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Some remarks on Abel-Grassmann's groups

Petar V. Proti¢

Abstract. Abel-Grassmann's groupoids or shortly AG-groupoids have been considered in quite
a number of papers, although under the di�erent names (left-almost semigroups, left invertive
groupoids). Abel-Grassmann's groups (AG-groups) is an Abel-Grassmann's groupoid with left
identity in which every element has inverse. In this paper we describe AG-groups by equations.
Also, we describe congruences on AG-groups.

1. Introduction

Abel-Grassmann's groupoids, abbreviated as AG-groupoids, are also called left
almost semigroups (LA-semigroups in short). They are closely related with com-
mutative semigroup because if an AG-groupoid contains right identity then it
becomes a commutative monoid. Although the structure is non-associative and
non-commutative, nevertheless, it posses many interesting properties which we
usually found in associative and commutative algebraic structures. For instance
a2b2 = b2a2, for all a, b holds in a commutative semigroup, while this equation
also holds for an AG-groupoid with left identity e, moreover ab = (ba)e for any
subset {a, b} of an AG-groupoid. An idempotent AG-groupoid with left identity
is a semilattice [6].

A groupoid (S, ·) is called AG-groupoid, if it satis�es the left invertive law:

ab · c = cb · a. (1)

Any AG-groupoid satis�es the medial law:

ab · cd = ac · bd. (2)

An AG-groupoid satisfying the identity

a · bc = b · ac (3)

is called an AG∗∗-groupoid. Notice that each AG-groupoid with left identity is an
AG∗∗-groupoid [7]. In any AG∗∗-groupoid G holds the paramedial law:

ab · cd = db · ca. (4)

In this paper by Ge we denote the AG-groupoid G with a left identity e.
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2. AG-groups

The element x ∈ Ge (y ∈ Ge) is a left (resp. right) inverse for a ∈ Ge if xa = e
(resp. ay = e), and an element which is both a left and a right inverse is called an
inverse element. In [5] it has been proved that in Ge left identity and left inverse
are uniquely determined and that any left inverse is a right inverse and conversely.
Hence, left and right inverses is an inverse and it is unique. An inverse of a ∈ Ge

is denoted by a′. Clearly, for any a, b ∈ Ge, (a′)′ = a, (ab)′ = a′b′.

De�nition 2.1. [5] An AG-groupoid Ge is called an AG-group if every a ∈ Ge

has an inverse element a′.

Obviously, any AG-group is an AG∗∗-groupoid. Hence any AG∗∗-group satis-
�es (1), (2), (3) and (4).

A simple example of an AG-group is an AG-groupoid der(G, ∗) derived from
an Abelian group (G, ∗) i.e., an AG-groupoid with the operation xy = x−1 ∗ y. In
this AG-group we have x′ = x for all x ∈ G. But there are AG-groups which are
not of this form.

Example 2.2. It is not di�cult to see that the groupoid (G, ·) de�ned by the
following table

· e a b c

e e a b c
a a e c b
b c b a e
c b c e a

is an AG-groupoid. It is not a semigroup since, for example, ba · a 6= b · aa. The
element e is its left identity, a = a′, b′ = c and c′ = b. Hence, (G, ·) is an AG-group.
Obviously this AG-group is not derived from a group.

Lemma 2.3. In an AG-group Ge the equation xa = b has an unique solution for

every a, b ∈ Ge.

Proof. Indeed, since for all a, b ∈ Ge we have

b = eb = aa′ · b = ba′ · a,

the element x = ba′ ∈ Ge is a solution of the equation xa = b.
Let x1 and x2 be solutions of the equation xa = b, then

x1 = ex1 = a′a · x1 = x1a · a′ = ba′

= x2a · a′ = a′a · x2 = ex2 = x2.

Hence, the equation xa = b has an unique solution.

Theorem 2.4. On any AG-group Ge we can de�ne an Abelian group ret(Ge) by

putting x ◦ y = xe · y.
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Proof. If Ge is an AG-group, then by (1) the operation x◦y = xe·y is commutative
and e is its neutral element. Moreover, for all x, y, z ∈ Ge we have

(x ◦ y) ◦ z = (xe · y)e · z (1)
= ze · (xe · y)

(1)
= ze · (ye · x)

(4)
= xe · (ye · z) = x ◦ (y ◦ z).

So, (Ge, ◦) is a commutative monoid.
Consider the equation b = x◦a = xe ·a. By Lemma 2.3 the equation za = b has

a unique solution z0 ∈ Ge. The equation xe = z0 also has a unique solution. Thus
for every a, b ∈ Ge there exists x such that x ◦ a = b. Hence ret(Ge) = (Ge, ◦) is
an Abelian group. In this group a−1 = a′e, where a′ is an inverse element in an
AG-group Ge.

Remark 2.5. For an AG-groupoid Ge derived from an Abelian group (G, ∗) we
have ret(Ge) = der(G, ∗). So, ret(der(G, ∗)) = (G, ∗) and der(ret(Ge)) = Ge.
Example 2.2 show that the last equality is not true for AG-groups which are not
derived from an Abelian group.

From results obtained in [6] it follows that der(ret(Ge)) = Ge holds only for
AG-groups satisfying the identity x2 = e.

Theorem 2.6. Let H, K be two AG-subgroups of an AG-groupoid G. If e
H
, e

K

are left identities of H and K respectively, then

H ∩K 6= ∅ ⇐⇒ e
H

= e
K

.

Proof. Let H ∩K 6= ∅ and let a ∈ H ∩K, then aa′
H

= a′
H

a = e
H
, aa′

K
= a′

K
a = e

K

for some a′
H
∈ H, a′

K
∈ K. Thus

e
H

e
K

= a′
H

a · eK = e
K

a · a′
H

= aa′
H

= e
H

.

By symmetry, e
K

e
H

= e
K
. Now, by (1) and (2), we obtain

e
H

e
K

= aa′
H
· e

K
= e

K
a′

H
· a = e

K
a′

H
· e

K
a = e

K
e

H
· a′

H
a = e

K
e

H
,

and so e
H

= e
K
.

The converse statement is trivial.

3. Congruences on AG-groups

In this section we shall characterize all congruences on an arbitrary AG-group by
its normal AG-subgroups.

Lemma 3.1. If ρ is a congruence on an AG-group Ge, then for all a, b ∈ Ge we

have

aρ b ⇐⇒ a′ρ b′.
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Proof. Indeed, if aρ b, then (b′a)ρ (b′b), and so (b′a)ρ e. Therefore, (b′a · a′)ρ (ea′).
On the other hand, b′a · a′ = a′a · b′ = eb′ = b′. Hence, b′ρ a′.

The converse implication is obvious, since (a′)′ = a for every a ∈ Ge.

De�nition 3.2. A nonempty subset K of an AG-group Ge is called

• self conjugate if x ·Kx′ ⊆ K for all x ∈ Ge,

• inverse closed if x′ ∈ K for all x ∈ K,

• an AG-subgroup if it is an inverse closed subgroupoid of Ge,

• a normal AG-subgroup if it is a self conjugate AG-subgroup of Ge.

Obviously, any AG-subgroup of Ge is a subgroup of the group ret(Ge). The
converse is not true in general. For example, it is not di�cult to see that for an
AG-group Ge de�ned in Example 2.2, H = {e, b} is a subgroup of ret(Ge), but it
is not an AG-subgroup of Ge.

Lemma 3.3. Let ρ be a congruence relation de�ned on an AG-group Ge. Then

ker ρ = {x ∈ Ge : x ρ e}

is a normal AG-subgroup of Ge.

Proof. Let ρ be a congruence on Ge. Obviously, e ∈ ker ρ. Moreover, if a, b ∈ ker ρ,
then aρe, bρe and so ab ρ e. Hence, ab ∈ ker ρ. Thus ker ρ is a subgroupoid of Ge.
It is inverse closed since for every x ∈ ker ρ we have xρe, which by Lemma 3.1
implies x′ρ e, whence x′ ∈ ker ρ. Hence, ker ρ is an AG-subgroup of Ge.

Now let x ∈ Ge. Then for every y ∈ x · ker ρ x′ there exists a ∈ ker ρ such
that y = a · ax′. Thus (x · ax′)ρ(x · ex′), i.e., (x · ax′)ρe, which means that
y = x · ax′ ∈ ker ρ. So, ker ρ is a normal AG-subgroup of Ge.

Theorem 3.4. Let K be a normal AG-subgroup of an AG-group Ge. Then the

relation ρ
K

de�ned by

aρ
K

b ⇐⇒ a ∈ Kb ∧ b ∈ Ka

is the unique congruence on Ge for which ker ρ
K

= K.

Proof. Let K be a normal AG-subgroup of Ge. Clearly, the relation ρ
K
is re�exive

and symmetric. If aρ
K

b, bρ
K

c, then obviously a ∈ Kb, b ∈ Kc. From this, applying
(1) and (4) we obtain

a ∈ Kb ⊆ K ·Kc = KK ·Kc = cK ·KK = cK ·K = KK · c = Kc.

Dually, c ∈ Ka, whence aρ
K

c and so ρ is a transitive relation. Therefore, ρ is an
equivalence on Ge.
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Now let aρ
K

b and cρ
K

d. Then ac ∈ Kb · Kd = KK · bd = K · bd and dually
bd ∈ K · ac. Hence (ab)ρ

K
(cd). Thus ρ

K
is a congruence on Ge.

If a ∈ ker ρ
K
, then aρ

K
e. Consequently a ∈ Ke and e ∈ Ka. From the above

ea′ ∈ Ka · a′, whence a′ ∈ a′a ·K = eK = K. Now, since K is inverse closed, we
have a ∈ K. Hence ker ρ

K
⊆ K. Conversely, if a ∈ K then e, a′ ∈ K and so

e = a′a ∈ Ka, a ∈ K = KK = eK ·K = KK · e = Ke,

whence aρ
K

e and a ∈ ker ρ
K
. Hence K ⊆ ker ρ

K
and so K = ker ρ

K
.

To prove that ρ
K

is an unique congruence on Ge with the kernel K consider
an arbitrary congruence λ on Ge and assume that its kernel also is K. Then for
aλb we have ab′λ bb′ and aa′λ ba′. So, ab′, ba′ ∈ ker λ = K. Thus ab′ · b ∈ Kb and
so a = bb′ · a = ab′ · b ∈ Kb. Analogously we obtain b = ba′ · a ∈ Ka. This proves
that aρ

K
b. Thus λ ⊆ ρ

K
.

Conversely, if aρ
K

b, then a ∈ Kb, b ∈ Ka, and consequently

ab′ ∈ Kb · b′ = b′b ·K = eK = K = kerλ,

whence ab′λe. This implies (ab′ · b)λeb, i.e., (ab′ · b)λb. But ab′ · b = bb′ · a = a, so
aλb. Hence ρ

K
⊆ λ. Thus ρ

K
= λ. This means that ρ

K
is an unique congruence on

Ge with kernel K.

Corollary 3.5. For any congruence λ on an AG-group Ge we have ρker λ = λ.

Proof. Indeed, by Lemma 3.3, ker λ is a normal AG-subgroup of Ge, and in a view
of Theorem 3.4 we have ker ρker λ = kerλ. This implies ρker λ = λ.

As a consequence of results proved in [3] we obtain the following proposition
which will be used later.

Proposition 3.6. The lattice of congruences on an AG-group is modular.

4. Congruences on AG∗∗-groupoids

An AG∗∗-groupoid G in which for every x ∈ G there exists uniquely determined
element x−1 ∈ G such that

x = xx−1 · x, x−1 = x−1x · x−1 (5)

and

xx−1 = x−1x (6)

is called completely inverse.
Obviously any AG-group is a completely inverse AG∗∗-groupoid. Moreover, in

this case x−1 = x′.



272 P.V. Proti¢

One can prove (cf. [1]) that an AG∗∗-groupoid (satisfying (5)) satis�es (6) if and
only if xx−1 and x−1x are idempotents. Thus a completely inverse AG∗∗-groupoid
containing only one idempotent is an AG-group (cf. [3]).

Let EG denote the set of idempotents of a completely inverse AG∗∗-groupoid G.
Then EG is a semilattice (cf. [1]) and the relation 6 de�ned on G by

a 6 b ⇐⇒ a ∈ EGb

is the natural partial order on G.

The following result can be deduced from [9].

Lemma 4.1. In any completely inverse AG∗∗-groupoid G, the relation 6 is a

compatible partial order on G. Also, a 6 b implies a−1 6 b−1 for all a, b ∈ G.

De�nition 4.2. For any nonempty subset B of a completely inverse AG∗∗-groupoid
G, the set

Bω = {a ∈ G : ∃ (b ∈ B) b 6 a}

is called the closure of B in G.

If B = Bω, then we shall say that B is closed in G. Clearly, Bω is closed in G.

It is clear that a subgroupoid B of a completely inverse AG∗∗-groupoid G is
itself a completely inverse AG∗∗-groupoid if and only if b ∈ B implies b−1 ∈ B
for every b ∈ B. A subgroupoid with this property is called a completely inverse

AG∗∗-subgroupoid of G.

De�nition 4.3. A nonempty subset B of a completely inverse AG∗∗-groupoid G
is called:

• full if EG ⊆ B,

• symmetric if xy ∈ B implies yx ∈ B for all x, y ∈ G,

• normal if it is full, closed and symmetric.

Denote the set of AG-group congruences on an arbitrary completely inverse
AG∗∗-groupoid G by GC(G), and denote by σ the least such a congruence on G.
Then GC(G) = [σ,G × G] is a complete sublattice of the lattice C(G) of all con-
gruences on G. Notice that GC(G) ∼= C(G/σ) and so the lattice GC(G) is modular
(by Proposition 3.6). Furthermore, let N (G) be the set of all normal completely
inverse AG∗∗-subgroupoids of G. Obviously, EGω ⊆ N for every normal com-
pletely inverse AG∗∗-subgroupoid N of G. If ∅ 6= F ⊆ N (G), then

⋂
F ∈ N (G).

Consequently, N (G) is a complete lattice.

The following theorem describes the AG-groups congruences on a completely
inverse AG∗∗-groupoid in the terms of its normal completely inverse AG∗∗-sub-
groupoids.
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Theorem 4.4. Let N be a normal completely inverse AG∗∗-subgroupoid of a com-

pletely inverse AG∗∗-groupoid G. Then the relation

ρN = {(a, b) ∈ G×G : ab−1 ∈ N}

is the unique AG-group congruence ρ on G for which ker(ρ) = N.

Proof. Clearly, ρN is re�exive. Further, if ab−1 ∈ N, then b−1a ∈ N, so ba−1 ∈ N,
therefore, ρN is symmetric. Also, if ab−1, bc−1 ∈ N, then ab−1 · c−1b ∈ N. Hence
ac−1 · b−1b ∈ N, so b−1b · ac−1 ∈ N, that is, b−1b · ac−1 = n for some n ∈ N and
so n 6 ac−1. Thus ac−1 ∈ Nω = N . Consequently, ρN is an equivalence relation
on G. Moreover, let (a, b) ∈ ρN and c ∈ G. Then

ac · (bc)−1 = ac · b−1c−1 = ab−1 · cc−1 ∈ NEG ⊆ NN ⊆ N

and similarly ca · (cb)−1 ∈ N, therefore, ρN is a congruence on G. Furthermore,
since ef−1 = ef ∈ EG ⊆ N for all e, f ∈ EG, then S/ρN is an AG-group. Finally,
if a ∈ Nω, then ea ∈ N for some e ∈ EG. Hence ae = ae−1 ∈ N and so (a, e) ∈ ρN .
Thus we have a ∈ ker(ρ). Conversely, if a ∈ ker(ρ), then aa · a−1 = a−1a · a ∈ N.
Hence a ∈ Nω = N. Consequently, ker(ρN ) = N. It is easy to see that an arbitrary
AG-group congruence on G is uniquely determined by its kernel, so ρN is a unique
AG-group congruence with ker(ρN ) = N.

Theorem 4.5. If ρ is a group congruence on a completely inverse AG∗∗-groupoid

G, then ker(ρ) ∈ N (G) and ρ = ρker(ρ).

Proof. Indeed, N = ker(ρ) is a normal completely inverse AG∗∗-subgroupoid of
G, so that ρ = ρN .

Corollary 4.6. The map ϕ : N (G) → GC(G) given by ϕ(N) = ρN , where G is

a completely inverse AG∗∗-groupoid, is a complete lattice isomorphism of N (G)
onto GC(G). In particular, the lattice N (G) is modular.

More interesting facts concerning certain fundamental congruences on a com-
pletely inverse AG∗∗-groupoid one can �nd in [2] and [3]. In [3] are determined,
for example, the maximum idempotent-separating congruence, the least AG-group
and the least E-unitary congruence. In particular, the congruences on completely
inverse AG∗∗-groupoids are described by their kernel and trace.
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