism if it preserves both S-actions and orders.

An S-poset A_S is said to be an S-quantale ([16]) if

- (1) the poset A is a complete lattice;
- (2) $(\bigvee M)s = \bigvee \{ms \mid m \in M\}$ for each subset M of A and each $s \in S$.

An *S*-quantale homomorphism is a mapping between *S*-quantales which preserves both *S*-actions and arbitrary joins. An *S*-subquantale of an *S*-quantale A_S is indeed the relative subposet of A_S which closed under *S*-actions and arbitrary joins.

We begin with properties of S-quantale homomorphisms and mappings between S-quantales with right adjoints. Then a representation theorem of quotients for S-quantales by nuclei is presented. The important topic of relations between the lattices of nuclei and congruences of an S-quantale is fully investigated. Dually, the connection on S-subquantales and conuclei is studied.

2. Mappings and homomorphisms

Let $f : P \to Q$ be a join-preserving mapping of posets. By the adjoint functor theorem ([1]), f has a unique right adjoint $f_* : Q \to P$, fulfilling

$$f(x) \leqslant y \Longleftrightarrow x \leqslant f_*(y), \tag{1}$$

for any $x \in P$, $y \in Q$, and hence

$$f(f_*(y)) \leqslant y, \quad x \leqslant f_*(f(x)). \tag{2}$$

Given an S-quantale Q_S , and any $s \in S$, the mapping $s_- : Q_S \to Q_S$ defined by s(a) = as for each $a \in Q_S$, preserves all joins, and thus has a unique right adjoint, denoted by s_* , satisfying

$$s(a) \leqslant b \Longleftrightarrow a \leqslant s_*(b), \tag{3}$$

and

$$s(s_*(a)) \leqslant a, \ a \leqslant s_*(s(a)), \tag{4}$$

for each $a, b \in Q_S$. It holds evidently that $s_*(a)s \leq a, \forall a \in Q_S$.

Proposition 2.1. Let Q_S be an S-quantale. Then for any $b \in Q_S$, $s, t \in S$, the following statements hold.

1. $s_*(t_*(b)) = (st)_*(b)$,

2.
$$s_*(b)s = b \iff (\exists a \in Q_S) \ as = b$$

3. $s_*(bs) = b \iff (\exists a \in Q_S) \ b = s_*(a).$

Proof. We note that for any $x, b \in Q_S$, $s, t \in S$,

$$x \leqslant s_*(t_*(b)) \Longleftrightarrow xs \leqslant t_*(b) \Longleftrightarrow xst \leqslant b \Longleftrightarrow x \leqslant (st)_*(b),$$

by (3), so we obtain 1. 2 and 3 can be proved similarly.

Proposition 2.2. Let $f: P_S \to Q_S$ be an S-quantale homomorphism. Then

$$f_*(s_*(a)) = s_*(f_*(a))$$

for any $a \in Q_S$, $s \in S$.

Proof. By (1) and f preserving S-actions, we have

$$f_*(s_*(a)) \leqslant s_*(f_*(a)) \Longleftrightarrow f_*(s_*(a)) s \leqslant f_*(a) \Longleftrightarrow f(f_*(s_*(a))s) \leqslant a$$
$$\iff f(f_*(s_*(a))s \leqslant a \iff f(f_*(s_*(a))) \leqslant s_*(a),$$

for each $a \in Q_S$. But the final inequality natural follows by (2), we soon get that $f_*(s_*(a)) \leq s_*(f_*(a))$. One may dually gain that $s_*(f_*(a)) \leq f_*(s_*(a))$.

Recall that for a poset P, a monotone mapping j on P is said to be a *closure* operator if it is both increasing and idempotent.

Definition 2.3. Let Q_S be an S-quantale, j a closure operator on Q_S . We call j a *nucleus* if it is S-submultiplicative, i.e.,

$$j(a)s \leqslant j(as)$$

for each $a \in Q_S$, $s \in S$.

Lemma 2.4. Let Q_S be an S-quantale, j a nucleus on Q_S . Then

j

$$(s_*(a)) \leqslant s_*(j(a))$$

for all $a \in Q_S$, $s \in S$.

Proof. Keep in mind that $s_*(a)s \leq a$, $\forall a \in Q_S$, $s \in S$, we immediately get that $j(s_*(a))s \leq j(s_*(a)s) \leq j(a)$, and thus $j(s_*(a)) \leq s_*(j(a))$ by (3).

Lemma 2.5. Let $f: P_S \to Q_S$ be an S-quantale homomorphism. Then $f_*: Q_S \to P_S$ is S-submultiplicative.

Proof. By (2), $f(f_*(a)) \leq a$, $\forall a \in Q_S$, it follows that $f(f_*(a)s) = f(f_*(a))s \leq as$, and hence $f_*(a)s \leq f_*(as)$ by (1).

Lemma 2.6. Let $f: P_S \to Q_S$ be an S-quantale homomorphism. Then f_*f is a nucleus on P_S .

Proof. If $a \leq b$ for $a, b \in P_S$, then $f(a) \leq f(b)$, and thus $f_*f(a) \leq f_*f(b)$ by the fact that f_* preserves arbitrary meets.

Directly applying (2), we hence obtain that $a \leq f_* f(a)$ and

$$f_*f(a) \leq f_*f(f_*f(a)) = f_*(ff_*)(f(a)) \leq f_*(f(a)),$$

for any $a \in P_S$. So f_*f is a closure operator.

In addition, Lemma 2.5 provides that

$$(f_*f)(a)s = (f_*(f(a))s \leqslant f_*(f(a)s) = (f_*f)(as),$$

for any $a \in Q_S, s \in S$. Consequently, f_*f is a nucleus as desired.

3. Nuclei and a representation theorem

For an S-quantale Q_S , we write $Nuc(Q_S)$ for the set of all nuclei on Q_S . $Nuc(Q_S)$ will therefore become a complete lattice if it is equipped with the pointwise order. The following properties of nuclei can be easily gained.

Lemma 3.1. (cf. [16]) Let Q_S be an S-quantale, j a nucleus on Q_S . Then for any $a \in Q_S, s \in S$, j(as) = j(j(a)s).

Lemma 3.2. Let Q_S be an S-quantale, j a nucleus on Q_S . Then

$$j\left(\bigvee_{i\in I} j(a_i)\right) = j\left(\bigvee_{i\in I} a_i\right), \quad \forall a_i \in Q_S, \ i\in I.$$

Proof. Follows from the property of j being a closure operator.

Lemma 3.3. Let Q_S be an S-quantale, $j, j \in Nuc(Q_S)$. Then the following statements hold.

1. $j \leq \tilde{j} \iff \tilde{j}j = \tilde{j};$ 2. $j \leq \tilde{j} \iff \forall x, y \in Q_S, \ j(x) = j(y) \Rightarrow \tilde{j}(x) = \tilde{j}(y).$

Given a nucleus j on an S-quantale Q_S . Write

$$Q_j = \{a \in Q_S \mid j(a) = a\}.$$

Then Q_i becomes an S-quantale with the S-action defined by

$$\circ s = j(as), a \in A, s \in S,$$

and the order inherited from Q_S , where the joins are given by $\bigvee^j D = j (\bigvee D)$

for any $D \subseteq Q_j$ (cf. [16]).

Proposition 3.4. Let Q_S be an S-quantale, $P_S \subseteq Q_S$ an S-subquantale. Then $P_S = Q_j$ for some nucleus j iff P_S is closed under meets and $s_*(a) \in P_S$ whenever $a \in P_S$.

Proof. Suppose that $P_S = Q_j$ for some nucleus j on Q_S . It is routine to check that $\bigwedge A \in P_S$ for any $A \subseteq P_S$. Note that for any $a \in P_S$, $j(s_*(a)) \leq s_*(j(a)) = s_*(a)$ by Lemma 2.4, one gets that $s_*(a) \in P_S$, as well.

On the contrary, define a mapping j on Q_S by

$$j(x) = \bigwedge \left\{ a \in P_S \mid x \leqslant a \right\}, \ \forall x \in Q_S$$

Straightforward verification shows that j is a closure operator.

For any $x \in Q_S, s \in S$, $a \in P_S$, since $xs \leq a \Leftrightarrow x \leq s_*(a)$ by (3), and $s_*(a) \in P_S$ by the assumption, it follows that

$$j(xs) \leqslant a \Rightarrow xs \leqslant j(xs) \leqslant a \Rightarrow j(x) \leqslant s_*(a) \Rightarrow j(x)s \leqslant a,$$

and results in $j(x)s \leq j(xs)$. Therefore, j is a nucleus on Q_s .

By the definition of j and the fact that P_S being closed under meets, we finally achieve that $P_S = Q_j$.

Let Q_S be an S-quantale, $\mathcal{P}(Q)$ the power set of Q. Define an S-action on $\mathcal{P}(Q)$ by

$$I \cdot s = \{as \mid a \in I, s \in S\}, \ \forall I \subseteq Q$$

Then $(\mathcal{P}(Q)_S, \cdot, \subseteq)$ becomes an S-quantale. The following theorem provides a representation of an S-quantale according to quotients w.r.t. nuclei.

Theorem 3.5. (Representation Theorem) Let Q_S be an S-quantale. Then there exists a nucleus j on $\mathcal{P}(Q)_S$ such that $Q_S \cong \mathcal{P}(Q)_j$.

Proof. Define a mapping j on $\mathcal{P}(Q)_S$ by

$$j(I) = \left(\bigvee I\right) \downarrow, \ \forall I \in \mathcal{P}(Q)_S.$$

Clearly, j is a closure operator. Suppose that $I \subseteq Q_S$ and $x \in j(I)$. Then $xs \leq (\bigvee I)s = \bigvee (Is)$ for all $s \in S$, gives that $xs \in j(Is)$. Thus $j(I) \cdot s \subseteq j(Is)$.

We note that for any $I \subseteq Q_S$, j(I) = I iff $I = a \downarrow$ for some $a \in Q_S$. Therefore, $\mathcal{D}(Q) = \{I \in \mathcal{D}(Q) \mid I = i(I)\} = \{I \in Q \mid I = a \downarrow for some a \in Q_S\}$

$$\mathcal{P}(Q)_j = \{I \in \mathcal{P}(Q)_S \mid I = j(I)\} = \{I \subseteq Q_S \mid I = a \downarrow \text{ for some } a \in Q_S\}.$$

Now define a mapping $\sigma: Q_S \to \mathcal{P}(Q)_j$ by

$$\sigma(a) = a \downarrow, \ \forall a \in Q_S.$$

Then σ is certainly bijective. We remain to show that σ is a homomorphism. By virtue of

$$\sigma\Big(\bigvee_{i\in I}a_i\Big)=\Big(\bigvee_{i\in I}a_i\Big)\Big|=\Big(\bigvee\Big(\bigcup_{i\in I}a_i\downarrow\Big)\Big)\Big|=j\Big(\bigcup_{i\in I}a_i\downarrow\Big)=\bigvee_{i\in I}^J\sigma(a_i),$$

for any $a_i \in Q_S$, $i \in I$, and

$$\sigma(a) \circ s = j (\sigma(a) \cdot s) = j(a \downarrow \cdot s) = \left(\bigvee (a \downarrow \cdot s) \right) \downarrow$$
$$= \left(\bigvee \{xs \mid x \leqslant a\} \right) \downarrow = (as) \downarrow = \sigma(as),$$

for each $a \in Q_S$, $s \in S$, we finally achieve that σ is an isomorphism between S-quantales Q_S and $\mathcal{P}(Q)_j$.

4. Quotients of S-quantales

Let Q_S be an S-quantale. A congruence ρ on Q_S is an equivalence relation on Q_S which is compatible both with S-actions and joins, and has the further property that Q/ρ equipped with a partial order becomes an S-quantale, and the canonical mapping $\pi: Q_S \to (Q/\rho)_S$ is an S-quantale homomorphism. Similar to the case of S-posets ([2]), a simple way for Q/ρ being an S-quantale is that Q/ρ accompanies an order " \sqsubseteq " defined by a ρ -chain, that is,

$$[a]_{\rho} \subseteq [b]_{\rho} \iff a \underset{\rho}{\leqslant} b, \ \forall a, b \in Q_S,$$

where $a \leq b$ is given by a sequence

$$a \leqslant a_1 \ \rho \ a'_1 \leqslant a_2 \ \rho \ a'_2 \leqslant \dots \leqslant a_n \ \rho \ a'_n \leqslant b_n$$

for $a_i, a'_i \in Q_S$, i = 1, 2..., n. We see at once that in the S-quantale $(Q/\rho, \sqsubseteq)$,

$$\bigvee_{i \in I} [a_i]_{\rho} = \left[\bigvee_{i \in I} a_i \right]_{\rho}, \ \forall a_i \in Q_S.$$

Let us denote by $\operatorname{Con}(Q_S)$ the set of all congruences on Q_S . Then $\operatorname{Con}(Q_S)$ is a complete lattice with the inclusion as order.

This section is devoted to presenting the intrinsic relationship between the posets $Nuc(Q_S)$ and $Con(Q_S)$, respectively. We begin with the following results.

Lemma 4.1. Let Q_S be an S-quantale, $\rho \in \text{Con}(Q_S)$, $\pi : Q_S \to (Q/\rho)_S$ be the canonical mapping. Then $\pi = \pi \pi_* \pi$.

Proof. By Lemma 2.6, $\pi_*\pi$ is a nucleus on Q_S . So for any $a \in Q_S$, one has that $a \leq \pi_*\pi(a)$, and hence $\pi(a) \leq \pi\pi_*\pi(a)$. However, (1) indicates that $\pi\pi_*\pi(a) \leq \pi(a)$. Consequently, we get that $\pi(a) = \pi\pi_*\pi(a)$.

Let us write $\pi_*\pi$ in Lemma 4.1 as j_{ρ} . As usual, π is a homomorphism on Q_S such that $\rho = \ker \pi$.

Lemma 4.2. Let Q_S be an S-quantale, $\rho \in \text{Con}(Q_S)$, $\pi : Q_S \to (Q/\rho)_S$ be the canonical mapping. Then $\ker j_{\rho} = \ker \pi$.

Proof. Follows by Lemma 4.1.

Lemma 4.3. Let Q_S be an S-quantale, j a nucleus on Q_S . Then ker j is a congruence on Q_S .

Proof. From Lemma 3.1, we have j(as) = j(j(a)s), $\forall a \in Q_S, s \in S$. Thus for any $(a,b) \in \ker j, s \in S$,

$$j(as) = j(j(a)s) = j(j(b)s) = j(bs)$$

that is, $(as, bs) \in \text{ker} j$. Moreover, derived from Lemma 3.2, we obtain that

$$j\left(\bigvee_{i\in I}a_i\right) = j\left(\bigvee_{i\in I}j(a_i)\right) = j\left(\bigvee_{i\in I}j(b_i)\right) = j\left(\bigvee_{i\in I}b_i\right)$$

for any $(a_i, b_i) \in \ker j$, $i \in I$. Therefore, $(\bigvee_{i \in I} a_i, \bigvee_{i \in I} b_i) \in \ker j$ as needed. \Box

Now we are ready to characterize the concrete relationship between nuclei and congruences of an S-quantale.

Theorem 4.4. Let Q_S be an S-quantale. Then there exists an isomorphism φ : $\operatorname{Nuc}(Q_S) \to \operatorname{Con}(Q_S)$ as posets. Moreover, for each $j \in \operatorname{Nuc}(Q_S)$, $Q_j \cong (Q/\varphi(j))_S$ as S-quantales.

Proof. Define a mapping φ : $\mathsf{Nuc}(Q_S) \to \mathsf{Con}(Q_S)$ by

$$\varphi(j) = \ker j,$$

for each $j \in \mathsf{Nuc}(Q_S)$. Then by Lemma 4.3, ker j is a congruence on Q_S . From Lemma 3.3(2), we obtain that φ is an order embedding.

Suppose that $\rho \in \text{Con}(Q_S)$, and $\pi : Q_S \to (Q/\rho)_S$ is the canonical mapping. Then by Lemma 4.2, we have

$$arphi(j_{
ho}) = \mathsf{ker} j_{
ho} = \mathsf{ker} \pi =
ho_{
ho}$$

We hence conclude that $Nuc(Q_S)$ is isomorphic to $Con(Q_S)$ as posets.

each
$$j \in \mathsf{Nuc}(Q_S)$$
, define $f : (Q/\ker j)_S \to Q_j$ and $g : Q_j \to (Q/\ker j)_S$ as
 $f([a]_{\ker j}) = j(a),$

for each $[a]_{\ker j} \in (Q/\ker j)_S$, and

For

$$q(a) = [a]_{\mathsf{ker}j},$$

for any $a \in Q_j$. We need to show that f and g are invertible S-quantale homomorphisms.

Obviously, f is well-defined. For any $a \in Q_S$, $s \in S$, since j(j(a)s) = j(as) by Lemma 3.1, we obtain that

$$f([a]_{\ker j}s) = f([as]_{\ker j}) = j(as) = j(j(a)s) = j(a) \circ s = f([a]_{\ker j}) \circ s.$$

Moreover, Lemma 3.2 yields that

$$f\Big(\bigvee_{i\in I} [a_i]_{\ker j}\Big) = f\Big(\Big[\bigvee_{i\in I} a_i\Big]_{\ker j}\Big) = j\Big(\bigvee_{i\in I} a_i\Big) = j\Big(\bigvee_{i\in I} j(a_i)\Big) = \bigvee_{i\in I} j(a_i) = \bigvee_{i\in I} (f[a_i]_{\ker j}),$$

for each $[a_i]_{kerj} \in (Q/kerj)_S$, $i \in I$. Therefore, f is an S-quantale homomorphism. It is clear that g is an S-poset homomorphism. Furthermore, the equalities

$$g\Big(\bigvee_{i\in I}a_i\Big) = g\Big(j\Big(\bigvee_{i\in I}a_i\Big)\Big) = \Big[j\Big(\bigvee_{i\in I}a_i\Big)\Big]_{\ker j} = \Big[\bigvee_{i\in I}a_i\Big]_{\ker j} = \bigvee_{i\in I}[a_i]_{\ker j} = \bigvee_{i\in I}g(a_i),$$

for any $a_i \in Q_j$, $i \in I$ indicate that g is an S-quantale homomorphism. We then achieve our aim by the final step, that is, for all $a \in Q_j$,

$$f(g(a)) = f([a]_{\ker j}) = j(a) = a$$

and

$$g(f([a]_{\ker j}))=g(j(a))=[j(a)]_{\ker j}=[a]_{\ker j},$$

for any $a \in Q_S$.

5. Conuclei and S-subquantales

In this section, we introduce the notion of conuclei on an S-quantale Q_S , and discuss the relationship between conuclei and S-subquantales of Q_S .

Definition 5.1. Let Q_S be an S-quantale. We call a coclosure operator g on Q_S a conucleus if it is S-submultiplicative.

Dually to Theorem 3.5, which represented quotients of an S-quantale by nuclei, the following theorem establishes the relation between conuclei and S-subquantales of an S-quantale.

Theorem 5.2. Let Q_S be an S-quantale, g a conucleus on Q_S . Then

$$Q_g = \{a \in Q_S \mid g(a) = a\}$$

is an S-subsquantale of Q_S . Moreover, for any S-subquantale P_S of Q_S , there is a conucleus g on Q_S , such that $P_S = Q_g$.

Proof. Firstly, we have

$$\bigvee A = \bigvee \{g(a) \mid a \in A\} \leqslant g\left(\bigvee \{a \mid a \in A\}\right) = g\left(\bigvee A\right),$$

for any $A \subseteq Q_g$, and

$$as = g(a)s \leqslant g(as) \leqslant as,$$

for each $a \in Q_g, s \in S$. It turns out that Q_g is an S-subquantale of Q_S .

Next, suppose that P_S is an S-subquantale of Q_S . Define a mapping g on Q_S as

$$g(b) = \bigvee \{ a \in P_S \mid a \leq b \}, \ \forall b \in Q_S.$$

Straightforward proving shows that g is order-preserving and $g(b) \leq b$, $\forall b \in Q_S$. Recall that P_S is join closed, $g(b) \in P_S$, and hence

$$g(b) \leqslant \bigvee \{a \in P_S \mid a \leqslant g(b)\} = g(g(b)).$$

So g is a coclosure operator. Together with the inequalities

$$g(b)s = \bigvee \{a \in P_S \mid a \leqslant b\} \cdot s = \bigvee \{as \in P_S \mid a \leqslant b\}$$
$$\leqslant \bigvee \{a \in P_S \mid a \leqslant bs\} = g(bs),$$

for any $b \in Q_S$, $s \in S$, we consequently obtain that g is a conucleus on Q_S .

By the definition of g, we immediately get that $b \leq g(b)$, $\forall b \in P_S$. So $P_S \subseteq Q_g$. Another inclusion is clear. Therefore, $P_S = Q_g$ as required. \Box

Given an S-quantale Q_S , write $\mathsf{CoNuc}(Q_S)$ as the poset of all conuclei on Q_S equipped with pointwise order, and $\mathsf{Sub}(Q_S)$ the poset of all S-subquantales of Q_S with inclusion as order, respectively. Theorem 5.3 describes the potential connection between the posets $\mathsf{Sub}(Q_S)$ and $\mathsf{CoNuc}(Q_S)$.

Theorem 5.3. Let Q_S be a fixed S-quantale. Then there is an isomorphism $k : \operatorname{Sub}(Q_S) \to \operatorname{CoNuc}(Q_S)$ as posets, such that for any $M_S \in \operatorname{Sub}(Q_S)$ we have $M_S = Q_{k(M_S)}$.

Proof. Define mappings $h : \mathsf{CoNuc}(Q_S) \to \mathsf{Sub}(Q_S)$ and $k : \mathsf{Sub}(Q_S) \to \mathsf{CoNuc}(Q_S)$ as

$$h(g) = Q_g, \ \forall g \in \mathsf{CoNuc}(Q_S),$$

 and

$$k(M_S) = g_{M_S}, \ \forall M_S \in \mathsf{Sub}(Q_S),$$

respectively, where g_{M_S} is given by

$$g_{M_S}(a) = \bigvee \{ m \in M_S \mid m \leqslant a \} = \bigvee \{ M_S \cap a \downarrow \}, \ \forall a \in Q_S.$$

It is routine to check that g_{M_S} is a coclosure operator. In addition, for any $s \in S$, $a \in Q_S$, the inequalities

$$g_{M_S}(a)s = \left(\bigvee \{m \in M_S \mid m \leqslant a\}\right)s = \bigvee \{ms \in M_S \mid m \leqslant a\}$$
$$\leqslant \bigvee \{m \in M_S \mid m \leqslant as\} = g_{M_S}(as)$$

show that g_{M_S} is S-submultiplicative, and hence a conucleus. k being orderpreserving is clear.

By Theorem 5.2, h is well-defined. Assume that $m, n \in \mathsf{CoNuc}(Q_S)$ with $m \leq n$. Then $a = m(a) \leq n(a) \leq a$, for any $a \in Q_m$, indicate that $a \in Q_n$. Thus h is order-preserving.

We next show that $hk = id_{\mathsf{Sub}(Q_S)}$, i.e., $Q_{g_{M_S}} = M_S$, $\forall M_S \in \mathsf{Sub}(Q_S)$. This follows by the fact that

$$g_{M_S}(x) = \bigvee (M_S \cap x \downarrow) = x,$$

for any $x \in M_S$, and conversely, $Q_{g_{M_S}} \subseteq M_S$ by the reason that M_S is closed under joins.

It remains to prove that $kh = id_{\mathsf{CoNuc}(Q_S)}$, i.e., $g_{Q_f} = f$, $\forall f \in \mathsf{CoNuc}(Q_S)$. Suppose that $a \in Q_S$. Then

$$f(a) \leqslant a \leqslant \bigvee (Q_f \cap a \downarrow) = g_{Q_f}(a).$$

Conversely, for any $x \in Q_f \cap a \downarrow$, $x = f(x) \leq f(a)$ give rise to that f(a) is an upper bound of $Q_f \cap a \downarrow$. Therefore, we achieve that $g_{Q_f}(a) = f(a)$ and finally, $\mathsf{Sub}(Q_S) \cong \mathsf{CoNuc}(Q_S)$ as needed.

References

 J. Adámek, H. Herrlich H and G.E. Strecker, Abstract and Concrete Categories: The Joy of Cats, John Wiley and Sons, New York, 1990.

- [2] S. Bulam-Fleming and V. Laan, Lazard's theorem for S-posets, Math. Nachr. 278 (2005), 1743 – 1755.
- [3] P.T. Jonestone, Stone spaces, Cambridge university press, 1982.
- [4] J. Paseka, A note on nuclei of quantale modules, Cah. Topol. Geom. Differ. Categ. 43 (2002), 19-34.
- [5] J. Paseka, Multiplier algebras of involutive quantales, Contributions to general algebra, Heyn, Klagenfurt, 14, (2004), 109-118.
- [6] D. Kruml and J. Paseka, Algebraic and categorical aspects of quantales, In Handbook of Algebra, Vol. 5, (Hazewinkel M.) Elsevier, 2008, 323 362.
- [7] A. Palmigiano, R. Re, Relational representation of groupoid quantales, Order 30 (2013), 65 - 83.
- [8] F.F. Pan and S.W. Han, Free Q-algebras, Fuzzy Sets and Systems 247 (2014), 138-150.
- [9] J.W. Pelletier and J. Rosický, Simple involutive quantales, J. Algebra 195 (1997), 367-386.
- [10] P. Resende, Sup-lattice 2-forms and quantales, J. Algebra 276 (2004), 143-167.
- [11] K.I. Rosenthal, Quantales and their applications, Pitman Research Notes in Math. 234, Harlow, Essex, 1990.
- [12] C. Russo, Quantale modules, Lambert Academic publishing, Saarbrücken, 2009.
- [13] C. Russo, Quantale modules and their operators, with applications, J. Logic Comput. 20 (2010), 917 – 946.
- [14] S.A. Solovyov, On the category of Q-Mod, Algebra Universalis 58 (2008), 35-58.
- [15] S.A. Solovyov, A note on nuclei of quantale algebras, Bull. Sect. Logic Univ. Lodz 40 (2011), 91 - 112.
- [16] X. Zhang and V. Laan, On injective hulls of S-posets, Semigroup Forum 91 (2015), 62-70.

Received October 10, 2016

School of Mathematical Sciences South China Normal University Guangzhou 510631 China E-mails: xzhang@m.scnu.edu.cn, litingyuhao@126.com