# Prime ordered $k$-bi-ideals in ordered semirings 

Permpoon Senarat and Bundit Pibaljommee


#### Abstract

Various types of ordered $k$-bi-ideals of ordered semirings are investigated. Several characterizations of ordered $k$-bi-idempotent semirings are presented.


## 1. Introduction

The notion of a semiring was introduced by Vandiver [8] as a generalization of a ring. Gan and Jiang [2] investigated an ordered semiring with zero and introduced several notions, for example, ordered ideals, minimal ideals and maximal ideals of an ordered semiring. Han, Kim and Neggers [3] investigated properties orders in a semiring. Henriksen [4] defined more restrict class of ideals in semiring known as $k$-ideals. Several characterizations of $k$-ideals of a semiring were obtained by Sen and Adhikari in [6, 7]. In [1], Akram and Dudek studied properties of intuinistic fuzzy left $k$-ideals of semirings. An ordered $k$-ideal in an ordered semiring was characterized by Patchakhieo and Pibaljommee [5].

In this paper, we introduce the notion of an ordered $k$-bi-ideal, a prime ordered $k$-bi-ideal, a strongly prime ordered $k$-bi-ideal, an irreducible and a strongly irreducible ordered $k$-bi-ideals of an ordered semiring. We introduce the concept of an ordered $k$-bi-idempotent semiring and characterize it using prime, strongly prime, irreducible and strongly irreducible ordered $k$-bi-ideals.

## 2. Preliminaries

A semiring is a triplet $(S,+, \cdot)$ consisting of a nonempty set $S$ and two operations + (addition) and $\cdot($ multiplication) such that $(S,+)$ is a commutative semigroup, $(S, \cdot)$ is a semigroup and $a \cdot(b+c)=a \cdot b+a \cdot c$ and $(a+b) \cdot c=a \cdot c+b \cdot c$ for all $a, b, c \in S$.

A semiring $(S,+, \cdot)$ is called a commutative if $(S, \cdot)$ is a commutative semigroup. An element $0 \in S$ is called a zero element if $a+0=0+a=a$ and $a \cdot 0=0=0 \cdot a$.

A nonempty subset $A$ of a semiring $(S,+, \cdot)$ is called a left (right) ideal of $S$ if $x+y \in A$ for all $x, y \in A$ and $S A \subseteq A(A S \subseteq A)$. We call $A$ an ideal of $S$ if it is both a left and a right ideal of $S$. A subsemiring $B$ of a semiring $S$ is called a bi-ideal of $S$ if $B S B \subseteq B$.

[^0]Let $(S, \leqslant)$ be a partially ordered set. Then $(S,+, \cdot, \leqslant)$ is called an ordered semiring if $(S,+, \cdot)$ is a semiring and the relation $\leqslant$ is compatible with the operations + and $\cdot$, i.e., if $a \leqslant b$, then $a+x \leqslant b+x, x+a \leqslant x+b, a x \leqslant b x$ and $x a \leqslant x b$ for all $a, b, x \in S$.

Let $(S,+, \cdot, \leqslant)$ be an ordered semiring. For nonempty subsets $A, B$ of $S$ and $a \in S$, we denote

$$
\begin{aligned}
(A] & =\{x \in S \mid x \leqslant a \text { for some } a \in A\} \\
A B & =\{x y \in S \mid x \in A, y \in B\} \\
\Sigma A & =\left\{\sum_{i \in I} a_{i} \in S \mid a_{i} \in A \text { and } I \text { is a finite subset of } \mathbb{N}\right\} \\
\Sigma A B & =\left\{\sum_{i \in I} a_{i} b_{i} \in S \mid a_{i} \in A, b_{i} \in B \text { and } I \text { is a finite subset of } \mathbb{N}\right\} \text { and } \\
\mathbb{N} a & =\{n a \in S \mid n \in \mathbb{N}\} .
\end{aligned}
$$

Instead of writing an ordered semiring $(S,+, \cdot, \leqslant)$, we simply denote $S$ as an ordered semiring.

A left (right) ideal $A$ of an ordered semiring $S$ is called a left (right) ordered ideal of $S$ if for any $x \leqslant a$ for some $a \in A$ implies $x \in A$. We call $A$ an ordered ideal if it is both a left and a right ordered ideal of $S$.

A left (right) ordered ideal of $A$ of a semiring $S$ is called a left (right) ordered $k$-ideal of $S$ if $x+a=b$ for some $a, b \in A$ implies $x \in A$. We call $A$ an ordered $k$-ideal of $S$ if it is both a left and a right ordered $k$-ideal of $S$.

The $k$-closure of a nonempty subset $A$ of an ordered semiring $S$ is defined by

$$
\bar{A}=\{x \in S \mid \exists a, b \in A, x+a \leqslant b\} .
$$

Now, we recall the results concerning to the $k$-closure given in [5].
Lemma 2.1. Let $S$ be an ordered semiring and $A, B$ be nonempty subsets of $S$.
(i) $(\bar{A}] \subseteq \overline{(A]}$.
(ii) If $A \subseteq B$, then $\bar{A} \subseteq \bar{B}$.
(iii) $\overline{(A]} B \subseteq \overline{(A B]}$ and $\overline{A(B]} \subseteq \overline{(A B]}$.

Lemma 2.2. Let $A$ be a nonempty subset of an ordered semiring $S$. If $A$ is closed under addition, then $(A]$ and $\overline{(A]}$ are also closed.

Lemma 2.3. Let $S$ be an ordered semiring and $A, B$ be nonempty subsets of $S$ with $A+A \subseteq A$ and $B+B \subseteq B$. Then
(i) $A \subseteq(A] \subseteq \bar{A} \subseteq \overline{(A]}$;
(ii) $\overline{(A]}=\overline{\overline{(A]}}$;
(iii) $A+B \subseteq \bar{A}+\bar{B} \subseteq \overline{A+B}$;
(iv) $\overline{(A]}+\overline{(B]} \subseteq \overline{\overline{(A]}+\overline{(B)}} \subseteq \overline{(A+B]}$;
(v) $\bar{A} \bar{B} \subseteq \overline{(A]} \overline{(B]} \subseteq \overline{(\Sigma A B]}$;
(vi) $A(\Sigma B) \subseteq \Sigma A B$ and $(\Sigma A) B \subseteq \Sigma A B$.

Lemma 2.4. Let $S$ be an ordered semiring and $A$ be a nonempty subset of $S$ with $A+A \subseteq A$. Then $\overline{(\overline{(A]}]}=\overline{(A]}$.

Theorem 2.5. Let $S$ be an ordered semiring and $A$ be a left ideal (resp. right ideal, ideal). Then the following conditions are equivalent:
( $i$ ) $A$ is a left ordered $k$-ideal (resp. right ordered $k$ - ideal, ordered $k$-ideal) of $S$;
(ii) if $x \in S, x+a \leqslant b$ for some $a, b \in A$, then $x \in A$;
(iii) $\bar{A}=A$.

Theorem 2.6. Let $S$ be an ordered semiring and $A$ be a nonempty subset of $S$. If $A$ is a left ideal (resp. right ideal, ideal), then $\overline{(A]}$ is the smallest left ordered $k$-ideal (resp. right ordered $k$-ideal, ordered $k$-ideal) containing $A$.

From Theorem 2.6, we have $A$ is an ordered $k$-ideal if and only if $\overline{(A]}=A$.
Theorem 2.7. Let $S$ be an ordered semiring. If the intersection of a family of left ordered $k$-ideals (resp. right ordered $k$-ideal, ordered $k$-ideal) is not empty, then it is a left ordered $k$-ideal (resp. right ordered $k$-ideal, ordered $k$-ideal).

For a nonempty subset $A$ of an ordered semiring $S$, we denote by $L_{k}(A), R_{k}(A)$ and $M_{k}(A)$ the smallest left ordered $k$-ideal, the smallest right ordered $k$-ideal and the smallest ordered $k$-ideal of $S$ containing $A$, respectively. For any $a \in S$, we denote $L_{k}(a)=L_{k}(\{a\}), R_{k}(a)=R_{k}(\{a\})$ and $M_{k}(a)=M_{k}(\{a\})$.

Theorem 2.8. Let $S$ be an ordered semiring and $a \in S$. Then
(i) $L_{k}(A)=\overline{(\Sigma A+\Sigma S A]}$;
(ii) $R_{k}(A)=\overline{(\Sigma A+\Sigma A S]}$;
(iii) $M_{k}(a)=\overline{(\Sigma A+\Sigma S A+\Sigma A S+\Sigma S A S]}$.

Corollary 2.9. Let $S$ be an ordered semiring and $a \in S$. Then
(i) $L_{k}(a)=\overline{(\mathbb{N} a+S a]}$;
(ii) $R_{k}(a)=\overline{(\mathbb{N} a+a S]}$;
(iii) $M_{k}(a)=\overline{(\mathbb{N} a+S a+S a+\Sigma S a S]}$.

## 3. Prime ordered $k$-bi-ideals

First, we begin with the definition of an ordered $k$-bi-ideal of an ordered semiring and give some concepts in ordered semirings that we need in this section.

Definition 3.1. An ordered subsemiring $B$ of an ordered semiring $S$ is said to be an ordered $k$-bi-ideal of $S$ if
(i) $B S B \subseteq B$;
(ii) if $x \in S, a+x=b$ for some $a, b \in B$, then $x \in B$;
(iii) if $x \in S, x \leqslant b$ for some $b \in B$, then $x \in B$.

We note that every right ordered $k$-ideal or left ordered $k$-ideal is an ordered $k$-bi-ideal of $S$.
Example 3.2. Let $S=\{A, B, C, D, E, F\}$, where $A=\left[\begin{array}{c}\emptyset \\ \emptyset \\ \emptyset \\ \emptyset\end{array}\right], B=\left[\begin{array}{cc}\{1\} & \emptyset \\ \emptyset & \emptyset\end{array}\right]$, $C=\left[\begin{array}{cc}\{1\} & \{1\} \\ \emptyset & \emptyset\end{array}\right], D=\left[\begin{array}{cc}\{1\} & \emptyset \\ \{1\} & \emptyset\end{array}\right], E=\left[\begin{array}{cc}\{1\} & \{1\} \\ \{1\} & \emptyset\end{array}\right], F=\left[\begin{array}{ll}\{1\} & \{1\} \\ \{1\} & \{1\}\end{array}\right]$.
We defined operations + and $\cdot$ on $S$ by letting $U=\left[\begin{array}{ll}a_{1} & a_{2} \\ a_{3} & a_{4}\end{array}\right], V=\left[\begin{array}{ll}b_{1} & b_{2} \\ b_{3} & b_{4}\end{array}\right]$

$$
\begin{aligned}
U+V & =\left[\begin{array}{l}
a_{1} \cup b_{1} a_{2} \cup b_{2} \\
a_{3} \cup b_{3} a_{4} \cup b_{4}
\end{array}\right] \quad \text { and } \\
U \cdot V & =\left[\begin{array}{l}
\left(a_{1} \cap b_{1}\right) \cup\left(a_{2} \cap b_{3}\right)\left(a_{1} \cap b_{2}\right) \cup\left(a_{2} \cap b_{4}\right) \\
\left(a_{3} \cap b_{1}\right) \cup\left(a_{4} \cap b_{3}\right)\left(a_{3} \cap b_{2}\right) \cup\left(a_{4} \cap b_{4}\right)
\end{array}\right] .
\end{aligned}
$$

The tables of both operations are shown as follows.

| + | $A$ | $B$ | $C$ | $D$ | $E$ | $F$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $A$ | $A$ | $B$ | $C$ | $D$ | $E$ | $F$ |
| $B$ | $B$ | $B$ | $C$ | $D$ | $E$ | $F$ |
| $C$ | $C$ | $C$ | $C$ | $E$ | $E$ | $F$ |
| $D$ | $D$ | $D$ | $E$ | $D$ | $E$ | $F$ |
| $E$ | $E$ | $E$ | $E$ | $E$ | $E$ | $F$ |
| $F$ |


| $\cdot$ | $A$ | $B$ | $C$ | $D$ | $E$ | $F$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $A$ |
| $B$ | $A$ | $B$ | $B$ | $D$ | $D$ | $D$ |
| $C$ | $A$ | $C$ | $C$ | $F$ | $F$ | $F$ |
| $D$ | $A$ | $B$ | $B$ | $D$ | $D$ | $D$ |
| $E$ | $A$ | $C$ | $C$ | $F$ | $F$ | $F$ |
| $F$ | $A$ | $C$ | $C$ | $F$ | $F$ | $F$ |

We defined a partially ordered relation $\leqslant$ on $L$ by

$$
U \leqslant V \text { if and only if } a_{1} \subseteq b_{1}, a_{2} \subseteq b_{2}, a_{3} \subseteq b_{3} \text { and } a_{4} \subseteq b_{4} .
$$

Then $A \leqslant B \leqslant C \leqslant E \leqslant F$ and $A \leqslant B \leqslant D \leqslant E \leqslant F$.
We can see that $(S,+, \cdot, \leqslant)$ is an ordered semiring and $T=\{A\}$ is its ordered $k$-ideal, $Y=\{A, B, C\}$ is a left ordered $k$-ideal but not a right ordered $k$-ideal, $Z=\{A, B, D\}$ is a right ordered $k$-ideal but not a left ordered $k$-ideal and $X=$ $\{A, B\}$ is an ordered $k$-bi-ideal but not a left or a right ordered $k$-ideal.

Theorem 3.3. Let $B$ be a bi-ideal of an ordered semiring S. Then the following statements are equivalent.
(i) $B$ is an ordered $k$-bi-ideal of $S$.
(ii) If $a+x \leqslant b$ for some $a, b \in B$, then $x \in B$.
(iii) $\bar{B}=B$.

Proof. $(i) \Rightarrow(i i)$ : Let $B$ be an ordered $k$-bi-ideal of $S$. If $x+a \leqslant b$ for some $a, b \in B$ and $x \in S$. Then $x+a \in B$. It follows that there exists $p \in B$ such that $x+a=p$. By assumption, $x \in B$.
(ii) $\Rightarrow($ iii $)$ : Let $x \in \bar{B}$. Then there exist $a, b \in B$ such that $x+a \leqslant b$. By assumption, we have $x \in B$. Thus, $\bar{B}=B$.
(iii) $\Rightarrow(i)$ : Assume that $\bar{B}=B$. Let $x \in S$ such that $x+a=b$ for some $a, b \in B$. Then $x \in \bar{B}$. By assumption, we have $x \in B$. By Lemma 2.3(i), $(B] \subseteq \bar{B}=B$. Altogether, $B$ is an ordered $k$-bi-ideal of $S$.

Theorem 3.4. Let $B$ be a bi-ideal of an ordered semiring $S$. Then $\overline{(B]}$ is the smallest ordered $k$-bi-ideal of $S$ containing $B$.
Proof. It is clear that $B \subseteq \overline{(B]}$. By Lemma $2.2, \overline{(B]}$ is closed under addition. By Lemma $2.1($ iii $)$ and Lemma 2.4, we have $\overline{(B)} \overline{(B]} \subseteq \overline{(\overline{(B]} B]} \subseteq \overline{(\overline{(B B]}]} \subseteq \overline{(\overline{(B]]})}=$ $\overline{(B]}$. By Lemma $2.1(i i i), \overline{(B]} \overline{S(B]} \subseteq \overline{(\Sigma B S B]} \subseteq \overline{(B]}$. Thus, $\overline{(B]}$ is a bi-ideal of $S$. By Lemma 2.3(ii), we have $\overline{(B]}=\overline{(B]}$. By Theorem 3.3, $\overline{(B]}$ is an ordered $k$-biideal of $S$. Let $K$ be an ordered $k$-bi-ideal of $S$ containing $B$. Then $(B] \subseteq(K]=K$ and $\overline{(B]} \subseteq \bar{K}=K$. Then $\overline{(B]}$ is the smallest ordered $k$-bi-ideal of $S$ containing $B$.

Corollary 3.5. A bi-ideal $B$ of an ordered semiring $S$ is an ordered $k$-bi-ideal if and only if $\overline{(B]}=B$.

Theorem 3.6. If intersection of a family of ordered $k$-bi-ideals of an ordered semiring $S$ is not empty, then it is an ordered $k$-bi-ideal of $S$.
Definition 3.7. An ordered $k$-bi-ideal $B$ of $S$ is called a semiprime ordered $k$-biideal if $\overline{\left(\Sigma A^{2}\right]} \subseteq B$ implies $A \subseteq B$ for any ordered $k$-bi-ideal $A$ of $S$.

Definition 3.8. An ordered $k$-bi-ideal $B$ of $S$ is called a prime ordered $k$-bi-ideal if $\overline{(\Sigma A C]} \subseteq B$ implies $A \subseteq B$ or $C \subseteq B$ for any ordered $k$-bi-ideal $A, C$ of $S$.

Definition 3.9. An ordered $k$-bi-ideal $B$ of $S$ is called a strongly prime ordered $k$ -bi-ideal if $\overline{(\Sigma A C]} \cap \overline{(\Sigma C A]} \subseteq B$ implies $A \subseteq B$ or $C \subseteq B$ for any ordered $k$-bi-ideal $A, C$ of $S$.

Obviously, every strongly prime ordered $k$-bi-ideal of $S$ is a prime ordered $k$ -bi-ideal and every prime ordered $k$-bi-ideal of $S$ is a semiprime ordered $k$-bi-ideal.

The following example shows that every prime ordered $k$-bi-ideal need not to be a strongly prime ordered $k$-bi-ideal.

Example 3.10. Let $S=\{a, b, c\}$. We define operations + and $\cdot$ on $S$ as the following tables.

| + | $a$ | $b$ | $c$ |
| :---: | :---: | :---: | :---: |
| $a$ | $a$ | $b$ | $c$ |
| $b$ | $b$ | $b$ | $c$ |
| $c$ | $c$ | $c$ | $c$ |

and

| $\cdot$ | $a$ | $b$ | $c$ |
| :---: | :---: | :---: | :---: |
| $a$ | $a$ | $a$ | $a$ |
| $b$ | $a$ | $b$ | $b$ |
| $c$ | $a$ | $c$ | $c$ |

We defined a partially ordered relation $\leqslant$ on $S$ by $\leqslant:=\{(a, a),(b, b),(c, c),(a, b)\}$.
We can show that $(S,+, \cdot, \leqslant)$ is an ordered semiring and $\{a\},\{a, b\},\{a, c\}$ and $S$ are all ordered $k$-bi-ideals of $S$. Now, we have $\{a\}$ is prime but not strongly prime, since $\overline{(\Sigma\{a, b\}\{a, c\}]} \cap \overline{(\Sigma\{a, c\}\{a, b\}]}=\{a\}$ but $\{a, b\} \nsubseteq\{a\}$ and $\{a, c\} \nsubseteq\{a\}$.

Example 3.11. Let $S=\{a, b, c, d, e, f\}$. We define operations + and $\cdot$ on $S$ as the following tables.

| + | $a$ | $b$ | $c$ | $d$ | $e$ | $f$ |  |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $a$ | $a$ | $b$ | $c$ | $d$ | $e$ | $f$ |  |
| $b$ | $b$ | $b$ | $c$ | $d$ | $e$ | $f$ |  |
| $c$ | $c$ | $c$ | $c$ | $e$ | $e$ | $f$ | and |
| $d$ | $d$ | $d$ | $e$ | $d$ | $e$ | $f$ |  |
| $e$ | $e$ | $e$ | $e$ | $e$ | $e$ | $f$ |  |
| $f$ |  |


| $\cdot$ | $a$ | $b$ | $c$ | $d$ | $e$ | $f$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $a$ |
| $b$ | $a$ | $a$ | $a$ | $b$ | $b$ | $c$ |
| $c$ | $a$ | $b$ | $c$ | $b$ | $c$ | $c$ |
| $d$ | $a$ | $a$ | $a$ | $d$ | $d$ | $f$ |
| $e$ | $a$ | $b$ | $c$ | $d$ | $e$ | $f$ |
| $f$ | $a$ | $d$ | $f$ | $d$ | $f$ | $f$ |

We defined a partially ordered relation $\leqslant$ on $S$ by

$$
\begin{aligned}
\leqslant:=\{ & (a, a),(b, b),(c, c),(d, d),(e, e),(f, f),(a, b),(a, c),(a, d),(a, e), \\
& (b, c),(b, d),(b, e),(c, e),(d, e)\} .
\end{aligned}
$$

The sets $T=\{a\}, X=\{a, b\}, Y=\{a, b, c\}, Z=\{a, b, d\}$ and $S$ are all ordered $k$-bi-ideals of $S$. We find that $Y, Z$ and $S$ are strongly prime ordered $k$-bi-ideals, $X$ is a semiprime ordered $k$-bi-ideal but not prime and $T$ is not a semiprime ordered $k$-bi-ideal.

Definition 3.12. An ordered $k$-bi-ideal $B$ of $S$ is called an irreducible ordered $k$-bi-ideal if for any ordered $k$-bi-ideal $A$ and $C$ of $S, A \cap C=B$ implies $A=B$ or $C=B$.

Definition 3.13. An ordered $k$-bi-ideal $B$ of $S$ is called a strongly irreducible ordered $k$-bi-ideal if for any ordered $k$-bi-ideal $A$ and $C$ of $S, A \cap C \subseteq B$ implies $A \subseteq B$ or $C \subseteq B$.

It is clear that every strongly irreducible ordered $k$-bi-ideal of $S$ is an irreducible ordered $k$-bi-ideal of $S$.

Theorem 3.14. If intersection of any family of prime ordered $k$-bi-ideals (or semiprime ordered $k$-bi-ideals) of $S$ is not empty, then it is a semiprime ordered $k$-bi-ideal.

Proof. Let $\left\{K_{i} \mid i \in I\right\}$ be a family of prime ordered $k$-bi-ideals of $S$. Assume that $\bigcap_{i \in I} K_{i} \neq \emptyset$. For any ordered $k$-bi-ideal $B$ of $S, \overline{\left(\Sigma B^{2}\right]} \subseteq \bigcap_{i \in I} K_{i}$ implies $\overline{\left(\Sigma B^{2}\right]} \subseteq K_{i}$ for all $i \in I$. Since $K_{i}$ are prime ordered $k$-bi-ideals, $B \subseteq K_{i}$ for all $i \in I$. Hence, $B \subseteq \bigcap_{i \in I} K_{i}$. Thus, $\bigcap_{i \in I} K_{i}$ is semiprime.

Theorem 3.15. If $B$ is a strongly irreducible and semiprime ordered $k$-bi-ideal of an ordered semiring $S$, then $B$ is a strongly prime ordered $k$-bi-ideal of $S$.

Proof. Let $B$ be a strongly irreducible and semiprime ordered $k$-bi-ideal of $S$. Let $\overline{(\Sigma A C]} \cap \overline{(\Sigma C A]} \subseteq B$ for any ordered $k$-bi-ideals $A$ and $C$ of $S$. Since $\overline{\left(\Sigma(A \cap C)^{2}\right]} \subseteq$ $\overline{(\Sigma A C]}$ and $\overline{\left(\Sigma(A \cap C)^{2}\right]} \subseteq \overline{(\Sigma C A]}$. We have $\overline{\left(\Sigma(A \cap C)^{2}\right]} \subseteq \overline{(\Sigma A C]} \cap \overline{(\Sigma C A]}$. Since $A \cap C$ is an ordered $k$-bi-ideal and $B$ is a semiprime ordered $k$-bi-ideal, $A \cap C \subseteq B$. Since $B$ is a strongly irreducible ordered $k$-bi-ideal, $A \subseteq B$ or $C \subseteq B$. Thus, $B$ is a strongly prime ordered $k$-bi-ideal of $S$.

Theorem 3.16. If $B$ is an ordered $k$-bi-ideal of an ordered semiring $S$ and $a \in S$ such that $a \notin B$, then there exists an irreducible ordered $k$-bi-ideal I of $S$ such that $B \subseteq I$ and $a \notin I$.

Proof. Let $\mathcal{K}$ be the set of all ordered $k$-bi-ideals of $S$ containing $B$ but not containing $a$. Then $\mathcal{K}$ is a nonempty set, since $B \in \mathcal{K}$. Clearly, $\mathcal{K}$ is a partially ordered set under the inclusion of sets. Let $\mathcal{H}$ be a chain subset of $\mathcal{K}$. Then $\cup \mathcal{H} \in \mathcal{K}$. By Zorn's Lemma, there exists a maximal element in $\mathcal{K}$. Let $I$ be a maximal element in $\mathcal{K}$. Let $A$ and $C$ be any two ordered $k$-bi-ideals of $S$ such that $A \cap C=I$. Suppose that $I \subset A$ and $I \subset C$. Since $I$ is a maximal element in $\mathcal{K}$, we have $a \in A$ and $a \in C$. Then $a \in A \cap C=I$ which is a contradiction. Thus, $C=I$ or $A=I$. Therefore, $I$ is an irreducible ordered $k$-bi-ideal.

Theorem 3.17. A prime ordered $k$-bi-ideal $B$ of an ordered semiring $S$ is a prime one sided ordered $k$-ideal of $S$.

Proof. Let $B$ be a prime ordered $k$-bi-ideal of $S$. Suppose $B$ is not a one sided ordered $k$-ideal of $S$. It follows $\overline{(B S]} \nsubseteq B$ and $\overline{(B S]} \nsubseteq B$. Then $\overline{(\Sigma B S]} \nsubseteq B$ and $\overline{(\Sigma S B]} \nsubseteq B$. Since $B$ is a prime ordered $k$-bi-ideal, $\overline{(\Sigma \overline{(\Sigma B S]} \overline{(\Sigma S B]}]} \nsubseteq B$. By Lemma 2.3(v),

$$
\begin{aligned}
\overline{(\Sigma \overline{(\Sigma B S]} \overline{(\Sigma S B]}]} & \subseteq \overline{\Sigma \overline{\Sigma(\Sigma B S)(\Sigma S B)]}]} \subseteq \overline{\Sigma \overline{\Sigma(\Sigma B S S B)]}]} \\
& \subseteq \overline{\Sigma \overline{(\Sigma B S S B)]}]} \subseteq \overline{\Sigma \overline{(\Sigma B)]}]} \subseteq \overline{(\Sigma B]}=B
\end{aligned}
$$

This is a contradiction. Therefore, $\overline{(\Sigma B S]} \subseteq B$ or $\overline{(\Sigma S B]} \subseteq B$. Thus, $B$ is a prime one sided ordered $k$-ideal of $S$.

Theorem 3.18. Let $B$ be an ordered $k$-bi-ideal of an ordered semiring $S$. Then $B$ is prime if and only if for a right ordered $k$-ideal $R$ and a left ordered $k$-ideal $L$ of $S, \overline{(\Sigma R L]} \subseteq B$ implies $R \subseteq B$ or $L \subseteq B$.

Proof. Assume that $B$ is a prime ordered $k$-bi-ideal of $S$. Let $R$ be a right ordered $k$-ideal and $L$ be a left ordered $k$-ideal of $S$ such that $\overline{(\Sigma R L]} \subseteq B$. Since $R$ and $L$ are ordered $k$-bi-ideals of $S, R \subseteq B$ or $L \subseteq B$. Conversely, let $A$ and $C$ be any two ordered $k$-bi-ideals of $S$ such that $\overline{(\Sigma A C]} \subseteq B$. Suppose that $C \nsubseteq \underline{B}$. Let $a \in A$ and $c \in C \backslash B$. Then $\overline{(\mathbb{N} a+a S]} \subseteq A$ and $\overline{(\mathbb{N} c+S c]} \subseteq C$. We have $\overline{(\Sigma \overline{(\mathbb{N} a+a S]} \overline{(\mathbb{N} c+S c]}]} \subseteq \overline{(\Sigma A C]} \subseteq B$. By assumption, $\overline{(\mathbb{N} a+a S]} \subseteq B$ or $\overline{(\mathbb{N} c+S c]} \subseteq B$. But $\overline{(\mathbb{N} c+S c]} \nsubseteq B$ implies that $\overline{(\mathbb{N} a+a S]} \subseteq B$. Then $\bar{a} \in B$. Thus, $A \subseteq B$ and $B$ is a prime ordered $k$-bi-ideal of $S$.

## 4. Fully ordered $k$-bi-idempotent semirings

In this section, we assume that $S$ is an ordered semiring with zero.
Definition 4.1. An ordered semiring $S$ is said to be fully ordered $k$-bi-idempotent if $\overline{\left(\Sigma B^{2}\right]}=B$ for any ordered $k$-bi-ideal $B$ of $S$.

Example 4.2. The ordered semiring $S$ defined in Example 3.2 is fully ordered $k$-bi-idempotent. The ordered semiring $S$ defined in Example 3.11 is not fully ordered $k$-bi-idempotent, since $\overline{\left(\Sigma X^{2}\right]}=T \neq X$.

Theorem 4.3. Let $S$ be an ordered semiring. Then the following statements are equivalent.
(i) $S$ is fully ordered $k$-bi-idempotent.
(ii) $A \cap C=\overline{(\Sigma A C]} \cap \overline{(\Sigma C A]}$ for any ordered $k$-bi-ideal $A$ and $C$ of $S$.
(iii) Each ordered $k$-bi-ideal of $S$ is semiprime.

Proof. $(i) \Rightarrow(i i)$ : Assume that $\overline{\left(\Sigma B^{2}\right]}=B$ for any ordered $k$-bi-ideal $B$ of $S$. Let $A$ and $C$ be any two ordered $k$-bi-ideals of $S$. By Theorem 3.6, $A \cap C$ is an ordered $k$-bi-ideal of $S$. By assumption, $A \cap C=\overline{\left(\Sigma(A \cap C)^{2}\right]}=\overline{(\Sigma(A \cap C)(A \cap C)]} \subseteq$ $\overline{(\Sigma A C]}$. Similarly, we get $A \cap C \subseteq \overline{(\Sigma C A]}$. Therefore, $A \cap C \subseteq \overline{(\Sigma A C]} \cap \overline{(\Sigma C A]}$. Since $\Sigma A C$ is closed under addition, by Lemma $2.2, \overline{(\Sigma A C]}$ is also closed under addition. By Lemma 2.3(vi),

$$
(\Sigma A C)(\Sigma A C) \subseteq \Sigma A C A C \subseteq \Sigma A S A C \subseteq \Sigma A C
$$

Then $\Sigma A C$ is an ordered subsemiring of $S$. By Lemma 2.3(vi),

$$
(\Sigma A C) S(\Sigma A C) \subseteq(\Sigma A C S)(\Sigma A C) \subseteq \Sigma A C S A C \subseteq \Sigma A S S A C \subseteq \Sigma A S A C \subseteq \Sigma A C
$$

Thus, $\Sigma A C$ is a bi-ideal of $S$. By Theorem $3.4, \overline{(\Sigma A C]}$ is an ordered $k$-bi-ideal of $S$. Similarly, $\overline{(\Sigma C A]}$ is an ordered $k$-bi-ideal. By Theorem 3.6, $\overline{(\Sigma A C]} \cap \overline{(\Sigma C A]}$ is an ordered $k$-bi-ideal of $S$. By assumption, Lemma $2.3(v),(v i)$ and Lemma 2.4, we have

$$
\begin{aligned}
\overline{(\Sigma A C]} \cap \overline{(\Sigma C A]} & =\overline{(\Sigma(\overline{(\Sigma A C]} \cap \overline{(\Sigma C A]})(\overline{(\Sigma A C]} \cap \overline{(\Sigma C A]})]} \\
& \subseteq \overline{(\Sigma \overline{(\Sigma A C]} \overline{(\Sigma C A]}]} \subseteq \overline{(\Sigma \overline{(\Sigma A C C A]}]} \subseteq \overline{(\Sigma \overline{(\Sigma A S A]}]} \subseteq A .
\end{aligned}
$$

Similarly, we can show that $\overline{(\Sigma A C]} \cap \overline{(\Sigma C A]} \subseteq C$. Thus, $\overline{(\Sigma A C]} \cap \overline{(\Sigma C A]} \subseteq A \cap C$. Hence, $\overline{(\Sigma A C]} \cap \overline{(\Sigma C A]}=A \cap C$.
$(i i) \Rightarrow(i i i)$ : Let $B$ be an ordered $k$-bi-ideal of $S$. Suppose that $\overline{\left(\Sigma A^{2}\right]} \subseteq B$ for any ordered $k$-bi-ideal $A$ of $S$. By assumption, we have $A=A \cap A=\overline{(\Sigma A A]} \cap$ $\overline{(\Sigma A A]}=\overline{(\Sigma A A]} \subseteq B$. Hence, $B$ is semiprime.
(iii) $\Rightarrow(i)$ : Let $B$ be an ordered $k$-bi-ideal of $S$. Since $\overline{\left(\Sigma B^{2}\right]}$ is an ordered $k$-bi-ideal, by assumption, $\overline{\left(\Sigma B^{2}\right]}$ is semiprime. Since $\overline{\left(\Sigma B^{2}\right]} \subseteq \overline{\left(\Sigma B^{2}\right]}, B \subseteq \overline{\left(\Sigma B^{2}\right]}$. Clearly, $\overline{\left(\Sigma B^{2}\right]} \subseteq B$. This shows that $S$ is ordered $k$-bi-idempotent.

Theorem 4.4. Let $S$ be a fully ordered $k$-bi-idempotent semiring and $B$ be an ordered $k$-bi-ideal of $S$. Then $B$ is strongly irreducible if and only if $B$ is strongly prime.

Proof. Assume that $B$ is strongly irreducible. Let $A$ and $C$ be any two ordered $k$ -bi-ideals of $S$ such that $\overline{(\Sigma A C]} \cap \overline{(\Sigma C A]} \subseteq B$. By Theorem 4.3, $\overline{(\Sigma A C]} \cap \overline{(\Sigma C A]}=$ $A \cap C$. Hence, $A \cap C \subseteq B$. By assumption, we have $A \subseteq B$ or $C \subseteq B$. Thus, $B$ is a strongly prime ordered $k$-bi-ideal of $S$. Conversely, assume that $B$ is strongly prime. Let $A$ and $C$ be any two ordered $k$-bi-ideals of $S$ such that $A \cap C \subseteq B$. By Theorem 4.3, $\overline{(\Sigma A C]} \cap \overline{(\Sigma C A]}=A \cap C \subseteq B$. By assumption, we have $A \subseteq B$ or $C \subseteq B$. Thus, $B$ is a strongly irreducible ordered $k$-bi-ideal of $S$.

Theorem 4.5. Every ordered $k$-bi-ideal of an ordered semiring $S$ is a strongly prime ordered $k$-bi-ideal if and only if $S$ is a fully ordered $k$-bi-idempotent semiring and the set of all ordered $k$-bi-ideals of $S$ is totally ordered.

Proof. Assume that every ordered $k$-bi-ideal of $S$ is strongly prime. Then every ordered $k$-bi-ideal of $S$ is semiprime. By Theorem 4.3, $S$ is a fully ordered $k$ -bi-idempotent semiring. Let $A$ and $C$ be any two ordered $k$-bi-ideals of $S$. By Theorem 3.6, $A \cap C$ is an ordered $k$-bi-ideal of $S$. By assumption, $A \cap C$ is a strongly prime ordered $k$-bi-ideal of $S$. By Theorem 4.3, $\overline{(\Sigma A C]} \cap \overline{(\Sigma C A]}=A \cap C$. Then $A \subseteq A \cap C$ or $C \subseteq A \cap C$. Therefore, $A=A \cap C$ or $C=A \cap C$. Thus, $A \subseteq C$ or $C \subseteq A$. Conversely, assume that $S$ is a fully ordered $k$-bi-idempotent semiring and the set of all ordered $k$-bi-ideals of $S$ is a totally ordered set. Let $B$ be any ordered $k$-bi-ideal of $S$. Let $A$ and $C$ be any two ordered $k$-bi-ideals of $S$ such that $\overline{(\Sigma A C]} \cap \overline{(\Sigma C A]} \subseteq B$. By Theorem 4.3, $A \cap C=\overline{(\Sigma A C]} \cap \overline{(\Sigma C A]} \subseteq B$. By assumption, $A \subseteq C$ or $C \subseteq A$. Hence, $A \cap C=A$ or $A \cap C=C$. Thus, $A \subseteq B$ or $C \subseteq B$. Therefore, $B$ is a strongly prime ordered $k$-bi-ideal of $S$.

Since every strongly prime ordered $k$-bi-ideal is a prime ordered $k$-bi-ideal and by Theorem 4.3 and 4.5 , we have the following corollary.

Corollary 4.6. Let the set of all ordered $k$-bi-ideals of $S$ be a totally ordered set under inclusion of sets. Then every ordered $k$-bi-ideal of $S$ is strongly prime if and only if every ordered $k$-bi-ideal of $S$ is prime.

Theorem 4.7. If the set of all ordered $k$-bi-ideals of an ordered semiring $S$ is a totally ordered set under inclusion of sets, then $S$ is a fully ordered $k$-bi-idempotent if and only if each ordered $k$-bi-ideal of $S$ is prime.

Proof. Assume that $S$ is a fully ordered $k$-bi-idempotent semiring. Let $B$ be any ordered $k$-bi-ideal of $S$ and $A, C$ be any two ordered $k$-bi-ideals of $S$ such that $\overline{(\Sigma A C]} \subseteq B$. By assumption, we have $A \subseteq C$ or $C \subseteq A$. Without loss of generality, suppose that $A \subseteq C$. Then $A=\overline{(\Sigma A A]} \subseteq \overline{(\Sigma A C]} \subseteq B$. Hence, $B$ is a prime ordered $k$-bi-ideal of $S$. Conversely, assume that every ordered $k$-bi-ideal of $S$ is prime. Then every ordered $k$-bi-ideal of $S$ is semiprime. By Theorem 4.3, $S$ is a fully ordered $k$-bi-idempotent semiring.

Theorem 4.8. If $S$ is a fully ordered $k$-bi-idempotent semiring and $B$ is a strongly irreducible ordered $k$-bi-ideal of $S$, then $B$ is a prime ordered $k$-bi-ideal.

Proof. Let $B$ be a strongly irreducible ordered $k$-bi-ideal of a fully ordered $k$-biidempotent semiring $S$. Let $A$ and $C$ be any two ordered $k$-bi-ideals of $S$ such that $\overline{(\Sigma A C]} \subseteq B$. Since $A \cap C$ is also an ordered $k$-bi-ideal of $S$. By assumption, $\overline{\overline{\left(\Sigma(A \cap C)^{2}\right]}}=A \cap C$. Consider $A \cap C=\overline{\left(\Sigma(A \cap C)^{2}\right]}=\overline{(\Sigma(A \cap C)(A \cap C)]} \subseteq$ $\overline{(\Sigma(A C]} \subseteq B$. Since $B$ is a strongly irreducible ordered $k$-bi-ideal of $S, A \subseteq B$ or $C \subseteq B$. Hence, $B$ is a prime ordered $k$-bi-ideal of $S$.

## 5. Right ordered $k$-weakly regular semirings

First, we recall the definition of a right ordered $k$-weakly regular semiring and some of its properties given by Patchakhieo and Pibaljommee [5] which we need to use in this section. Then we give characterizations of right ordered $k$-weakly regular semirings using ordered $k$-bi-ideals.

An ordered semiring $S$ is said to be a right ordered $k$-weakly regular semiring if $a \in \overline{\left(\Sigma(a S)^{2}\right]}$ for all $a \in S$.

Theorem 5.1. Let $S$ be an ordered semiring. Then the following statements are equivalent.
(i) $S$ is a right ordered $k$-weakly regular.
(ii) $\overline{\left(\Sigma A^{2}\right]}=A$ for every right ordered $k$-ideal $A$ of $S$.
(iii) $A \cap I=\overline{(\Sigma A I]}$ for every right ordered $k$-ideal $A$ of $S$ and every ordered $k$-ideal I of $S$.

Theorem 5.2. An ordered semiring $S$ is right ordered $k$-weakly regular if and only if $B \cap I \subseteq \overline{(\Sigma B I]}$ for any ordered $k$-bi-ideal $B$ and ordered $k$-ideal $I$ of $S$.

Proof. Let $S$ be a right ordered $k$-weakly regular semiring, $B$ be an ordered $k$-biideal and $I$ be an ordered $k$-ideal of $S$. Let $a \in B \cap I$. By Lemma 2.1(iii), Lemma $2.3(v)$ and Lemma 2.4, we have

$$
\begin{aligned}
& a \in \overline{\left(\Sigma(a S)^{2}\right]}=\overline{(\Sigma(a S)(a S)]} \subseteq \overline{(\Sigma(a S) \overline{(\Sigma(a S)(a S)]} S]} \subseteq \overline{(\Sigma \overline{((a S)(\Sigma(a S)(a S)) S]}]} \\
& \subseteq \overline{(\Sigma \overline{(\Sigma(a S a)(S a S S)]}]} \subseteq \overline{(\overline{(\Sigma(B S B)(S I S)]}]} \subseteq \overline{(\overline{(\Sigma B I]}]}=\overline{(\Sigma B I]} .
\end{aligned}
$$

Therefore, $B \cap I \subseteq \overline{(\Sigma B I]}$.
Conversely, assume that $B \cap I \subseteq \overline{(\Sigma B I]}$ for any ordered $k$-bi-ideal $B$ and ordered $k$-ideal $I$ of $S$. Let $R$ be a right ordered $k$-ideal of $S$. Then $R$ is an ordered $k$ -bi-ideal of $S$. By assumption, Lemma 2.8, Lemma 2.1(iii), Lemma 2.3(vi) and Lemma 2.4, we have

$$
\begin{aligned}
R & =R \cap M_{k}(R) \\
& \subseteq \overline{\left(\Sigma R M_{k}(R)\right]}=\overline{(\Sigma R \overline{(\Sigma R+\Sigma R S+\Sigma S R+\Sigma S R S]}]} \\
& \subseteq \overline{\left(\Sigma \overline{\left(\Sigma R^{2}+\Sigma R^{2} S+\Sigma R S R+\Sigma R S R S\right]}\right]} \\
& \subseteq \overline{\left(\Sigma R^{2}+\Sigma R^{2}+\Sigma R^{2}+\Sigma R^{2}\right]} \\
& =\overline{\left(\Sigma R^{2}\right]} .
\end{aligned}
$$

Then $R=\overline{\left(\Sigma R^{2}\right]}$. Thus, by Theorem 5.1, $S$ is a right ordered $k$-weakly regular semiring.

Theorem 5.3. An ordered semiring $S$ is right ordered $k$-weakly regular if and only if $B \cap I \cap R \subseteq \overline{(\Sigma B I R]}$ for any ordered $k$-bi-ideal $B$, ordered $k$-ideal $I$ and right ordered $k$-ideal $R$ of $S$.

Proof. Let $S$ be a right ordered $k$-weakly regular semiring, $B$ be an ordered $k$ -bi-ideal, $I$ be an ordered $k$-ideal and $R$ be a right ordered $k$-ideal of $S$. Let $a \in B \cap I \cap R$. By assumption, Lemma 2.1(iii), Lemma 2.3(vi) and Lemma 2.4, we have

$$
\begin{aligned}
a \in \overline{\left(\Sigma(a S)^{2}\right]} & =\overline{(\Sigma(a S)(a S)]} \subseteq \overline{(\Sigma(a S) \overline{(\Sigma(a S)(a S)]} S]} \\
& \subseteq \overline{(\Sigma \overline{(\Sigma a(S a S)(a S)]}]} \subseteq \overline{(\overline{(\Sigma B I R]}]}=\overline{(\Sigma B I R]}
\end{aligned}
$$

Therefore, $B \cap I \cap R \subseteq \overline{(\Sigma B I R]}$.
Conversely, assume that $B \cap I \cap R \subseteq \overline{(\Sigma B I R]}$ for any ordered $k$-bi-ideal $B$, ordered $k$-ideal $I$ and right ordered $k$-ideal $R$ of $S$. Since $R$ is an ordered $k$-biideal of $S$ and $S$ is also an ordered $k$-ideal of $S$. By assumption, $R=R \cap S \cap R \subseteq$ $\overline{(\Sigma R S R]} \subseteq \overline{\left(\Sigma R^{2}\right]}$. Therefore, $R=\overline{\left(\Sigma R^{2}\right]}$. By Theorem 5.1, $S$ is right ordered $k$-weakly regular.

## References

[1] M. Akram and W.A. Dudek, Intuitionistic fuzzy left $k$-ideals of semirings, Soft Comput. 12 (2008), 881 - 890.
[2] A.P. Gan and Y.L. Jiang, On ordered ideals in ordered semirings, J. Math. Res. Exposition 31 (2011), 989 - 996.
[3] J.S. Han, H.S. Kim and J. Neggers, Semiring orders in semirings, Appl. Math. Inform. Sci. 6 (2012), $99-102$.
[4] M. Henriksen, Ideals in semirings with commutative addition, Amer. Math. Soc. Notices 6 (1958), 321.
[5] S. Patchakhieo and B. Pibaljommee, Characterizations of ordered $k$-regular semirings by ordered $k$-ideals, Asian-Eur. J. Math. 10 (2017), 1750020.
[6] M.K. Sen and M.R. Adhikari, On $k$-ideals of semirings, Int. J. Math. Math.Sci. 15 (1992), 347 - 350.
[7] M.K. Sen and M.R. Adhikari, On maximal $k$-ideals of semirings, Proc. Amer. Math. Soc. 118 (1993), $699-720$.
[8] H.S. Vandiver, On some simple types of semirings, Amer. Math. Monthly 46 (1939), $22-26$.

Department of Mathematics, Faculty of Science,
Khon Kaen University Khon Kaen 4002, Thailand
Centre of Excellence in Mathematics
CHE, Si Ayuttaya Rd. Bangkok 10400, Thailand
E-mails: lamb2283@gmail.com, banpib@kku.ac.th


[^0]:    2010 Mathematics Subject Classification: 20N20, 20N25, 06F05.
    Keywords: ordered semiring, ordered $k$-bi-ideal, prime right ordered $k$-bi-ideal.

