Polyadic groups and automorphisms of cyclic extensions

Mohammad Shahryari

Abstract. We show that for any *n*-ary group (G, f), the group Aut(G, f) can be embedded in $Aut(\mathbb{Z}_{n-1} \ltimes G)$ and so we can obtain a class of interesting automorphisms of cyclic extensions.

1. Introduction

Our notations in this article are standard and can be find in [2], for example.

Let (G, f) be an *n*-ary group. We know that, there is a binary operation "." on G, such that (G, \cdot) is an ordinary group, and further, there is a $\theta \in Aut(G, \cdot)$ with an element $b \in G$, such that

- (i) $\theta(b) = b$, and $\theta^{n-1}(x) = bxb^{-1}$ for all $x \in G$,
- (*ii*) $f(x_1^n) = x_1 \theta(x_2) \cdots \theta^{n-1}(x_n) b.$

So, some times, we denote (G, f) by the notation $der_{\theta,b}(G, \cdot)$. If b = e, the identity element of (G, \cdot) , then we use the notation $der_{\theta}(G, \cdot)$.

We associate another binary group to (G, f) which is called the *universal covering group* or *Post's cover* of (G, f). Let a be an arbitrary element of G and suppose $G_a^* = \mathbb{Z}_{n-1} \times G$. Define a binary operation on this set by

$$(i,x)*(j,y) = (i+j+1, f_*(x, a, y, a, \overline{a}, \overline{a}, a)).$$

Here of course, i + j + 1 is computed modulo n - 1, and (i, j) = n - i - j - 3modulo n - 1. The symbol f_* indicates that f applies one or two times depending on the values of i and j and \overline{a} denotes the skew element of a. It is proved that (see [4]), G_a^* is a binary group and the subset

$$R = \{ (n - 2, x) : x \in G \}$$

is a normal subgroup such that $G_a^*/R \cong \mathbb{Z}_{n-1}$. Further, if we identify G by the subset

$$\{(0,x) : x \in G\},\$$

²⁰¹⁰ Mathematics Subject Classification: 20N15

 $^{{\}sf Keywords:}\ {\sf Polyadic\ group,\ covering\ group,\ semi-direct\ product,\ cyclic\ extensions.}$

then G is a coset of R and it generates G_a^* . We also have

$$f(x_1^n) = x_1 * x_2 * \cdots * x_n.$$

It is not hard to see that for all $a, b \in G$, we have $G_a^* \cong G_b^*$, so for simplicity, we always, assume that a = e, the identity element of (G, \cdot) .

Through this article, we assume that $(G, f) = der_{\theta}(G, \cdot)$. So, we have $\theta^{n-1} = id$ and

$$f(x_1^n) = x_1 \theta(x_2) \cdots \theta^{n-2}(x_{n-1}) x_n.$$

We also assume that e is the identity element of (G, \cdot) . We will prove first the following theorem on the structure of the Post's cover.

Theorem 1.1. $(der_{\theta}(G, \cdot))_{e}^{*} \cong \mathbb{Z}_{n-1} \ltimes G$, where \mathbb{Z}_{n-1} acts on (G, \cdot) by $i.x = \theta^{i}(x)$.

Note that, we used a special case of this theorem in [6], to investigate representations of polyadic groups. The main idea of this article is almost the same as in [6]. Our second goal is to obtain an embedding from Aut(G, f) to $Aut(G_e^*)$. The method we employ is the same as in [6]. For any $i \in \mathbb{Z}_{n-1}$ and $u \in G$, suppose $\delta(i, u) = \theta(u)\theta^2(u)\dots\theta^i(u)$. We prove

Theorem 1.2. Let $\Lambda \in Aut(G, f)$ and define $\Lambda^* : G_e^* \to G_e^*$ by

$$\Lambda^*(i,x) = (i,\Lambda(x)\delta(i,u)),$$

where $u = \Lambda(e)$. Then the map $\Lambda \mapsto \Lambda^*$ is an embedding.

In [3], the structure of automorphisms of (G, f) is determined. If $\Lambda \in Aut(G, f)$, then we have $\Lambda = R_u \varphi$, where u is an idempotent element, i.e. $f\binom{(n)}{u} = u$, R_u is the right translation by u and φ is an ordinary automorphism of (G, \cdot) with the property $[\varphi, \theta] = I_u$, (the bracket denotes the commutator $\varphi \theta \varphi^{-1} \theta^{-1}$ and I_u is the inner automorphism corresponding to u). The converse is also true; if u and φ satisfy above conditions, the $\Lambda = R_u \varphi$ is an automorphism of the polyadic group (G, f). We will use this fact frequently through this article. The interested reader should see [3] for a full description of homomorphisms between polyadic groups.

Combining Theorems 1.1 and 1.2, we obtain an embedding of Aut(G, f) into $Aut(\mathbb{Z}_{n-1} \ltimes G)$. More precisely, we prove the following.

Theorem 1.3. Let $\hat{G} = A \ltimes G$, with $A = \langle a \rangle$ cyclic of order n - 1 and let $\theta(x) = axa^{-1}$. Then for any $\varphi \in Aut(G)$ and $u \in G$, the hypotheses $[\varphi, \theta] = I_u$ and $(au)^{n-1} = 1$ imply that the map

$$(a^i, x) \mapsto (a^i, u^{-1}\varphi(x)u(au)^i a^{-i})$$

is an automorphism of \hat{G} and these automorphisms are mutually distinct.

2. Proofs

Proof of Theorem 1.1. Note that in G_e^* , we have

$$\begin{aligned} (i,x)*(j,y) &= (i+j+1, f_*(x, \overset{(i)}{e}, y, \overset{(j)}{e}, \overline{e}, \overset{(i,j)}{e})) \\ &= (i+j+1, x\theta(e) \cdots \theta^i(e)\theta^{i+1}(y)\theta^{i+2}(e) \\ &\cdots \theta^{i+j+2}(e)\theta^{i+j+3}(\overline{e}) \cdots \theta^{n-2}(e)) \\ &= (i+j+1, x\theta^{i+1}(y)\theta^{i+j+3}(\overline{e})), \end{aligned}$$

but, since $\overline{e} = e$, so

$$(i,x)*(j,y) = (i+j+1, x\theta^{i+1}(y)) = (i,x)(1,e)(j,y),$$

where the right hand side product is done in $\mathbb{Z}_{n-1} \ltimes G$. Note that in general, if (A, \cdot) is a group and $a \in A$, then we can define a new binary operation on A by $x \circ y = xay$ and together with this new operation, A is a group too, and so we denote it by $A_a = (A, \circ)$. We have $A \cong A_a$ and the isomorphism is given by $\varphi(x) = a^{-1}x$. Now, by this notation, we have

$$(der_{\theta}(G, \cdot))_{e}^{*} = G_{e}^{*} = (\mathbb{Z}_{n-1} \ltimes G)_{(1,e)},$$

and hence $(der_{\theta}(G, \cdot))_e^* \cong \mathbb{Z}_{n-1} \ltimes G.$

Now, let $\Lambda \in Aut(G, f)$ and $u = \Lambda(e)$. Define $\Lambda_e^* : G_e^* \to G_u^*$ by $\Lambda_e^*(i, x) = (i, \Lambda(x))$.

Lemma 2.1. Λ_e^* is an isomorphism.

Proof. Note that

$$\Lambda_e^*((i,x)*(j,y)) = \Lambda_e^*(i+j+1,x\theta^{i+1}(y)) = (i+j+1,\Lambda(x\theta^{i+1}(y))).$$

On the other hand,

$$\begin{split} \Lambda_e^*(i,x)*\Lambda_e^*(j,y) &= (i,\Lambda(x))*(j,\Lambda(y)) \\ &= (i+j+1,f_*(\Lambda(x),\overset{(i)}{u},\Lambda(y),\overset{(j)}{u},\overline{u},\overset{(i,j)}{u})). \end{split}$$

But $f(\overline{u}, \overset{(n-1)}{u}) = u$, so $\Lambda(f(v, \overset{(n-1)}{e})) = \Lambda(e)$, where $\Lambda(v) = \overline{u}$. Therefore $f(v, \overset{(n-1)}{e}) = e$ and so v = e and hence $\overline{u} = \Lambda(e) = u$. Now, we have

$$\begin{split} \Lambda_e^*(i,x) * \Lambda_e^*(j,y) &= (i+j+1, \Lambda(f_*(x, \overset{(i)}{e}, y, \overset{(j)}{e}, e, \overset{(i,j)}{e}))) = (i+j+1, \Lambda(x\theta^{i+1}(y))) \\ &= \Lambda_e^*((i,x) * (j,y)). \end{split}$$

This shows that Λ_e^* is an isomorphism.

An element $u \in G$ is said to be *idempotent* if $f\binom{n}{u} = u$. For an arbitrary element $u \in G$, we remember that the *right translation map* R_u is defined by $R_u(x) = xu$. In [3], it is proved that every element of Aut(G, f) can be uniquely represented as $R_u\varphi$ with u an idempotent and $\varphi \in Aut(G, \cdot)$ satisfies $[\varphi, \theta] = I_u$, where I_u is the inner automorphism of G, corresponding to u. The converse is also true and so we have a complete description of automorphisms of Aut(G, f)in terms of automorphisms of (G, \cdot) and idempotents. Now, for any idempotent uand $i \in \mathbb{Z}_{n-1}$, define

$$\delta(i, u) = \theta(u)\theta^2(u)\cdots\theta^i(u).$$

Note that for the case i = 0, we have $\delta(0, u) = \delta(n - 1, u) = e$. If $\Lambda \in Aut(G, f)$ and $u = \Lambda(e)$, then we define a map $q_u : G_u^* \to G_e^*$ by $q_u(i, x) = (i, x\delta(i, u))$.

Lemma 2.2. The map q_u is an isomorphism.

Proof. We first assume that $i, j \neq 0$. Note that in G_u^* , we have

$$\begin{aligned} (i,x)*(j,y) &= (i+j+1, f_*(x, \overset{(i)}{u}, y, \overset{(j)}{u}, \overline{u}, \overset{(i,j)}{u})) \\ &= (i+j+1, \Lambda(f_*(\Lambda^{-1}(x), \overset{(i)}{e}, \Lambda^{-1}(y), \overset{(j)}{e}, e, \overset{(i,j)}{e}))) \\ &= (i+j+1, \Lambda(\Lambda^{-1}(x)\theta^{i+1}(\Lambda^{-1}(y)))). \end{aligned}$$

Now, as we said before, $\Lambda = R_u \varphi$ such that $\varphi \in Aut(G)$ and $[\varphi, \theta] = I_u$. Therefore

$$(i,x) * (j,y) = (i+j+1, R_u \varphi(\varphi^{-1} R_u^{-1}(x) \theta^{i+1}(\varphi^{-1} R_u^{-1}(y))))$$

= $(i+j+1, R_u((xu^{-1})\varphi \theta^{i+1}\varphi(yu^{-1}))).$

Since $[\varphi, \theta] = I_u$, so we have $\varphi \theta^{i+1} \varphi^{-1} = (I_u \theta)^{i+1}$. But

$$(I_u \theta)^{i+1}(z) = u\theta(u) \cdots \theta^i(u)\theta^{i+1}(z)\theta(u)^{-1} \cdots \theta(u)^{-1}u^{-1}$$

= $u\delta(i, u)\theta^{i+1}(z)\delta(i, u)^{-1}u^{-1}.$

Hence, we have

$$\begin{aligned} (i,x)*(j,y) &= (i+j+1, R_u(xu^{-1}u\delta(i,u)\theta^{i+1}(yu^{-1})\delta(i,u)^{-1}u^{-1})) \\ &= (i+j+1, x\delta(i,u)\theta^{i+1}(yu^{-1})\delta(i,u)^{-1}). \end{aligned}$$

Now, we are ready to show that q_u is a homomorphism. First, note that

$$\begin{aligned} q_u((i,x)*(j,y)) &= q_u(i+j+1, x\delta(i,u)\theta^{i+1}(yu^{-1})\delta(i,u)^{-1}) \\ &= (i+j+1, x\delta(i,u)\theta^{i+1}(yu^{-1})\delta(i,u)^{-1}\delta(i+j+1,u)). \end{aligned}$$

On the other hand

$$\begin{aligned} q_u(i,x) * q_u(j,y) &= (i, x\delta(i,u)) * (j, y\delta(j,u)) \\ &= (i+j+1, x\delta(i,u)\theta^{i+1}(y\delta(j,u))) \\ &= (i+j+1, x\delta(i,u)\theta^{i+1}(y)\theta^{i+1}(\delta(j,u))). \end{aligned}$$

Hence, q_u is a homomorphism, if and only if we have

$$\theta^{i+1}(\delta(j,u)) = \theta^{i+1}(u^{-1})\delta(i,u)^{-1}\delta(i+j+1,u).$$

But, we have,

$$\theta^{i+1}(u^{-1})\delta(i,u)^{-1}\delta(i+j+1,u) = \theta^{i+2}(u)\cdots\theta^{i+j+1}(u) = \theta^{i+1}(\delta(j,u)).$$

The case i = 0 can be verified similarly, so q_u is a homomorphism. It is easy to see that also q_u is a bijection and so we proved the lemma.

Combining two isomorphisms q_u and Λ_e^* , we obtain an automorphism $\Lambda^* = q_u \circ \Lambda_e^* \in Aut(G_e^*)$. Note that, we have

$$\Lambda^*(i,x) = (i,\Lambda(x)\delta(i,u)) = (0,\Lambda(x))*(0,u)^i.$$

Lemma 2.3. The map $\Lambda \mapsto \Lambda^*$ is an embedding from Aut(G, f) into $Aut(G_e^*)$.

Proof. Let $\Lambda_1, \Lambda_2 \in Aut(G, f)$ and $u = \Lambda_1(e)$ and $v = \Lambda_2(e)$. Suppose also $w = \Lambda_1(v) = (\Lambda_1 \circ \Lambda_2)(e)$. We have

$$(\Lambda_1 \circ \Lambda_2)^*(i, x) = (i, \Lambda_1(\Lambda_2(x))\delta(i, w)).$$

On the other hand

$$\Lambda_1^*(\Lambda_2^*(i,x)) = \Lambda_1^*(i,\Lambda_2(x)\delta(i,v)) = (i,\Lambda_1(\Lambda_2(x)\delta(i,v))\delta(i,u))$$

But we have

$$\begin{split} \Lambda_1(\Lambda_2(x)\delta(i,v)) &= \Lambda_1(\Lambda_2(x)\theta(v)\cdots\theta^i(v)\theta^{i+1}(e)\cdots\theta^{n-2}(e)e) \\ &= \Lambda_1(f(\Lambda_2(x), \stackrel{(i)}{v}, \stackrel{(n-i-2)}{e}, e)) \\ &= f(\Lambda_1(\Lambda_2(x)), \stackrel{(i)}{w}, \stackrel{(n-i-2)}{u}, \Lambda_1(e)) \\ &= \Lambda_1(\Lambda_2(x))\delta(i, w)\theta^{i+1}(u)\cdots\theta^{n-2}(u)\Lambda_1(e). \end{split}$$

Note that we have

$$\theta^{i+1}\cdots\theta^{n-2}\Lambda_1(e)\delta(i,u)=\theta^{i+1}(u)\cdots\theta^{n-2}(u)u\theta(u)\cdots\theta^i(u)=e,$$

because,

$$\theta(u) \cdots \theta^{i}(u) \theta^{i+1}(u) \cdots \theta^{n-2}(u) \Lambda_{1}(e) = u^{-1} \Lambda_{1}(f(e^{n})) = u^{-1} \Lambda_{1}(e) = e.$$

Therefore we obtain

$$\Lambda_1^*(\Lambda_2^*(i,x)) = (i, \Lambda_1(\Lambda_2(x))\delta(i,w)),$$

and this shows that the map $\Lambda \mapsto \Lambda^*$ is a homomorphism. Now suppose $\Lambda^* = id$. Then $\Lambda(x)\delta(i, u) = x$ for all x and i, so if we put x = e, then $\delta(i, u) = u^{-1}$ for all i. Assuming i = 1, we get $\theta(u) = u^{-1}$ and so assuming i = 2, we obtain $u^{-1}u = u^{-1}$, hence u = e and consequently $\Lambda = id$. This completes the proof of the lemma. \Box Remember that we proved

$$G_e^* = (\mathbb{Z}_{n-1} \ltimes G)_{(1,e)} \cong \mathbb{Z}_{n-1} \ltimes G,$$

and this isomorphism is given by $\varphi(i, x) = (1, e)^{-1}(i, x)$. So,

$$\varphi(i,x) = (n-2,e)(i,x) = (n+i-2,\theta^{n-2}(x)) = (i-1,\theta^{n-2}(x)).$$

Now, for any $\Lambda \in Aut(G, f)$, define

$$\alpha(\Lambda) = \varphi^{-1} \circ \Lambda^* \circ \varphi.$$

Therefore $\alpha(\Lambda)$ is an automorphism of $\mathbb{Z}_{n-1} \ltimes G$ and the map $\Lambda \mapsto \alpha(\Lambda)$ is an embedding. We have

$$\begin{aligned} \alpha(\Lambda)(i,x) &= \varphi^{-1}(i-1,\Lambda(\theta^{-1}(x))\delta(i-1,u)) \\ &= (1,e)(i-1,\Lambda(\theta^{-1}(x))\delta(i-1,u)) \\ &= (i,(\theta\Lambda\theta^{-1})(x)\theta(u^{-1})\delta(i,u)). \end{aligned}$$

Since $\Lambda = R_u \varphi$, so $(\theta \Lambda \theta^{-1})(x) = (\theta \varphi \theta^{-1})(x) \theta(u)$. Hence

$$\alpha(\Lambda)(i,x) = (i, (\theta \varphi \theta^{-1})(x)\delta(i,u)).$$

On the other hand $\theta \varphi \theta^{-1} = I_u^{-1} \varphi$ and hence

$$\alpha(\Lambda)(i,x) = (i, u^{-1}\varphi(x)u\delta(i,u)).$$

Summarizing, we obtain the following corollary:

Corollary 2.4. There is an embedding α : $Aut(G, f) \rightarrow Aut(\mathbb{Z}_{n-1} \ltimes G)$, such that

$$\alpha(\Lambda)(i,x) = (i, u^{-1}\varphi(x)u\delta(i,u)).$$

Now, we are ready to prove Theorem 1.3.

Proof of Theorem 1.3. Suppose $\hat{G} = A \ltimes G$ where $A = \langle a \rangle$ is a cyclic of order n-1. Define an automorphism of G by $\theta(x) = axa^{-1}$, so $\theta^{n-1} = id$. Let

$$(G, f) = der_{\theta}(G, \cdot).$$

So, there is an embedding $\alpha : Aut(G, f) \to Aut(\hat{G})$ such that

$$\alpha(\Lambda)(a^i, x) = (a^i, u^{-1}\varphi(x)u\delta(i, u)).$$

Since u is an idempotent, so $f(\overset{(n)}{u}) = u$, and therefore

$$u\theta(u)\cdots\theta^{n-1}(u)=u,$$

which implies that

$$aua^{-1}a^2ua^{-2}\cdots a^{n-2}ua^{-(n-2)}u = e.$$

Hence $(au)^{n-1} = 1$. Similarly, $\delta(i, u) = (au)^i a^{-i}$, so for any $\varphi \in Aut(G)$ and for any $u \in G$, the hypotheses

$$(au)^{n-1} = 1, \quad [\varphi, \theta] = I_u$$

imply that the map

$$(a^i,x)\mapsto (a^i,u^{-1}\varphi(x)u(au)^ia^{-i})$$

is an automorphism of \hat{G} . Clearly this is an embedding and hence the theorem is proved.

Example 2.5. Let E = GF(q) be the Galois field of order q and $m \ge 1$. Let $G = (E^m, +)$ and suppose $\alpha : E^m \to E^m$ is a linear map of order n - 1. Then $A = \langle \alpha \rangle$ acts naturally on G, so $\hat{G} = A \ltimes G \cong \mathbb{Z}_{n-1} \ltimes E^m$. In this case $\theta = \alpha^{-1}$ and for any $u \in \ker(1 + \alpha + \cdots + \alpha^{n-2})$ and any

$$\varphi \in C_{GL_m(q)}(\alpha)$$

we have $[\theta, \varphi] = 1 = I_u$. Note that we have $u \in \ker(1 + \alpha + \dots + \alpha^{n-2})$, iff $u = \alpha(v) - v$ for some $v \in E^m$. This shows that for any such v and φ , the map

$$(\alpha^{i}, x) \mapsto (\alpha^{i}, \varphi(x) + (\alpha^{i-1} - \alpha^{-1})(v))$$

is an automorphism of $\mathbb{Z}_{n-1} \ltimes E^m$.

References

- W.A. Dudek and K. Glazek, Around the Hosszú-Gluskin Theorem for n-ary groups, Discrete Math. 308 (2008), 4861 - 4876.
- [2] W.A. Dudek and M. Shahryari, Representation theory of polyadic groups, Algebras and Representation Theory 15 (2012), 29-51.
- [3] H. Khodabandeh and M. Shahryari, On the Automorphisms and representations of polyadic groups, Commun. Algebra 40 (2012), 2199-2212.
- [4] J. Michalski, Covering k-groups of n-groups, Archivum Math. (Brno) 17 (1981), 207-226.
- [5] E.L. Post, Polyadic groups, Trans. Amer. Math. Soc. 48 (1940), 208 350.
- [6] M. Shahryari, Representations of finite polyadic groups, Commun. Algebra 40 (2012), 1625-1631.

Received June 7, 2012

Department of Pure Mathematics, Faculty of Mathematical Sciences, University of Tabriz, Tabriz, Iran E-mail: mshahryari@tabrizu.ac.ir