Prime ordered k-bi-ideals in ordered semirings

Permpoon Senarat and Bundit Pibaljommee

Abstract. Various types of ordered k-bi-ideals of ordered semirings are investigated. Several characterizations of ordered k-bi-idempotent semirings are presented.

1. Introduction

The notion of a semiring was introduced by Vandiver [8] as a generalization of a ring. Gan and Jiang [2] investigated an ordered semiring with zero and introduced several notions, for example, ordered ideals, minimal ideals and maximal ideals of an ordered semiring. Han, Kim and Neggers [3] investigated properties orders in a semiring. Henriksen [4] defined more restrict class of ideals in semiring known as k-ideals. Several characterizations of k-ideals of a semiring were obtained by Sen and Adhikari in [6, 7]. In [1], Akram and Dudek studied properties of intuinistic fuzzy left k-ideals of semirings. An ordered k-ideal in an ordered semiring was characterized by Patchakhieo and Pibaljommee [5].

In this paper, we introduce the notion of an ordered k-bi-ideal, a prime ordered k-bi-ideal, a strongly prime ordered k-bi-ideal, an irreducible and a strongly irreducible ordered k-bi-ideals of an ordered semiring. We introduce the concept of an ordered k-bi-idempotent semiring and characterize it using prime, strongly prime, irreducible and strongly irreducible ordered k-bi-ideals.

2. Preliminaries

A semiring is a triplet $(S, +, \cdot)$ consisting of a nonempty set S and two operations + (addition) and \cdot (multiplication) such that (S, +) is a commutative semigroup, (S, \cdot) is a semigroup and $a \cdot (b + c) = a \cdot b + a \cdot c$ and $(a + b) \cdot c = a \cdot c + b \cdot c$ for all $a, b, c \in S$.

A semiring $(S, +, \cdot)$ is called a *commutative* if (S, \cdot) is a commutative semigroup. An element $0 \in S$ is called a *zero element* if a + 0 = 0 + a = a and $a \cdot 0 = 0 = 0 \cdot a$.

A nonempty subset A of a semiring $(S, +, \cdot)$ is called a *left (right) ideal* of S if $x + y \in A$ for all $x, y \in A$ and $SA \subseteq A$ ($AS \subseteq A$). We call A an *ideal* of S if it is both a left and a right ideal of S. A subsemiring B of a semiring S is called a *bi-ideal* of S if $BSB \subseteq B$.

²⁰¹⁰ Mathematics Subject Classification: 20N20, 20N25, 06F05.

Keywords: ordered semiring, ordered k-bi-ideal, prime right ordered k-bi-ideal.

Let (S, \leq) be a partially ordered set. Then $(S, +, \cdot, \leq)$ is called an *ordered* semiring if $(S, +, \cdot)$ is a semiring and the relation \leq is compatible with the operations + and \cdot , i.e., if $a \leq b$, then $a + x \leq b + x$, $x + a \leq x + b$, $ax \leq bx$ and $xa \leq xb$ for all $a, b, x \in S$.

Let $(S, +, \cdot, \leq)$ be an ordered semiring. For nonempty subsets A, B of S and $a \in S$, we denote

$$\begin{aligned} (A] &= \{x \in S \mid x \leqslant a \text{ for some } a \in A\}, \\ AB &= \{xy \in S \mid x \in A, y \in B\}, \\ \Sigma A &= \{\sum_{i \in I} a_i \in S \mid a_i \in A \text{ and } I \text{ is a finite subset of } \mathbb{N}\}, \\ \Sigma AB &= \{\sum_{i \in I} a_i b_i \in S \mid a_i \in A, b_i \in B \text{ and } I \text{ is a finite subset of } \mathbb{N}\} \text{ and} \\ \mathbb{N}a &= \{na \in S \mid n \in \mathbb{N}\}. \end{aligned}$$

Instead of writing an ordered semiring $(S, +, \cdot, \leqslant)$, we simply denote S as an ordered semiring.

A left (right) ideal A of an ordered semiring S is called a *left* (*right*) ordered ideal of S if for any $x \leq a$ for some $a \in A$ implies $x \in A$. We call A an ordered ideal if it is both a left and a right ordered ideal of S.

A left (right) ordered ideal of A of a semiring S is called a *left (right) ordered* k-ideal of S if x + a = b for some $a, b \in A$ implies $x \in A$. We call A an ordered k-ideal of S if it is both a left and a right ordered k-ideal of S.

The k-closure of a nonempty subset A of an ordered semiring S is defined by

$$\overline{A} = \{ x \in S \mid \exists a, b \in A, x + a \leq b \}.$$

Now, we recall the results concerning to the k-closure given in [5].

Lemma 2.1. Let S be an ordered semiring and A, B be nonempty subsets of S.

(i)
$$(\overline{A}] \subseteq (A].$$

- (*ii*) If $A \subseteq B$, then $\overline{A} \subseteq \overline{B}$.
- (*iii*) $\overline{(A]}B \subseteq \overline{(AB]}$ and $A\overline{(B]} \subseteq \overline{(AB]}$.

Lemma 2.2. Let A be a nonempty subset of an ordered semiring S. If A is closed under addition, then (A] and $\overline{(A]}$ are also closed.

Lemma 2.3. Let S be an ordered semiring and A, B be nonempty subsets of S with $A + A \subseteq A$ and $B + B \subseteq B$. Then

- $(i) \ A \subseteq (A] \subseteq \overline{A} \subseteq \overline{(A]};$
- (*ii*) $\overline{(A]} = \overline{\overline{(A]}};$

- $(iii) \ A+B\subseteq \overline{A}+\overline{B}\subseteq \overline{A+B};$
- $(iv) \ \overline{[A]} + \overline{[B]} \subseteq \overline{\overline{[A]} + \overline{[B]}} \subseteq \overline{\overline{[A]} + \overline{[B]}};$
- $(v) \ \overline{A} \ \overline{B} \subseteq \overline{(A]} \ \overline{(B]} \subseteq \overline{(\Sigma AB]};$
- (vi) $A(\Sigma B) \subseteq \Sigma AB$ and $(\Sigma A)B \subseteq \Sigma AB$.

Lemma 2.4. Let S be an ordered semiring and A be a nonempty subset of S with $A + A \subseteq A$. Then $\overline{(A)} = \overline{(A)}$.

Theorem 2.5. Let S be an ordered semiring and A be a left ideal (resp. right ideal, ideal). Then the following conditions are equivalent:

- (i) A is a left ordered k-ideal (resp. right ordered k- ideal, ordered k-ideal) of S;
- (ii) if $x \in S, x + a \leq b$ for some $a, b \in A$, then $x \in A$;

$$(iii) A = A$$

Theorem 2.6. Let S be an ordered semiring and A be a nonempty subset of S. If A is a left ideal (resp. right ideal, ideal), then $\overline{(A]}$ is the smallest left ordered k-ideal (resp. right ordered k-ideal, ordered k-ideal) containing A.

From Theorem 2.6, we have A is an ordered k-ideal if and only if $\overline{(A)} = A$.

Theorem 2.7. Let S be an ordered semiring. If the intersection of a family of left ordered k-ideals (resp. right ordered k-ideal, ordered k-ideal) is not empty, then it is a left ordered k-ideal (resp. right ordered k-ideal, ordered k-ideal).

For a nonempty subset A of an ordered semiring S, we denote by $L_k(A)$, $R_k(A)$ and $M_k(A)$ the smallest left ordered k-ideal, the smallest right ordered k-ideal and the smallest ordered k-ideal of S containing A, respectively. For any $a \in S$, we denote $L_k(a) = L_k(\{a\})$, $R_k(a) = R_k(\{a\})$ and $M_k(a) = M_k(\{a\})$.

Theorem 2.8. Let S be an ordered semiring and $a \in S$. Then

- (i) $L_k(A) = \overline{(\Sigma A + \Sigma S A]};$
- (*ii*) $R_k(A) = \overline{(\Sigma A + \Sigma AS]};$
- (*iii*) $M_k(a) = \overline{(\Sigma A + \Sigma SA + \Sigma AS + \Sigma SAS)}.$

Corollary 2.9. Let S be an ordered semiring and $a \in S$. Then

- (i) $L_k(a) = \overline{(\mathbb{N}a + Sa]};$
- (*ii*) $R_k(a) = \overline{(\mathbb{N}a + aS]};$
- (*iii*) $M_k(a) = \overline{(\mathbb{N}a + Sa + Sa + \Sigma SaS)}.$

3. Prime ordered k-bi-ideals

First, we begin with the definition of an ordered k-bi-ideal of an ordered semiring and give some concepts in ordered semirings that we need in this section.

Definition 3.1. An ordered subsemiring B of an ordered semiring S is said to be an *ordered k-bi-ideal* of S if

- (i) $BSB \subseteq B;$
- (*ii*) if $x \in S$, a + x = b for some $a, b \in B$, then $x \in B$;
- (*iii*) if $x \in S$, $x \leq b$ for some $b \in B$, then $x \in B$.

We note that every right ordered k-ideal or left ordered k-ideal is an ordered k-bi-ideal of S.

Example 3.2. Let
$$S = \{A, B, C, D, E, F\}$$
, where $A = \begin{bmatrix} \emptyset & \emptyset \\ \emptyset & \emptyset \end{bmatrix}$, $B = \begin{bmatrix} \{1\} & \emptyset \\ \emptyset & \emptyset \end{bmatrix}$, $C = \begin{bmatrix} \{1\} & \{1\} \\ \emptyset & \emptyset \end{bmatrix}$, $D = \begin{bmatrix} \{1\} & \emptyset \\ \{1\} & \emptyset \end{bmatrix}$, $E = \begin{bmatrix} \{1\} & \{1\} \\ \{1\} & \emptyset \end{bmatrix}$, $F = \begin{bmatrix} \{1\} & \{1\} \\ \{1\} & \{1\} \end{bmatrix}$.

We defined operations + and \cdot on S by letting $U = \begin{bmatrix} a_1 & a_2 \\ a_3 & a_4 \end{bmatrix}$, $V = \begin{bmatrix} b_1 & b_2 \\ b_3 & b_4 \end{bmatrix}$

$$U + V = \begin{bmatrix} a_1 \cup b_1 & a_2 \cup b_2 \\ a_3 \cup b_3 & a_4 \cup b_4 \end{bmatrix} \text{ and }$$
$$U \cdot V = \begin{bmatrix} (a_1 \cap b_1) \cup (a_2 \cap b_3) & (a_1 \cap b_2) \cup (a_2 \cap b_4) \\ (a_3 \cap b_1) \cup (a_4 \cap b_3) & (a_3 \cap b_2) \cup (a_4 \cap b_4) \end{bmatrix}.$$

The tables of both operations are shown as follows.

+	A	B	C	D	E	F			A	B	C	D	E	F
A	A	B	C	D	E	F	-	A	A	A	A	A	A	A
B	B	B	C	D	E	F		B	A	B	B	D	D	D
C	C	C	C	E	E	F	and	C	A	C	C	F	F	F
D	D	D	E	D	E	F		D	A	B	B	D	D	D
E	E	E	E	E	E	F		E	A	C	C	F	F	F
F	F	F	F	F	F	F		F	A	C	C	F	F	F

We defined a partially ordered relation \leq on L by

 $U \leq V$ if and only if $a_1 \subseteq b_1$, $a_2 \subseteq b_2$, $a_3 \subseteq b_3$ and $a_4 \subseteq b_4$.

Then $A \leq B \leq C \leq E \leq F$ and $A \leq B \leq D \leq E \leq F$.

We can see that $(S, +, \cdot, \leq)$ is an ordered semiring and $T = \{A\}$ is its ordered k-ideal, $Y = \{A, B, C\}$ is a left ordered k-ideal but not a right ordered k-ideal, $Z = \{A, B, D\}$ is a right ordered k-ideal but not a left ordered k-ideal and $X = \{A, B\}$ is an ordered k-bi-ideal but not a left or a right ordered k-ideal.

Theorem 3.3. Let B be a bi-ideal of an ordered semiring S. Then the following statements are equivalent.

- (i) B is an ordered k-bi-ideal of S.
- (ii) If $a + x \leq b$ for some $a, b \in B$, then $x \in B$.
- (*iii*) $\overline{B} = B$.

Proof. $(i) \Rightarrow (ii)$: Let *B* be an ordered *k*-bi-ideal of *S*. If $x + a \leq b$ for some $a, b \in B$ and $x \in S$. Then $x + a \in B$. It follows that there exists $p \in B$ such that x + a = p. By assumption, $x \in B$.

 $(ii) \Rightarrow (iii)$: Let $x \in \overline{B}$. Then there exist $a, b \in B$ such that $x + a \leq b$. By assumption, we have $x \in B$. Thus, $\overline{B} = B$.

 $(iii) \Rightarrow (i)$: Assume that $\overline{B} = B$. Let $x \in S$ such that x + a = b for some $a, b \in B$. Then $x \in \overline{B}$. By assumption, we have $x \in B$. By Lemma 2.3(i), $(B] \subseteq \overline{B} = B$. Altogether, B is an ordered k-bi-ideal of S. \Box

Theorem 3.4. Let B be a bi-ideal of an ordered semiring S. Then $\overline{(B)}$ is the smallest ordered k-bi-ideal of S containing B.

Proof. It is clear that $B \subseteq \overline{(B]}$. By Lemma 2.2, $\overline{(B]}$ is closed under addition. By Lemma 2.1(*iii*) and Lemma 2.4, we have $\overline{(B)} \overline{(B]} \subseteq \overline{(\overline{(B)}B]} \subseteq \overline{(\overline{(BB]}]} \subseteq \overline{(\overline{(BB]}]} = \overline{(B]}$. By Lemma 2.1(*iii*), $\overline{(B]S(B)} \subseteq \overline{(\Sigma BSB)} \subseteq \overline{(B)}$. Thus, $\overline{(B)}$ is a bi-ideal of S. By Lemma 2.3(*ii*), we have $\overline{(B)} = \overline{(B)}$. By Theorem 3.3, $\overline{(B)}$ is an ordered k-bi-ideal of S. Let K be an ordered k-bi-ideal of S containing B. Then $\overline{(B)} \subseteq \overline{K} = K$. Then $\overline{(B)}$ is the smallest ordered k-bi-ideal of S containing B.

Corollary 3.5. A bi-ideal B of an ordered semiring S is an ordered k-bi-ideal if and only if $\overline{(B)} = B$.

Theorem 3.6. If intersection of a family of ordered k-bi-ideals of an ordered semiring S is not empty, then it is an ordered k-bi-ideal of S. \Box

Definition 3.7. An ordered k-bi-ideal B of S is called a semiprime ordered k-biideal if $\overline{(\Sigma A^2)} \subseteq B$ implies $A \subseteq B$ for any ordered k-bi-ideal A of S.

Definition 3.8. An ordered k-bi-ideal B of S is called a prime ordered k-bi-ideal if $\overline{(\Sigma AC)} \subseteq B$ implies $A \subseteq B$ or $C \subseteq B$ for any ordered k-bi-ideal A, C of S.

Definition 3.9. An ordered k-bi-ideal B of S is called a strongly prime ordered kbi-ideal if $\overline{(\Sigma AC]} \cap \overline{(\Sigma CA]} \subseteq B$ implies $A \subseteq B$ or $C \subseteq B$ for any ordered k-bi-ideal A, C of S.

Obviously, every strongly prime ordered k-bi-ideal of S is a prime ordered k-bi-ideal and every prime ordered k-bi-ideal of S is a semiprime ordered k-bi-ideal.

The following example shows that every prime ordered k-bi-ideal need not to be a strongly prime ordered k-bi-ideal.

Example 3.10. Let $S = \{a, b, c\}$. We define operations + and \cdot on S as the following tables.

+	a	b	c		•	a	b	c
a	$egin{array}{c} a \\ b \end{array}$	b	c	and	a	a	$a \\ b$	a
b	b	b	c	and	b	a	b	b
c	c	c	c		c	a	c	c

We defined a partially ordered relation \leqslant on S by $\leqslant := \{(a, a), (b, b), (c, c), (a, b)\}.$

We can show that $(S, +, \cdot, \leq)$ is an ordered semiring and $\{a\}, \{a, b\}, \{a, c\}$ and S are all ordered k-bi-ideals of S. Now, we have $\{a\}$ is prime but not strongly prime, since $\overline{(\Sigma\{a,b\}\{a,c\}]} \cap \overline{(\Sigma\{a,c\}\{a,b\}]} = \{a\}$ but $\{a,b\} \notin \{a\}$ and $\{a,c\} \notin \{a\}$.

Example 3.11. Let $S = \{a, b, c, d, e, f\}$. We define operations + and \cdot on S as the following tables.

+	a	b	c	d	e	f		•	a	b	c	d	e	f
a	a	b	c	d	e	f		a	a	a	a	a	a	a
b	b	b	c	d	e	f		b	a	a	a	b	b	c
c	c	c	c	e	e	f	and	c	a	b	c	b	c	c
d	d	d	e	d	e	f		d	a	a	a	d	d	f
e	e	e	e	e	e	f		e	a	b	c	d	e	f
f	$\int f$	f	f	f	f	f		f	a	d	f	d	f	f

We defined a partially ordered relation \leq on S by

$$\leqslant := \{(a,a), (b,b), (c,c), (d,d), (e,e), (f,f), (a,b), (a,c), (a,d), (a,e), (b,c), (b,d), (b,e), (c,e), (d,e)\}.$$

The sets $T = \{a\}, X = \{a, b\}, Y = \{a, b, c\}, Z = \{a, b, d\}$ and S are all ordered k-bi-ideals of S. We find that Y, Z and S are strongly prime ordered k-bi-ideals, X is a semiprime ordered k-bi-ideal but not prime and T is not a semiprime ordered k-bi-ideal.

Definition 3.12. An ordered k-bi-ideal B of S is called an *irreducible ordered* k-bi-ideal if for any ordered k-bi-ideal A and C of S, $A \cap C = B$ implies A = B or C = B.

Definition 3.13. An ordered k-bi-ideal B of S is called a *strongly irreducible* ordered k-bi-ideal if for any ordered k-bi-ideal A and C of S, $A \cap C \subseteq B$ implies $A \subseteq B$ or $C \subseteq B$.

It is clear that every strongly irreducible ordered k-bi-ideal of S is an irreducible ordered k-bi-ideal of S.

Theorem 3.14. If intersection of any family of prime ordered k-bi-ideals (or semiprime ordered k-bi-ideals) of S is not empty, then it is a semiprime ordered k-bi-ideal.

Proof. Let $\{K_i \mid i \in I\}$ be a family of prime ordered k-bi-ideals of S. Assume that $\bigcap_{i \in I} K_i \neq \emptyset$. For any ordered k-bi-ideal B of S, $\overline{(\Sigma B^2]} \subseteq \bigcap_{i \in I} K_i$ implies $\overline{(\Sigma B^2]} \subseteq K_i$ for all $i \in I$. Since K_i are prime ordered k-bi-ideals, $B \subseteq K_i$ for all $i \in I$. Hence, $B \subseteq \bigcap_{i \in I} K_i$. Thus, $\bigcap_{i \in I} K_i$ is semiprime.

Theorem 3.15. If B is a strongly irreducible and semiprime ordered k-bi-ideal of an ordered semiring S, then B is a strongly prime ordered k-bi-ideal of S.

Proof. Let B be a strongly irreducible and semiprime ordered k-bi-ideal of S. Let $\overline{(\Sigma AC]} \cap \overline{(\Sigma CA]} \subseteq B$ for any ordered k-bi-ideals A and C of S. Since $\overline{(\Sigma(A \cap C)^2)} \subseteq \overline{(\Sigma AC]}$ and $\overline{(\Sigma(A \cap C)^2)} \subseteq \overline{(\Sigma CA]}$. We have $\overline{(\Sigma(A \cap C)^2)} \subseteq \overline{(\Sigma AC]} \cap \overline{(\Sigma CA]}$. Since $A \cap C$ is an ordered k-bi-ideal and B is a semiprime ordered k-bi-ideal, $A \cap C \subseteq B$. Since B is a strongly irreducible ordered k-bi-ideal, $A \subseteq B$ or $C \subseteq B$. Thus, B is a strongly prime ordered k-bi-ideal of S.

Theorem 3.16. If B is an ordered k-bi-ideal of an ordered semiring S and $a \in S$ such that $a \notin B$, then there exists an irreducible ordered k-bi-ideal I of S such that $B \subseteq I$ and $a \notin I$.

Proof. Let \mathcal{K} be the set of all ordered k-bi-ideals of S containing B but not containing a. Then \mathcal{K} is a nonempty set, since $B \in \mathcal{K}$. Clearly, \mathcal{K} is a partially ordered set under the inclusion of sets. Let \mathcal{H} be a chain subset of \mathcal{K} . Then $\cup \mathcal{H} \in \mathcal{K}$. By Zorn's Lemma, there exists a maximal element in \mathcal{K} . Let I be a maximal element in \mathcal{K} . Let A and C be any two ordered k-bi-ideals of S such that $A \cap C = I$. Suppose that $I \subset A$ and $I \subset C$. Since I is a maximal element in \mathcal{K} , we have $a \in A$ and $a \in C$. Then $a \in A \cap C = I$ which is a contradiction. Thus, C = I or A = I. Therefore, I is an irreducible ordered k-bi-ideal.

Theorem 3.17. A prime ordered k-bi-ideal B of an ordered semiring S is a prime one sided ordered k-ideal of S.

Proof. Let *B* be a prime ordered *k*-bi-ideal of *S*. Suppose *B* is not a one sided ordered *k*-ideal of *S*. It follows $\overline{(BS]} \not\subseteq B$ and $\overline{(BS]} \not\subseteq B$. Then $\overline{(\Sigma BS]} \not\subseteq B$ and $\overline{(\Sigma SB]} \not\subseteq B$. Since *B* is a prime ordered *k*-bi-ideal, $\overline{(\Sigma (\Sigma BS)} \overline{(\Sigma SB)} \not\subseteq B$. By Lemma 2.3(*v*),

$$\begin{array}{l} (\Sigma \overline{(\Sigma BS]} \ \overline{(\Sigma SB]}] \subseteq \Sigma \overline{\Sigma} \overline{(\Sigma BS)} \overline{(\Sigma SS)} \overline{]} \subseteq \Sigma \overline{\Sigma} \overline{(\Sigma BSSB)} \overline{]} \\ \subseteq \overline{\Sigma \overline{(\Sigma BSSB)} \overline{]}} \subseteq \overline{\Sigma} \overline{\overline{(\Sigma B)} \overline{]}} \subseteq \overline{\Sigma} \overline{\overline{(\Sigma B)} \overline{]}} = B. \end{array}$$

This is a contradiction. Therefore, $\overline{(\Sigma BS]} \subseteq B$ or $\overline{(\Sigma SB]} \subseteq B$. Thus, B is a prime one sided ordered k-ideal of S.

Theorem 3.18. Let B be an ordered k-bi-ideal of an ordered semiring S. Then B is prime if and only if for a right ordered k-ideal R and a left ordered k-ideal L of S, $(\Sigma RL] \subseteq B$ implies $R \subseteq B$ or $L \subseteq B$. Proof. Assume that B is a prime ordered k-bi-ideal of S. Let R be a right ordered k-ideal and L be a left ordered k-ideal of S such that $\overline{(\Sigma RL]} \subseteq B$. Since R and L are ordered k-bi-ideals of S, $R \subseteq B$ or $L \subseteq B$. Conversely, let A and C be any two ordered k-bi-ideals of S such that $\overline{(\Sigma AC]} \subseteq B$. Suppose that $C \not\subseteq B$. Let $a \in A$ and $c \in C \setminus B$. Then $\overline{(\mathbb{N}a + aS]} \subseteq A$ and $\overline{(\mathbb{N}c + Sc]} \subseteq C$. We have $\overline{(\Sigma(\mathbb{N}a + aS)]} \overline{(\mathbb{N}c + Sc]} \subseteq \overline{(\Sigma AC)} \subseteq B$. By assumption, $\overline{(\mathbb{N}a + aS)} \subseteq B$ or $\overline{(\mathbb{N}c + Sc]} \subseteq B$. But $\overline{(\mathbb{N}c + Sc)} \not\subseteq B$ implies that $\overline{(\mathbb{N}a + aS)} \subseteq B$. Then $a \in B$. Thus, $A \subseteq B$ and B is a prime ordered k-bi-ideal of S.

4. Fully ordered k-bi-idempotent semirings

In this section, we assume that S is an ordered semiring with zero.

Definition 4.1. An ordered semiring S is said to be fully ordered k-bi-idempotent if $\overline{(\Sigma B^2)} = B$ for any ordered k-bi-ideal B of S.

Example 4.2. The ordered semiring S defined in Example 3.2 is fully ordered k-bi-idempotent. The ordered semiring S defined in Example 3.11 is not fully ordered k-bi-idempotent, since $\overline{(\Sigma X^2)} = T \neq X$.

Theorem 4.3. Let S be an ordered semiring. Then the following statements are equivalent.

- (i) S is fully ordered k-bi-idempotent.
- (ii) $A \cap C = \overline{(\Sigma A C)} \cap \overline{(\Sigma C A)}$ for any ordered k-bi-ideal A and C of S.
- (iii) Each ordered k-bi-ideal of S is semiprime.

Proof. $(i) \Rightarrow (ii)$: Assume that $\overline{(\Sigma B^2]} = B$ for any ordered k-bi-ideal B of S. Let A and C be any two ordered k-bi-ideals of S. By Theorem 3.6, $A \cap C$ is an ordered k-bi-ideal of S. By assumption, $A \cap C = \overline{(\Sigma(A \cap C)^2)} = \overline{(\Sigma(A \cap C)(A \cap C))} \subseteq \overline{(\Sigma A C]}$. Similarly, we get $A \cap C \subseteq \overline{(\Sigma C A]}$. Therefore, $A \cap C \subseteq \overline{(\Sigma A C]} \cap \overline{(\Sigma C A]}$. Since $\Sigma A C$ is closed under addition, by Lemma 2.2, $\overline{(\Sigma A C]}$ is also closed under addition. By Lemma 2.3(vi),

$$(\Sigma AC)(\Sigma AC) \subseteq \Sigma ACAC \subseteq \Sigma ASAC \subseteq \Sigma AC.$$

Then ΣAC is an ordered subsemiring of S. By Lemma 2.3(vi),

 $(\Sigma AC)S(\Sigma AC) \subseteq (\Sigma ACS)(\Sigma AC) \subseteq \Sigma ACSAC \subseteq \Sigma ASSAC \subseteq \Sigma ASAC \subseteq \Sigma AC.$

Thus, ΣAC is a bi-ideal of S. By Theorem 3.4, $\overline{(\Sigma AC]}$ is an ordered k-bi-ideal of S. Similarly, $\overline{(\Sigma CA]}$ is an ordered k-bi-ideal. By Theorem 3.6, $\overline{(\Sigma AC]} \cap \overline{(\Sigma CA]}$ is an ordered k-bi-ideal of S. By assumption, Lemma 2.3(v), (vi) and Lemma 2.4, we have

$$\overline{(\Sigma AC]} \cap \overline{(\Sigma CA]} = (\Sigma(\overline{(\Sigma AC]} \cap \overline{(\Sigma CA]}))(\overline{(\Sigma AC]} \cap \overline{(\Sigma CA]}))$$
$$\subseteq \overline{(\Sigma\overline{(\Sigma AC]} \ \overline{(\Sigma CA]}]} \subseteq \overline{(\Sigma\overline{(\Sigma ACCA]}]} \subseteq \overline{(\Sigma\overline{(\Sigma ASA]}]} \subseteq A.$$

Similarly, we can show that $\overline{(\Sigma AC]} \cap \overline{(\Sigma CA]} \subseteq C$. Thus, $\overline{(\Sigma AC]} \cap \overline{(\Sigma CA]} \subseteq A \cap C$. Hence, $\overline{(\Sigma AC]} \cap \overline{(\Sigma CA]} = A \cap C$.

 $(ii) \Rightarrow (iii)$: Let *B* be an ordered *k*-bi-ideal of *S*. Suppose that $\overline{(\Sigma A^2]} \subseteq B$ for any ordered *k*-bi-ideal *A* of *S*. By assumption, we have $A = A \cap A = (\overline{\Sigma}AA] \cap \overline{(\Sigma AA]} = \overline{(\Sigma AA]} \subseteq B$. Hence, *B* is semiprime.

 $(iii) \Rightarrow (i)$: Let *B* be an ordered *k*-bi-ideal of *S*. Since $\overline{(\Sigma B^2]}$ is an ordered *k*-bi-ideal, by assumption, $\overline{(\Sigma B^2]}$ is semiprime. Since $\overline{(\Sigma B^2]} \subseteq \overline{(\Sigma B^2]}$, $B \subseteq \overline{(\Sigma B^2]}$. Clearly, $\overline{(\Sigma B^2]} \subseteq B$. This shows that *S* is ordered *k*-bi-idempotent.

Theorem 4.4. Let S be a fully ordered k-bi-idempotent semiring and B be an ordered k-bi-ideal of S. Then B is strongly irreducible if and only if B is strongly prime.

Proof. Assume that B is strongly irreducible. Let A and C be any two ordered kbi-ideals of S such that $(\overline{\Sigma AC}] \cap (\overline{\Sigma CA}] \subseteq B$. By Theorem 4.3, $(\overline{\Sigma AC}] \cap (\overline{\Sigma CA}] = A \cap C$. Hence, $A \cap C \subseteq B$. By assumption, we have $A \subseteq B$ or $C \subseteq B$. Thus, B is a strongly prime ordered k-bi-ideal of S. Conversely, assume that B is strongly prime. Let A and C be any two ordered k-bi-ideals of S such that $A \cap C \subseteq B$. By Theorem 4.3, $(\overline{\Sigma AC}] \cap (\overline{\Sigma CA}] = A \cap C \subseteq B$. By assumption, we have $A \subseteq C \subseteq B$. By Theorem 4.3, $(\overline{\Sigma AC}] \cap (\overline{\Sigma CA}] = A \cap C \subseteq B$. By assumption, we have $A \subseteq B$ or $C \subseteq B$. Thus, B is a strongly irreducible ordered k-bi-ideal of S.

Theorem 4.5. Every ordered k-bi-ideal of an ordered semiring S is a strongly prime ordered k-bi-ideal if and only if S is a fully ordered k-bi-ideapotent semiring and the set of all ordered k-bi-ideals of S is totally ordered.

Proof. Assume that every ordered k-bi-ideal of S is strongly prime. Then every ordered k-bi-ideal of S is semiprime. By Theorem 4.3, S is a fully ordered k-bi-ideal of S. By Theorem 3.6, $A \cap C$ is an ordered k-bi-ideal of S. By assumption, $A \cap C$ is a strongly prime ordered k-bi-ideal of S. By Theorem 4.3, $(\Sigma AC] \cap (\Sigma CA] = A \cap C$. Then $A \subseteq A \cap C$ or $C \subseteq A \cap C$. Therefore, $A = A \cap C$ or $C = A \cap C$. Thus, $A \subseteq C$ or $C \subseteq A$. Conversely, assume that S is a fully ordered k-bi-ideals of S such that $(\Sigma AC] \cap (\Sigma CA] \subseteq B$. By Theorem 4.3, $A \cap C = (\Sigma AC] \cap (\Sigma CA] \subseteq B$. By assumption, $A \subseteq C \cap C \subseteq C$. Thus, $A \subseteq C \cap C \subseteq A$. Conversely, assume that S is a fully ordered k-bi-ideals of S such that $(\Sigma AC] \cap (\Sigma CA] \subseteq B$. By Theorem 4.3, $A \cap C = (\Sigma AC] \cap (\Sigma CA] \subseteq B$. By assumption, $A \subseteq C \cap C \subseteq A$. Hence, $A \cap C = A \cap A \cap C = C$. Thus, $A \subseteq B$ or $C \subseteq B$. Therefore, B is a strongly prime ordered k-bi-ideal of S. □

Since every strongly prime ordered k-bi-ideal is a prime ordered k-bi-ideal and by Theorem 4.3 and 4.5, we have the following corollary.

Corollary 4.6. Let the set of all ordered k-bi-ideals of S be a totally ordered set under inclusion of sets. Then every ordered k-bi-ideal of S is strongly prime if and only if every ordered k-bi-ideal of S is prime. \Box

Theorem 4.7. If the set of all ordered k-bi-ideals of an ordered semiring S is a totally ordered set under inclusion of sets, then S is a fully ordered k-bi-idempotent if and only if each ordered k-bi-ideal of S is prime.

Proof. Assume that S is a fully ordered k-bi-idempotent semiring. Let B be any ordered k-bi-ideal of S and A, C be any two ordered k-bi-ideals of S such that $\overline{(\Sigma AC]} \subseteq B$. By assumption, we have $A \subseteq C$ or $C \subseteq A$. Without loss of generality, suppose that $A \subseteq C$. Then $A = \overline{(\Sigma AA]} \subseteq \overline{(\Sigma AC]} \subseteq B$. Hence, B is a prime ordered k-bi-ideal of S. Conversely, assume that every ordered k-bi-ideal of S is prime. Then every ordered k-bi-ideal of S is semiprime. By Theorem 4.3, S is a fully ordered k-bi-idempotent semiring.

Theorem 4.8. If S is a fully ordered k-bi-idempotent semiring and B is a strongly irreducible ordered k-bi-ideal of S, then B is a prime ordered k-bi-ideal.

Proof. Let *B* be a strongly irreducible ordered *k*-bi-ideal of a fully ordered *k*-bi-idempotent semiring *S*. Let *A* and *C* be any two ordered *k*-bi-ideals of *S* such that $\overline{(\Sigma AC)} \subseteq B$. Since $A \cap C$ is also an ordered *k*-bi-ideal of *S*. By assumption, $\overline{(\Sigma(A \cap C)^2)} = A \cap C$. Consider $A \cap C = \overline{(\Sigma(A \cap C)^2)} = \overline{(\Sigma(A \cap C)(A \cap C))} \subseteq \overline{(\Sigma(AC)} \subseteq B$. Since *B* is a strongly irreducible ordered *k*-bi-ideal of *S*, $A \subseteq B$ or $C \subseteq B$. Hence, *B* is a prime ordered *k*-bi-ideal of *S*.

5. Right ordered k-weakly regular semirings

First, we recall the definition of a right ordered k-weakly regular semiring and some of its properties given by Patchakhieo and Pibaljommee [5] which we need to use in this section. Then we give characterizations of right ordered k-weakly regular semirings using ordered k-bi-ideals.

An ordered semiring S is said to be a right ordered k-weakly regular semiring if $a \in \overline{(\Sigma(aS)^2)}$ for all $a \in S$.

Theorem 5.1. Let S be an ordered semiring. Then the following statements are equivalent.

- (i) S is a right ordered k-weakly regular.
- (ii) $\overline{(\Sigma A^2)} = A$ for every right ordered k-ideal A of S.
- (iii) $A \cap I = \overline{(\Sigma AI]}$ for every right ordered k-ideal A of S and every ordered k-ideal I of S.

Theorem 5.2. An ordered semiring S is right ordered k-weakly regular if and only if $B \cap I \subseteq \overline{(\Sigma BI)}$ for any ordered k-bi-ideal B and ordered k-ideal I of S.

Proof. Let S be a right ordered k-weakly regular semiring, B be an ordered k-biideal and I be an ordered k-ideal of S. Let $a \in B \cap I$. By Lemma 2.1(*iii*), Lemma 2.3(v) and Lemma 2.4, we have

$$a \in \overline{(\Sigma(aS)^2]} = \overline{(\Sigma(aS)(aS)]} \subseteq (\Sigma(aS)\overline{(\Sigma(aS)(aS)]}S] \subseteq (\overline{\Sigma((aS)(\Sigma(aS)(aS))S]}]$$
$$\subseteq \overline{(\overline{\Sigma(\Sigma(aSa)(SaSS)]}]} \subseteq \overline{(\overline{(\Sigma(BSB)(SIS)]}]} \subseteq \overline{(\overline{(\Sigma BI]}]} = \overline{(\Sigma BI]}.$$

Therefore, $B \cap I \subseteq \overline{(\Sigma BI]}$.

Conversely, assume that $B \cap I \subseteq \overline{(\Sigma BI]}$ for any ordered k-bi-ideal B and ordered k-ideal I of S. Let R be a right ordered k-ideal of S. Then R is an ordered k-bi-ideal of S. By assumption, Lemma 2.8, Lemma 2.1(*iii*), Lemma 2.3(*vi*) and Lemma 2.4, we have

$$\begin{split} R &= R \cap M_k(R) \\ &\subseteq \overline{(\Sigma R M_k(R)]} = \overline{(\Sigma R (\Sigma R + \Sigma R S + \Sigma S R + \Sigma S R S)]} \\ &\subseteq \overline{(\Sigma (\Sigma R^2 + \Sigma R^2 S + \Sigma R S R + \Sigma R S R S)]} \\ &\subseteq \overline{(\Sigma R^2 + \Sigma R^2 + \Sigma R^2 + \Sigma R^2]} \\ &= \overline{(\Sigma R^2]}. \end{split}$$

Then $R = \overline{(\Sigma R^2]}$. Thus, by Theorem 5.1, S is a right ordered k-weakly regular semiring.

Theorem 5.3. An ordered semiring S is right ordered k-weakly regular if and only if $B \cap I \cap R \subseteq \overline{(\Sigma BIR]}$ for any ordered k-bi-ideal B, ordered k-ideal I and right ordered k-ideal R of S.

Proof. Let S be a right ordered k-weakly regular semiring, B be an ordered kbi-ideal, I be an ordered k-ideal and R be a right ordered k-ideal of S. Let $a \in B \cap I \cap R$. By assumption, Lemma 2.1(*iii*), Lemma 2.3(*vi*) and Lemma 2.4, we have

$$a \in \overline{(\Sigma(aS)^2]} = \overline{(\Sigma(aS)(aS)]} \subseteq (\Sigma(aS)\overline{(\Sigma(aS)(aS)]}S]$$
$$\subseteq \overline{(\overline{\Sigma(\Sigma a(SaS)(aS)]}]} \subseteq \overline{(\overline{(\Sigma BIR]}]} = \overline{(\Sigma BIR]}.$$

Therefore, $B \cap I \cap R \subseteq \overline{(\Sigma BIR]}$.

Conversely, assume that $B \cap I \cap R \subseteq \overline{(\Sigma BIR]}$ for any ordered k-bi-ideal B, ordered k-ideal I and right ordered k-ideal R of S. Since R is an ordered k-bi-ideal of S and S is also an ordered k-ideal of S. By assumption, $R = R \cap S \cap R \subseteq \overline{(\Sigma RSR]} \subseteq \overline{(\Sigma R^2]}$. Therefore, $R = \overline{(\Sigma R^2]}$. By Theorem 5.1, S is right ordered k-weakly regular.

References

- M. Akram and W.A. Dudek, Intuitionistic fuzzy left k-ideals of semirings, Soft Comput. 12 (2008), 881 - 890.
- [2] A.P. Gan and Y.L. Jiang, On ordered ideals in ordered semirings, J. Math. Res. Exposition 31 (2011), 989 - 996.
- [3] J.S. Han, H.S. Kim and J. Neggers, Semiring orders in semirings, Appl. Math. Inform. Sci. 6 (2012), 99-102.
- [4] M. Henriksen, Ideals in semirings with commutative addition, Amer. Math. Soc. Notices 6 (1958), 321.
- [5] S. Patchakhieo and B. Pibaljommee, Characterizations of ordered k-regular semirings by ordered k-ideals, Asian-Eur. J. Math. 10 (2017), 1750020.
- [6] M.K. Sen and M.R. Adhikari, On k-ideals of semirings, Int. J. Math. Math.Sci. 15 (1992), 347 - 350.
- [7] M.K. Sen and M.R. Adhikari, On maximal k-ideals of semirings, Proc. Amer. Math. Soc. 118 (1993), 699 - 720.
- [8] H.S. Vandiver, On some simple types of semirings, Amer. Math. Monthly 46 (1939), 22 - 26.

Received September 4, 2016

Department of Mathematics, Faculty of Science, Khon Kaen University Khon Kaen 4002, Thailand Centre of Excellence in Mathematics CHE, Si Ayuttaya Rd. Bangkok 10400, Thailand E-mails: lamb2283@gmail.com, banpib@kku.ac.th