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Characterizations of ordered k-regular semirings

by ordered quasi k-ideals

Pakorn Palakawong na Ayutthaya and Bundit Pibaljommee

Abstract. We introduce the notion of ordered quasi k-ideals of ordered semirings and use them

to characterize ordered k-regular semirings.

1. Introduction

In 1936, von Neumann [7] de�ned a ring S to be regular if for any a ∈ S there
exists x ∈ S such that a = axa. Later, Bourne [3] de�ned a semiring S to be
regular if for any a ∈ S there exist x, y ∈ S such that a + axa = aya. In 1996,
Adhikari, Sen and Weinert [1] renamed the Bourne regularity to be k-regular and
investigated some of its properties. The notion of a quasi-ideal was de�ned by
Steinfeld [11] for semigroups in 1956. Then, in 2004, Shabir, Ali and Batool [10]
investigated some properties of quasi-ideals and used quasi-ideals to characterize
regular semirings. In 2011, Bhuniya and Jana [2] de�ned k-bi-ideals on semirings
and used them to characterize k-regular and intra-k-regular semirings. Later, Jana
[5] introduced the notion of quasi k-ideals on semirings and characterized k-regular
and intra-k-regular semirings by their quasi k-ideals which were a continuation of
[2]. In 2011, Gan and Jiang [4] introduced the notion of ordered semirings, de�ned
their ordered ideals and studied some of their properties. In 2014, Mandal [6]
called an ordered semiring S to be regular if for any a ∈ S there exists x ∈ S such
that a 6 axa and to be k-regular if for any a ∈ S there exist x, y ∈ S such that
a + axa 6 aya. Later, Patchakhieo and Pibaljommee [9] introduced the notion
of ordered k-regular semirings as a generalization of k-regular ordered semirings,
de�ned ordered k-ideals on ordered semirings and characterized ordered k-regular
semirings using their ordered k-ideals.

In this paper, we introduce the notion of ordered quasi k-ideals of ordered
semirings, investigate some of their properties, study connections between them
and other ordered k-ideals and use them to characterize ordered k-regular semir-
ings.
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2. Preliminaries

A semiring is an algebraic structure (S,+, ·) such that (S,+) and (S, ·) are semi-
groups which are connected by the distributive law. An ordered semiring is a
system (S,+, ·,6) such that (S,+, ·) is a semiring, (S,6) is a partially ordered set
and the relation 6 is compatible with the operations + and · on S. An ordered
semiring S is called additively commutative if a + b = b + a for all a, b ∈ S.

In this paper, we assume that S is an additively commutative ordered semiring.
For any nonempty subsets A,B of S, we denote AB = {ab ∈ S | a ∈ A, b ∈ B},

A + B = {a + b ∈ S | a ∈ A, b ∈ B} and (A] = {x ∈ S | x 6 a for some a ∈ A}.
A nonempty subset A of S such that A + A ⊆ A and A = (A] is called a left

ordered ideal (right ordered ideal) of S if SA ⊆ A ( AS ⊆ A). We call A an ordered

ideal [4] if A is both a left ordered ideal and a right ordered ideal.
Let A,B be nonempty subsets of S. We denote some notations as follows.

ΣA =

{
n∑

i=1

ai ∈ S | ai ∈ A,n ∈ N

}
,

ΣAB =

{
n∑

i=1

aibi ∈ S | ai ∈ A, bi ∈ B,n ∈ N

}
.

In case of A = {a} for some a ∈ S, we write Σa instead of Σ{a}.
Let ∅ 6= A ⊆ S. Then A is called an ordered quasi-ideal [8] of S if A + A ⊆ A,

A = (A] and (ΣSA] ∩ (ΣAS] ⊆ A. Obviously, every ordered quasi-ideal is a
subsemiring. We call A an ordered bi-ideal (ordered interior ideal) of S if A2 ⊆ A,
A = (A] and ASA ⊆ A (SAS ⊆ A).

The k-closure [9] of a nonempty subset A of S is de�ned by

A = {x ∈ S | x + a 6 b for some a, b ∈ A}.

Now, we give some properties on an ordered semiring which will be used later
as the following two lemmas such that their proofs are not di�cult.

Lemma 2.1. Let A,B,C be nonempty subsets of S. Then

(i) A ⊆ ΣA and Σ(ΣA) = ΣA;

(ii) if A ⊆ B then ΣA ⊆ ΣB;

(iii) A(ΣB) ⊆ (ΣA)(ΣB) ⊆ ΣAB,

(ΣA)B ⊆ (ΣA)(ΣB) ⊆ ΣAB;

(iv) Σ(A + B) ⊆ ΣA + ΣB;

(v) Σ(A ∪B) = ΣA ∪ ΣB;

(vi) Σ(A ∩B) ⊆ ΣA ∩ ΣB;

(vii) Σ(A] ⊆ (ΣA];

(viii) A ⊆ (A] and ((A]] = (A];

(ix) if A ⊆ B then (A] ⊆ (B];

(x) A(B] ⊆ (A](B] ⊆ (AB],
(A]B ⊆ (A](B] ⊆ (AB];

(xi) A + (B] ⊆ (A] + (B] ⊆ (A + B];

(xii) (A ∪B] = (A] ∪ (B];

(xiii) (A ∩B] ⊆ (A] ∩ (B].
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Lemma 2.2. Let A,B be nonempty subsets of S. Then

(i) ΣA ⊆ ΣA;

(ii) if A + A ⊆ A, then A ⊆ A and A = (A] = (A];

(iii) if A ⊆ B, then A ⊆ B;

(iv) AB ⊆ AB and AB ⊆ AB;

(v) if A and B are closed under addition, then A + B ⊆ A + B;

(vi) A ∪B ⊇ A ∪B;

(vii) A ∩B ⊆ A ∩B (the equality holds if A,B are closed under addition, A = A
and B = B and also holds for arbitrary intersection);

(viii) if A + A ⊆ A, then A ⊆ (A] ⊆
(
A
]

= A ⊆ (A].

As a consequence of Lemma 2.1 and 2.2, we obtain the following lemma.

Lemma 2.3. Let A,B be nonempty subsets of S such that A and B are closed

under addition. Then:

(i) A(B] ⊆ (AB] and (A]B ⊆ (AB];
(ii) (A] (B] ⊆ (ΣAB];

(iii) ΣA(B] ⊆ (ΣA(B]] ⊆ (Σ(A] (B]] ⊆ (ΣAB],

Σ(A]B ⊆ (Σ(A]B] ⊆ (Σ(A] (B]] ⊆ (ΣAB];

(iv) ((A] + (B]] ⊆ (A + B].

It is not di�cult to prove that if a nonempty subset A of S is closed under
addition then (A], A and (A] are also closed.

Now, we recall the notions of some types of ordered k-ideals which occur in
[9] as follows. A left ordered k-ideal (resp. right ordered k-ideal, ordered k-ideal,
ordered k-bi-ideal, ordered k-interior ideal) A of S is a left ordered ideal (resp.
right ordered ideal, ordered ideal, ordered bi-ideal, ordered interior ideal) of S
satisfying the condition if x ∈ S such that x + a ∈ A for some a ∈ A then x ∈ A.

It is easy to prove that the following lemma is true on ordered semirings.

Lemma 2.4. Let ∅ 6= A ⊆ S. Then the following statements hold:

(i) (ΣSA] is a left ordered k-ideal of S;

(ii) (ΣAS] is a right ordered k-ideal of S;

(iii) (ΣSAS] is an ordered k-ideal of S.

As a spacial case of Lemma 2.4, if A = {a} then we obtain that (Sa], (aS] and
(ΣSaS] is a left ordered k-ideal, right ordered k-ideal and ordered k-ideal of S,
respectively.

By Lk(A), Rk(A), Jk(A) and Bk(A) we denote the smallest left ordered k-
ideal, right ordered k-ideal, ordered k-ideal and ordered k-bi-ideal of S containing
A, respectively.
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Theorem 2.5. (cf. [9]) For any ∅ 6= A ⊆ S we have:

(i) Lk(A) = (ΣA + ΣSA];

(ii) Rk(A) = (ΣA + ΣAS];

(iii) Jk(A) = (ΣA + ΣSA + ΣAS + ΣSAS].

It is not di�cult to prove that a subsemiring B of S is an ordered k-bi-ideal of
S if and only if BSB ⊆ B and B = B.

Theorem 2.6. Bk(A) = (ΣA + ΣA2 + ΣASA] for any ∅ 6= A ⊆ S.

Proof. Let ∅ 6= A ⊆ S and B = (ΣA + ΣA2 + ΣASA]. Firstly, we show that B is
an ordered k-bi-ideal of S. Since ΣA + ΣA2 + ΣASA is closed under addition, B
is also closed. By Lemma 2.3(ii) and Lemma 2.1(i), we obtain

B2 = (ΣA + ΣA2 + ΣASA] (ΣA + ΣA2 + ΣASA]

⊆ (Σ(ΣA + ΣA2 + ΣAS)(ΣA + ΣA2 + ΣSA)]

⊆ (Σ(ΣA2 + ΣA3 + ΣASA + ΣA4 + ΣA2SA + ΣASA + ΣASA2 + ΣASSA)]

⊆ (ΣA2 + ΣASA] ⊆ B.

Using Lemma 2.3(i, ii), we have

BSB = (ΣA + ΣA2 + ΣASA]S(ΣA + ΣA2 + ΣASA]

⊆ (ΣA + ΣAS + ΣASA] (ΣSA + ΣSA2 + ΣSASA]

⊆ (ΣA + ΣAS] (ΣSA] ⊆ (Σ(ΣA + ΣAS)(ΣSA)] ⊆ (ΣASA].

Let x ∈ (ΣASA]. Then x + (z + x) 6 z + x + x for every z ∈ ΣA + ΣA2 and so

x ∈ ΣA + ΣA2 + (ΣASA], since z + x, z + x + x ∈ ΣA + ΣA2 + (ΣASA]. Thus

(ΣASA] ⊆ ΣA + ΣA2 + (ΣASA]. Using Lemma 2.2(viii) and Lemma 2.3(iv), we

have BSB ⊆ (ΣASA] ⊆ ΣA + ΣA2 + (ΣASA] ⊆ (ΣA + ΣA2 + ΣASA] = B. By
Lemma 2.2(ii), we get B = B. This means that B is an ordered k-bi-ideal of S.

Secondly, we show that A ⊆ B. Let x ∈ ΣA. Then x + (x + w) 6 x + x + w
for every w ∈ ΣA2 + ΣASA and so x ∈ ΣA + ΣA2 + ΣASA, since x + w, x +
x + w ∈ ΣA + ΣA2 + ΣASA. It follows that A ⊆ ΣA ⊆ ΣA + ΣA2 + ΣASA ⊆
(ΣA + ΣA2 + ΣASA] = B.

Finally, let C be an ordered k-bi-ideal of S containing A. Then

B = (ΣA + ΣA2 + ΣASA] ⊆ (ΣC + ΣC2 + ΣCSC] ⊆ (ΣC] = C.

Therefore, B is the smallest ordered k-bi-ideal of S containing A.
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3. Ordered quasi k-ideals

Here, we give the notion of ordered quasi k-ideals of ordered semirings, study their
properties and investigate connections between them and other ordered k-ideals.

De�nition 3.1. Let ∅ 6= Q ⊆ S such that Q+Q ⊆ Q. Then Q is called an ordered

quasi k-ideal of S if

(i) (ΣSQ] ∩ (ΣQS] ⊆ Q;

(ii) if x 6 y for some y ∈ Q then x ∈ Q (i.e., Q = (Q]);

(iii) if x + a ∈ Q for some a ∈ Q then x ∈ Q.

It is easy to see that every ordered quasi k-ideal Q of S is a subsemiring because
Q2 ⊆ SQ ∩QS ⊆ Q.

Theorem 3.2. Let ∅ 6= Q ⊆ S and Q + Q ⊆ Q. Then Q is an ordered quasi

k-ideal of S if and only if (ΣSQ] ∩ (ΣQS] ⊆ Q and Q = Q.

Proof. Let Q be an ordered quasi k-ideal of S. Clearly, Q ⊆ Q. Let x ∈ Q. Then
x+ y 6 z for some y, z ∈ Q and so x+ y ∈ (Q] = Q. Thus, x ∈ Q. Hence, Q = Q.

Conversely, we consider Q ⊆ (Q] ⊆ Q = Q. Thus, Q = (Q]. Let x ∈ S such
that x + y ∈ Q = (Q] for some y ∈ Q. So, x + y 6 q for some q ∈ Q. Hence,
x ∈ Q = Q.

Note that every left ordered k-ideal (right ordered k-ideal, ordered k-ideal) of
S is an ordered quasi k-ideal. The converse is not true as the following example
shows.

Example 3.3. Let S = {a, b, c}. De�ne a binary operation + on S by b + b = b
and a + x = x + a = x, c + x = x + c = c for all x ∈ S. De�ne a binary operation
· on S by for any y ∈ S, xy = a if x = a and xy = b, otherwise. De�ne a
binary relation ≤ on S by 6:= {(a, a), (b, b), (c, c), (a, b)}. Now, (S,+, ·,6) is an
additively commutative ordered semiring. Let Q = {a}. Clearly, Q + Q ⊆ Q and
Q = (Q]. We have (ΣSQ] ∩ (ΣQS] = (Σ{a, b}] ∩ (Σ{a}] = {a, b} ∩ {a} = {a} = Q
and Q = Q. This shows that Q is an ordered quasi k-ideal. Since SQ = {a, b} * Q,
this follows that Q is not a left ordered k-ideal of S.

Also every ordered quasi k-ideal of S is an ordered k-bi-ideal, but not con-
versely.

Example 3.4. Let S = {a, b, c, d, e}. De�ne a binary operation + on S by a+x =
x + a = x for all x ∈ S, b + b = b, e + e = e and x + y = d otherwise. De�ne a
binary operation · on S by for any y ∈ S, xy = yx = a if x ∈ {a, b} and xy = b
otherwise. De�ne a binary relation 6 on S by

6 := {(a, a), (b, b), (c, c), (d, d), (e, e), (a, b), (a, c), (a, e), (a, d), (b, d), (c, d), (e, d)}.
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Now, (S,+, ·,6) is an additively commutative ordered semiring. Let B = {a, e}.
It is easy to show that B is an ordered k-bi-ideal of S, but not an ordered quasi
k-ideal, since (ΣSB] ∩ (ΣBS] = {a, b} * B.

Theorem 3.5. The intersection of a right ordered k-ideal and a left ordered k-ideal
of S is an ordered quasi k-ideal.

Proof. Let R and L be a right and a left ordered k-ideal of S, respectively. Then

(Σ(R ∩ L)S] ∩ (ΣS(R ∩ L)] ⊆ (ΣRS] ∩ (ΣSL] ⊆ (ΣR] ∩ (ΣL] = R ∩ L.

We consider R ∩ L = R ∩ L = R ∩ L. By Theorem 3.2, we obtain R ∩ L is an
ordered quasi k-ideal of S.

The converse of Theorem 3.5 is not true as the following example shows.

Example 3.6. Let S = {a, b, c, d, e, f, g, h}. De�ne binary operations + and · by
the following tables:

+ a b c d e f g h
a a b c d e f g h
b b a e f c d h g
c c e a g b h d f
d d f g a h b c e
e e c b h a g f d
f f d h b g a e c
g g h d c f e a b
h h g f e d c b a

· a b c d e f g h
a a a a a a a a a
b a b g a h b g h
c a d a a d d a d
d a d a a d d a d
e a f g a e f g e
f a f g a e f g e
g a a a a a a a a
h a b g a h b g h

De�ne a binary relation 6 on S by 6:= {(x, x) | x ∈ S}.
Then (S,+, ·,6) is an additively commutative ordered semiring. Let Q =

{a, c}. Clearly, Q + Q ⊆ Q and Q = (Q]. We consider

(ΣSQ] ∩ (ΣQS] = {a, g} ∩ {a, d} = {a, g} ∩ {a, d} = {a} ⊆ Q.

It is easy to see that Q = Q. By Theorem 3.2, Q is an ordered quasi k-ideal of S.
If Q = R ∩L for some a right ordered k-ideal R and a left ordered k-ideal L of S,
then c ∈ R ∩ L. We have g = c + cb ∈ R and g = bc ∈ L. Then g ∈ R ∩ L = Q,
but g /∈ Q. This give a contradiction.

As a consequence of Lemma 2.4 and Theorem 3.5, we have that (ΣSA]∩(ΣAS]
is an ordered quasi k-ideals of S for any ∅ 6= A ⊆ S.

For ∅ 6= A ⊆ S, we denote Qk(A) as the smallest ordered quasi k-ideal of S
containing A. Now, we give the construction of Qk(A) as follows.

Theorem 3.7. Let ∅ 6= A ⊆ S. Then Qk(A) = (ΣA + (ΣSA] ∩ (ΣAS]].
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Proof. Let ∅ 6= A ⊆ S and Q = (ΣA + (ΣSA] ∩ (ΣAS]]. Firstly, we show that Q
is an ordered quasi k-ideal. It is easy to show that Q is closed under addition.
Using Lemma 2.3(i) and (iv), we obtain

(ΣSQ] ∩ (ΣQS] ⊆ (ΣSQ] = (ΣS(ΣA + (ΣSA] ∩ (ΣAS]]] ⊆ (ΣS(ΣA + (ΣSA]]]

⊆ (ΣS(ΣA + ΣSA] ⊆ (Σ(ΣSA + ΣSSA]] ⊆ ((Σ(ΣSA)]] ⊆ (ΣSA].

Similarly, we have (ΣSQ]∩(ΣQS] ⊆ (ΣAS]. So, (ΣSQ]∩(ΣQS] ⊆ (ΣSA]∩(ΣAS].
If q ∈ (ΣSA]∩ (ΣAS] then q+a′ + q 6 a′ + q+ q ∈ ΣA+ (ΣSA]∩ (ΣAS] for every

a′ ∈ ΣA. So, (ΣSA] ∩ (ΣAS] ⊆ ΣA + (ΣSA] ∩ (ΣAS]. By Lemma 2.2(ii), we get

(ΣSQ] ∩ (ΣQS] ⊆ (ΣSA] ∩ (ΣAS] ⊆ ΣA + (ΣSA] ∩ (ΣAS] ⊆ Q.

Using Lemma 2.2(viii), Q = Q. By Theorem 3.2, Q is an ordered quasi k-ideal.
Secondly, we show that A ⊆ Q. If a ∈ ΣA then a + a + w 6 a + a + w and

a + a + w ∈ ΣA + (ΣSA] ∩ (ΣAS], for every w ∈ (ΣSA] ∩ (ΣAS]. This implies

A ⊆ ΣA ⊆ ΣA + (ΣSA] ∩ (ΣAS] ⊆ (ΣA + (ΣSA] ∩ (ΣAS]] = Q.

Finally, let K be an ordered quasi k-ideal of S such that A ⊆ K. Then

Q = (ΣA + (ΣSA] ∩ (ΣAS]] ⊆ (ΣK + (ΣSK] ∩ (ΣKS]] ⊆ (K + K] ⊆ (K] = K.

Therefore, Q is the smallest ordered quasi k-ideal of S containing A.

As a spacial case of Theorem 3.7, if A = {a} for some a ∈ S then we obtain

Qk(a) = (Σa + (Sa] ∩ (aS]].
Note that a nonempty intersection of a family of ordered quasi k-ideals of S is

an ordered quasi k-ideal of S.
An element e of S is called an identity of S if ea = a = ae for all a ∈ S.

Corollary 3.8. Let ∅ 6= A ⊆ S. If S has an identity then

(i) Lk(A) = (ΣSA];

(ii) Rk(A) = (ΣAS];

(iii) Jk(A) = (ΣSAS];

(iv) Bk(A) = (ΣASA];

(v) Qk(A) = (ΣSA] ∩ (ΣAS].

As a spacial case of Corollary 3.8, if A = {a} then we have Lk(a) = (Sa],
Rk(a) = (aS], Jk(a) = (ΣSaS], Qk(a) = (Sa] ∩ (aS] and Bk(a) = (aSa].

If S has an identity element, then the converse of Theorem 3.5 is true.
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Theorem 3.9. If S has an identity, then ordered quasi k-ideals and ordered k-bi-
ideals coincide.

Proof. Assume that S has an identity. Let B be an ordered k-bi-ideal of S and let
x ∈ (ΣSB] ∩ (ΣBS]. Using Lemma 2.3(i), (iii), we obtain

x ∈ Bk(x) = (xSx] ⊆ ((ΣBS]S(ΣSB]] ⊆ (ΣBSSSB] ⊆ (ΣBSB] ⊆ (ΣB] = B.

This shows that B is an ordered quasi k-ideal of S.

Theorem 3.10. If S has an identity, then every ordered quasi k-ideal of S can

be written in the form Q = R ∩ L for some a right ordered k-ideal R and a left

ordered k-ideal L of S.

Proof. Let Q be an ordered quasi k-ideal of S. Clearly, Q ⊆ Rk(Q) ∩ Lk(Q). By
Corollary 3.8, we have Rk(Q) = (ΣQS] and Lk(Q) = (ΣQS]. Hence, Rk(Q) ∩
Lk(Q) = (ΣQS] ∩ (ΣQS] ⊆ Q. Therefore, Q = Rk(Q) ∩ Lk(Q).

4. Ordered k-regular semirings

First, we review the notion of a k-regular ordered semiring given by Mandal [6] and
the notion of an ordered k-regular semiring de�ned by Patchakhieo and Pibaljom-
mee [9] which is a generalization of Mandal k-regularity as follows.

De�nition 4.1. An element a of S is called regular (resp. k-regular, ordered k-
regular) if a 6 axa (resp. a + axa 6 aya, a ∈ (aSa]) for some x, y ∈ S. We call S
regular (resp. k-regular, ordered k-regular) if every element of S is regular (resp.
k-regular, ordered k-regular).

Obviously, S is ordered k-regular if and only if A ⊆ (ΣASA] for each A ⊆ S.

Theorem 4.2. (cf. [9]) An ordered semiring S is ordered k-regular if and only if

R ∩ L = (RL] for every right ordered k-ideal R and left ordered k-ideal L of S.

Corollary 4.3. An ordered semiring S is ordered k-regular if and only if A ⊆
(Rk(A)Lk(A)] for each A ⊆ S.

Remark 4.4. If S is ordered k-regular then ordered k-ideals and ordered k-interior
ideals coincide.

Proof. Let J be an ordered k-ideal of S. Then SJS ⊆ SJ ⊆ JS ⊆ J and so J is
an ordered k-interior ideal. Conversely, let I be an ordered k-interior ideal of S.
If x ∈ IS, then x ∈ (xSx] ⊆ (ISSIS] ⊆ (ISIS] ⊆ (II] ⊆ (I] = I. So, IS ⊆ I
Similarly, we obtain SI ⊆ I. Therefore, I is an ordered k-ideal of S.

Now, we show that if S is ordered k-regular, then the converse of Theorem 3.5
is true.
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Theorem 4.5. If S is ordered k-regular, then their ordered quasi k-ideals coincide
with their ordered k-bi-ideals.

Proof. Assume that S is ordered k-regular. Let B be an ordered k-bi-ideal of S
and let x ∈ (ΣSB]∩ (ΣBS]. Using Lemma 2.3(i), (iii) and by assumption, we get

x ∈ (xSx] ⊆ ((ΣBS]S(ΣSB]] ⊆ (ΣBSSSB] ⊆ (ΣBSB] ⊆ (ΣB] = B.

This shows that B is an ordered quasi k-ideal of S.

Theorem 4.6. If S is ordered k-regular, then every ordered quasi k-ideal of S can

be written in the form Q = R ∩ L for some a right ordered k-ideal R and a left

ordered k-ideal L of S.

Proof. Let Q be an ordered quasi k-ideal. Clearly, Q ⊆ Rk(Q)∩Lk(Q). If x ∈ ΣQ
then x ∈ (xSx] ⊆ (xS] ⊆ ((ΣQ)S] ⊆ (ΣQS]. Thus ΣQ ⊆ (ΣQS]. We consider

(ΣQS] ⊆ (ΣQ + ΣQS] ⊆ ((ΣQS] + ΣQS] ⊆ (ΣQS]. This means that Rk(Q) =
(ΣQ + ΣQS] = (ΣQS]. Similarly, we can show that Lk(Q) = (ΣSQ]. It follows
that Rk(Q) ∩ Lk(Q) = (ΣQS] ∩ (ΣSQ] ⊆ Q. Therefore, Q = Rk(Q) ∩ Lk(Q).

Here, we use ordered quasi k-ideals to characterize ordered k-regular semirings.

Theorem 4.7. The following statements are equivalent:

(i) S is ordered k-regular;

(ii) B = (BSB] for every ordered k-bi-ideal of S;

(iii) Q = (QSQ] for every ordered quasi k-ideal of S.

Proof. (i)⇒ (ii): Let S be ordered k-regular and B be an ordered k-bi-ideal of S.
Clearly, (BSB] ⊆ (B] = B. If x ∈ B then x ∈ (xSx] ⊆ (BSB]. So, B = (BSB].

(ii) ⇒ (iii): It is clear, since every ordered quasi k-ideal is an ordered k-bi-
ideal.

(iii)⇒ (i): Assume that (iii) holds. Let A ⊆ S. Then

A ⊆ Qk(A) = (Qk(A)SQk(A)] ⊆ (Rk(A)SLk(A)] ⊆ (Rk(A)Lk(A)].

By Corollary 4.3, we obtain that S is ordered k-regular.

Theorem 4.8. An ordered semiring S is ordered k-regular if and only if for every

ordered k-bi-ideal B, ordered k-ideal J and left ordered k-ideal L of S we have

B ∩ J ∩ L ⊆ (BJL].

Proof. Assume that S is ordered k-regular. Let B, J and L be an ordered k-
bi-ideal, an ordered k-ideal and a left ordered k-ideal of S, respectively. Let

x ∈ B ∩ J ∩ L. By assumption, we get x ∈ (xSx] ⊆ ((xSx]Sx] ⊆ (xSxSx] ⊆
(BSJSL] ⊆ (BSL]. Hence, B ∩ J ∩ L ⊆ (BJL].
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Conversely, let R and L be a right ordered k-ideal and a left ordered k-ideal
of S, respectively. We obtain R ∩ L = R ∩ S ∩ L = (RSL] ⊆ (RL]. On the other
hand, we know that (RL] ⊆ R ∩ L. So, (RL] = R ∩ L. By Theorem 4.2, S is
ordered k-regular.

Theorem 4.9. The following statements are equivalent:

(i) S is ordered k-regular;

(ii) Q∩ I = (QIQ] for every ordered quasi k-ideal Q and ordered k-interior ideal

I of S;

(iii) Q ∩ J = (QJQ] for every ordered quasi k-ideal Q and ordered k-ideal J of

S;

(iv) Q∩L ⊆ (QL] for every ordered quasi k-ideal Q and left ordered k-ideal L of

S;

(v) R ∩Q ⊆ (RQ] for every right ordered k-ideal R and ordered quasi k-ideal Q
of S;

(vi) R ∩Q ∩ L ⊆ (RQL] for every right ordered k-ideal R, ordered quasi k-ideal
Q and left ordered k-ideal L of S.

Proof. Let Q, I, J,R and L be an ordered quasi k-ideal, an ordered k-interior
ideal, an ordered k-ideal, a right ordered k-ideal and a left ordered k-ideal of S,
respectively.

(i)⇒ (ii): Assume that S is ordered k-regular and let x ∈ Q ∩ I. By assump-

tion, we obtain x ∈ (xSx] ⊆ ((xSx]Sx] ⊆ (xSxSx] ⊆ (QSISQ] ⊆ (QIQ]. For the
opposite inclusion, we consider (QIQ] ⊆ (QSQ] ⊆ (Q] = Q and (QIQ] ⊆ (SIS] ⊆
(I] = I. Therefore, Q ∩ I = (QIQ].

(ii)⇒ (iii): It is obvious.
(iii) ⇒ (i): Assume that (iii) holds. By assumption, we get Q = Q ∩ S =

(QSQ]. By Theorem 4.7, S is ordered k-regular.
(i)⇒ (iv): If x ∈ Q ∩ L, then x ∈ (xSx] ⊆ (QSL] ⊆ (QL].
(iv) ⇒ (i): Assume that (iv) holds. Then we obtain R ∩ L ⊆ (RL], since

every right ordered k-ideal is an ordered quasi k-ideal. Clearly, (RL] ⊆ R∩L. So,
R ∩ L = (RL]. By Theorem 4.2, S is ordered k-regular.

(i)⇒ (v): If x ∈ R ∩Q, then x ∈ (xSx] ⊆ (RSQ] ⊆ (RQ].
(v)⇒ (i): It can be proved in a similar way of (iv)⇒ (i).
(i) ⇒ (vi): Assume that S is ordered k-regular and let x ∈ R ∩ Q ∩ L. Then

x ∈ (xSx] ⊆ ((xSx]Sx] ⊆ (xSxSx] ⊆ (RSQSL] ⊆ (RQL].
(vi)⇒ (i): Assume that (vi) holds. We get R∩L = R∩S∩L ⊆ (RSL] ⊆ (RL].

Clearly, (RL] ⊆ R ∩ L. So, R ∩ L = (RL]. By Theorem 4.2, S is ordered k-
regular.

De�nition 4.10. An ordered semiring S is said to be an ordered k-duo-semiring

if every one-sided (left or right) ordered k-ideal of S is an ordered k-ideal of S.
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It is clear that every multiplicatively commutative ordered semiring is an or-
dered k-duo-semiring, but the converse is not true as the following example shows.

Example 4.11. Let S = {a, b, c, d, e}. De�ne a binary operation + on S by
a+x = x+a = x for all x ∈ S and x+ y = c otherwise. De�ne a binary operation
· on S by ax = xa = a for all x ∈ S, bb = bd = dd = e and xy = c otherwise.
De�ne a binary relation 6 on S by

6 := {(a, a), (b, b), (c, c), (d, d), (e, e), (e, c)}.

Then (S,+, ·,6) is an ordered semiring which is not multiplicatively commutative,
since bd 6= db. We have {a} and S are only ordered one-sided k-ideals of S.
Obviously, all of them are ordered ideals of S. This shows that S is an ordered
k-duo-semiring.

Theorem 4.12. The following statements are equivalent:

(i) S is an ordered k-duo-semiring;

(ii) Rk(A) = Lk(A) for each A ⊆ S;

(iii) Rk(a) = Lk(a) for each a ∈ S.

Proof. (i)⇒ (ii) and (ii)⇒ (iii) are obvious.
(iii)⇒ (i): Assume that (iii) holds and let R be a right ordered k-ideal of S.

Let x ∈ R, s ∈ S. By assumption, we obtain sx ∈ SLk(x) ⊆ Lk(x) = Rk(x) ⊆
Rk(R) = R. This shows that R is a left ordered k-ideal of S. Similarly, we can
show that if L is a left ordered k-ideal of S then L is a right ordered k-ideal of S.
Therefore, S is an ordered k-duo-semiring.

As a consequence of Theorem 4.5, 4.6 and De�nition 4.10, we obtain the fol-
lowing corollary.

Corollary 4.13. If an ordered k-duo-semiring S is ordered k-regular, then its

ordered k-ideals, ordered k-interior ideals, ordered quasi k-ideals and its ordered

k-bi-ideals coincide.

Theorem 4.14. Let S be an ordered k-duo-semiring. Then the following state-

ments are equivalent:

(i) S is ordered k-regular;

(ii) B1 ∩B2 = (B1B2] for every ordered k-bi-ideals B1 and B2 of S;

(iii) Q1 ∩Q2 = (Q1Q2] for every ordered quasi k-ideals Q1 and Q2 of S;

(iv) J1 ∩ J2 = (J1J2] for every ordered k-ideal J1 and J2 of S.

Proof. (i) ⇒ (ii): Let B1, B2 be ordered k-bi-ideals of S. By Corollary 4.13, B1

and B2 are ordered k-ideals of S. By Theorem 4.2, we obtain B1 ∩B2 = (B1B2].
(ii)⇒ (iii) and (iii)⇒ (iv) are obvious.
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(vi) ⇒ (i): Assume that (iv) holds. Let A ⊆ S. Since S is an ordered k-duo-
semiring, Jk(A) = Lk(A) = Rk(A). By assumption, we obtain

A ⊆ Jk(A) = Jk(A) ∩ Jk(A) = (Jk(A)Jk(A)] = (Rk(A)Lk(A)].

By Corollary 4.3, we get S is ordered k-regular.
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