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On �nite loops

whose inner mapping groups are direct products

of dihedral groups and abelian groups

Emma Leppälä and Markku Niemenmaa

Abstract. We show that a �nite loop, whose inner mapping group is a direct product of a
dihedral group and an abelian group, is solvable provided that the components in the direct
product have coprime orders.

1. Introduction

Let Q be a groupoid with a neutral element e. If each of the two equations ax = b
and ya = b has a unique solution for any a, b ∈ Q, then we say that Q is a
loop. The two mappings La(x) = ax and Ra(x) = xa are permutations on Q
for every a ∈ Q. The permutation group M(Q) = 〈La, Ra : a ∈ Q〉 is called the
multiplication group of the loop Q. Clearly, M(Q) is transitive on Q. The stabilizer
of the neutral element e is denoted by I(Q) and is called the inner mapping group

of Q.

A subloop H of Q is normal in Q if x(yH) = (xy)H, (Hx)y = H(xy) and
xH = Hx for every x, y ∈ Q. A loop Q is solvable if it has a series 1 = Q0 ⊆
· · · ⊆ Qn = Q, where Qi−1 is a normal subloop of Qi and Qi/Qi−1 is an abelian
group for each i. In 1996 Vesanen [8] managed to show that the solvability of
M(Q) (in the group theoretical sense) implies the solvability of Q (in the loop
theoretical sense) if Q is a �nite loop. After this we were naturally interested in
those properties of I(Q) which imply the solvability of M(Q).

In 2000 Csörg® and Niemenmaa [1] considered the case where I(Q) is a non-
abelian group of order 2p (here p is an odd prime number) and they showed that
M(Q) is then a solvable group. In 2002, Drápal [2] investigated the case where
I(Q) is a nonabelian group of order pq (p and q are two di�erent prime num-
bers) and again the solvability of M(Q) followed. Finally, in 2004 Niemenmaa [5]
showed that �nite loops with dihedral inner mapping groups are solvable. Now
we are able to prove the following: If Q is a �nite loop and I(Q) = S × L, where
S is dihedral, L is abelian and gcd(|S|, |L|) = 1, then M(Q) is solvable. By the
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result of Vesanen, Q is solvable, too. The result also holds in the case that S is a
nonabelian group of order pq, where p and q are two di�erent prime numbers.

Many properties of loops and their multiplication groups can be reduced to the
properties of connected transversals in groups. Thus in section two we shall give
the needed background material about connected transversals and their connec-
tions to loop theory. Section three contains our main results about the solvability
of �nite loops with given inner mapping groups.

2. Connected transversals

Let G be a group, H ≤ G and let A and B be two left transversals to H in
G. We say that the two transversals A and B are H-connected if a−1b−1ab ∈ H
for every a ∈ A and b ∈ B. We denote by HG the core of H in G (the largest
normal subgroup of G contained in H). If Q is a loop, then A = {La : a ∈ Q}
and B = {Ra : a ∈ Q} are I(Q)-connected transversals in M(Q) and the core of
I(Q) in M(Q) is trivial. Niemenmaa and Kepka proved in 1990 the following [6,
Theorem 4.1]

Theorem 2.1. A group G is isomorphic to the multiplication group of a loop if

and only if there exist a subgroup H and H-connected transversals A and B such

that HG = 1 and G = 〈A,B〉.

In the following results, which are needed later, we assume that A and B are
H-connected transversals in G.

Lemma 2.2. If C ⊆ A ∪B and K = 〈H,C〉, then C ⊆ KG.

Lemma 2.3. If G = 〈A,B〉 and H is cyclic, then G′ ≤ H.

Theorem 2.4. If G is �nite and H is abelian or dihedral, then G is solvable.

For the proofs, see [6, Lemma 2.5 and Theorem 3.5], [7, Theorem 4.1] and [5,
Theorem 3.1].

Next we wish to show that the solvability of G also follows in the case that
H is a nonabelian subgroup of order pq (here p 6= q are prime numbers). For the
proof we need the following loop theoretical result by Drápal [2, Corollary 4.7].

Theorem 2.5. If Q is a loop and I(Q) is a nonabelian group of order pq, where
p 6= q are prime numbers, then M(Q) is solvable.

We also need

Lemma 2.6. Let G = AH be a �nite group, where A is an abelian subgroup, H
is a subgroup of order pq and p 6= q are prime numbers. Then G is solvable.

For the proof, see [4, Lemma 2.5].
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Theorem 2.7. Let G be a �nite group, H ≤ G and |H| = pq, where p 6= q are

prime numbers. If there exist H-connected transversals A and B in G, then G is

solvable.

Proof. If HG > 1, then we consider the group G/HG and the subgroup H/HG.
Since H/HG is cyclic, the claim follows from Theorem 2.4. Thus we may assume
that HG = 1.

If G = 〈A,B〉, then we apply Theorems 2.1 and 2.5, and the solvability of G
follows. Thus we may assume that E = 〈A,B〉 < G. If we write K = E ∩ H,
then K < H and we have K-connected transversals A and B in E. Then E′ ≤ K
by Lemma 2.3 and K is normal in E. As G = EH, we may conclude that
KG = 〈Kg : g ∈ G〉 ≤ H. If K 6= 1, then we get a contradiction, as HG = 1. Thus
K = 1 and it follows that E = A = B is an abelian group. Now G = EH and we
can apply Lemma 2.6.

3. Main results

The following classical result of Wielandt is needed in the proof of our main the-
orem.

Theorem 3.1. Let G be a �nite group and let G contain a nilpotent Hall π-
subgroup H. Then every π-subgroup of G is contained in a conjugate of H.

For the proof, see [3, Satz 5.8, p. 285].

Theorem 3.2. Let G be a �nite group and H = S × L ≤ G, where S is dihedral,

L is abelian and gcd(|S|, |L|) = 1. If there exist H-connected transversals A and

B in G, then G is solvable.

Proof. Let G be a minimal counterexample. If HG > 1, then we consider G/HG

and its subgroup H/HG and by using induction or Theorem 2.4, it follows that
G/HG is solvable, hence G is solvable.

Thus we may assume that HG = 1. If H is not maximal in G, then there exists
a subgroup T such that H < T < G. By Lemma 2.2, TG > 1 and we may consider
G/TG and its subgroup HTG/TG = T/TG. It follows that G/TG is solvable. Since
T is solvable by induction, we conclude that G is solvable.

We thus assume that H is a maximal subgroup of G. Let P be a Sylow p-
subgroup of L. As HG = 1, we conclude that P is a Sylow p-subgroup of G. From
this it follows that L is a Hall subgroup of G. Clearly, NG(P ) = H = CG(P )
and by using the Burnside normal complement theorem there exists a normal p-
complement in G for each p that divides |L|. Clearly, this means that G = KL,
where K is normal in G and gcd(|K|, |L|) = 1.

If 1 6= a ∈ A, then a = yx, where y ∈ L and x ∈ K. Then aK = yK and
(aK)d = K, where d divides |L|. Thus ad ∈ K, hence (ad)t = 1, where t divides
|K|. It follows that (at)d = 1, hence |at| divides d. Since L is an abelian Hall
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subgroup of G, we may apply Theorem 3.1 and it follows that at ∈ Lg for some
g ∈ G. As L is abelian, 〈at〉 is normal in 〈a,Hg〉 = G. As HG = 1, we conclude
that at = 1. Now there exist integers m and n such that md + nt = 1. Thus
a = amd+nt = (ad)m(at)n ∈ K.

We may conclude that A ∪ B ⊆ K. Clearly, S ≤ K and thus K = AS = BS.
By Theorem 2.4, K is a solvable group. As G = KL, it follows that G is solvable,
too.

Theorem 3.3. Let G be a �nite group and H = S × L ≤ G, where S is a

nonabelian group of order pq (here p 6= q are prime numbers), L is abelian and

gcd(|S|, |L|) = 1. If there exist H-connected transversals A and B in G, then G is

solvable.

Proof. The proof is analogous to the proof of Theorem 3.2. We just have to replace
Theorem 2.4 by Theorem 2.7 when needed.

By combining Theorem 2.1 with Theorems 3.2 and 3.3, and by applying the
theorem of Vesanen [8], we have the following

Corollary 3.4. Let Q be a �nite loop. If I(Q) = S×L, where S is either dihedral

or nonabelian of order pq, L is abelian and gcd(|S|, |L|) = 1, then M(Q) is a

solvable group and Q is a solvable loop.

Remark 3.5. It would be interesting to know if the results of Theorems 3.2
and 3.3 and Corollary 3.4 also hold in the case that L is nilpotent.
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