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Clifford congruences on an idempotent-surjective

R-semigroup
Roman S. Gigon

Abstract. In the paper we describe the least Clifford congruence £ on an idempotent-surjective
R-semigroup, and so we generalize the result of LaTorre (1983). In addition, a characterization of
all Clifford congruences on such a semigroup (in particular, on a structurally regular semigroup)
is given. Furthermore, we find necessary and sufficient conditions for £ to be idempotent pure or
E-unitary. Moreover, using some earlier result, we give a description of all USG-congruences on
an idempotent-surjective semigroup, and so we generalize the result of Howie and Lallement for
regular semigroups (1966). Finally, in Section 4 we study the subdirect products of an E-unitary
semigroup and a Clifford semigroup.

1. Preliminaries

Whenever possible the notation and conventions of Howie [11, 12] are used. Let S
be a semigroup and let A C S. Denote by E 4 the set of all idempotents of A, that
is, E4 = {a € A : a® = a}, and by Reg(S) the set of all reqular elements of S,
ie., Reg(S) ={a € S:a € aSa}. We say that S is regular if Reg(S) = S. More
generally, in [10] Hall observed that the set Reg(S) of a semigroup S with Eg # ()
forms a regular subsemigroup of S if and only if the product of any two idempotents
of S is regular. In a such case, S is said to be an R-semigroup. Finally, if Fg is a
subsemigroup of S, then S is called an E-semigroup. Clearly, any E-semigroup is
an R-semigroup.

Let S be a semigroup, a € S. The set W(a) = {x € S : = zax} is called
the set of weak inverses of a, so the elements of W(a) will be called weak inverse
elements of a. A semigroup S is said to be E-inversive if for every a € S there is
x € S such that az € Fg [21]. Clearly, S is E-inversive iff W (a) # 0 (a € S), so if
S is E-inversive, then for all a € S there is x € S such that ax,za € Eg. For some
interesting results concerning F-inversive semigroups, see [18, 4].

A generalization of the concept of regularity will also prove convenient. Define a
semigroup S to be idempotent-surjective if whenever p is a congruence on S and ap
is an idempotent of S/p, then ap contains some idempotent of S [2]. The famous
Lallement’s Lemma says that all regular semigroups are idempotent-surjective.
Finally, it is known that idempotent-surjective semigroups are F-inversive.

2010 Mathematics Subject Classification: 20M99, 06B10
Keywords: Clifford congruence, R-semigroup, idempotent-surjective semigroup, E-semigroup,
structurally regular semigroup, E-unitary congruence, USG-congruence.



220 R.S. Gigon

On the other hand, Kopamu defined in [14] a countable family of congruences
on a semigroup S, as follows: for each ordered pair of non-negative integers (m,n),
he put:
Om.n = {(a,b) € S xS : (Ve e S™, y € S") zay = xby},

and he made the convention that S! = S and S" denotes the set containing only
the empty word. In particular, 8y o = 1g. Recall from [14] that if S/6,, ,, is regular
for some non-negative integers m,n, then S is structurally regular. Kopamu also
proved that structurally regular semigroups are idempotent-surjective. Finally, in
[8] the author showed that structurally regular semigroups are R-semigroups, and
so every structurally regular semigroup is an idempotent-surjective R-semigroup.

Green’s relations on S are denoted by £ ((a,b) € L if SaU {a} = SbU{b}), R
((a,b) € Rif aSU{a} = bSU{b}) and H (= LNR). Denote by H, the H-class
containing the element a. Notice that Green’s Theorem says that in an arbitrary
semigroup S either H,H, N H, = 0 or H, is a group.

Recall that a semigroup S is a semilattice if a®> = a, ab = ba for all a,b € S.
Let C be some class of semigroups of the same type 7 (for example: the class of all
groups); call its elements C-semigroups. A congruence p on a semigroup S is said
to be a C-congruence if S/p € C. Clearly, the least semilattice congruence 7 (say)
on an arbitrary semigroup S exists. Finally, a semigroup S is a semilattice S/p of
groups if there exists a semilattice congruence p on S such that every p-class is a
group. Since H C 7, then a semigroup S is a semilattice S/p of groups if and only
if H =mn. Indeed, H C n C p and evidently p C H. Consequently we have H = 7.
The converse implication follows from Green’s Theorem.

Moreover, some preliminaries about group congruences on a semigroup S are
needed. A subset A of S is called (respectively) full; reflezive and dense if Eg C A,
(Va,b e S)(abe A=ba € A) and (Vs € S)(Fz,y € S) sz,ys € A. Also, we define
the closure operator w on S by Aw={s € S:(Ja € A) as € A} (where A C S).
We shall say that A C S is closed (in S) if Aw = A. Further, a subsemigroup N
of a semigroup S is said to be normal if it is full, dense, reflexive and closed (if
N is normal, then we shall write N <.5). Finally, if a subsemigroup of S is dense
and reflexive, then it is called quasi-normal.

By the kernel of a congruence p on a semigroup S we shall mean the set
ker(p) = {x € S : (z,2?%) € p}.

Result 1.1. [5] Let B be a quasi-normal subsemigroup of a semigroup S. Then the
relation pp = {(a,b) € S x S : (3 z,y € B) ax = yb} is a group congruence on S.
Also, B C Bw = ker(pp), and if B < S, then B = ker(pp).

Conwversely, if p is a group congruence on S, then there is a normal subsemi-
group N of S such that p = pn (in fact, N = ker(p)). Thus there is an inclusion-
preserving bijection between the set of all normal subsemigroups of S and the set
of all group congruences on S.

Moreover, the least group congruence on an E-inversive E-semigroup is given
by

oc={(a,b) €S xS:(Je,f € Eg) ea=0bf}. O
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Remark 1.2. [5] Let B be a quasi-normal subsemigroup of S. Then:
(a,b) € pp < (3 € S) za,zb € B.

Tt is easily seen that if S is an E-inversive semigroup (and so Fg is dense), then
there exists the least normal subsemigroup of S. In the light of Result 1.1, every
FE-inversive semigroup possesses the least group congruence o.

An inverse semigroup in which the idempotents are central is called a Clifford
semigroup. Recall that a semigroup S is a Clifford semigroup if and only if it is a
semilattice of groups [11]. Observe that if ab = e € Eg, then

ba = baa"ta = a taba = a"tea € Eg.

Thus ab = ba (since ab and ba belong to the same subgroup of S), so Fg is reflexive.
Further, a semigroup S is called n-simple if S has no semilattice congruences except
the universal relation. It is well known that every n-class of S is n-simple [20].
Recall from [9] that a full quasi-normal subsemigroup of a semigroup is called
seminormal.
Finally, we have need the following two results.

Theorem 1.3. Let p be an arbitrary semilattice congruence on an idempotent-
surjective R-semigroup S, N be a (semi)normal subsemigroup of S and let a € S.
Put N, = NN ap. Then:

(a) ap is an E-inversive R-semigroup;

(b) N, is a (semi)normal subsemigroup of ap.

Proof. (a). Let a € S and e € E,,. Suppose by way of contradiction that a7 is not
E-inversive. Then the set A of all non E-inversive elements of an is an ideal of an.
Clearly, e ¢ A. Consider an equivalence p (say) on an induced by the partition:
{A,an \ A} and suppose that there are elements s,¢ € an \ A such that st € A.
Then fg € A for some idempotents f,g € an\ A. Since S is an R-semigroup, then
x=uzfgx, fg = fgxfg for some x € S. It follows that « € an, so x € W(fg) in an,
which contradicted to fg € A. Hence p is a semilattice congruence on an 7-simple
semigroup a7, a contradiction. Consequently, A = () (since e ¢ A), and so an is an
FE-inversive R-semigroup.

(b). The second part of the theorem is a direct consequence of the definition
of a (semi)normal subsemigroup and the first part of the theorem. O

Lemma 1.4. Let B be the least seminormal subsemigroup of an idempotent-
surjective semigroup S. If ¢ is an epimorphism of S onto a Clifford semigroup T,
then B¢ = Ep.

Proof. Put A = (Er)¢~!. Clearly, A is a full subsemigroup of S. Thus A is dense.
Moreover, if zy € A, then Er 3 (axy)¢p = x¢ - yp = yd - xd = (yx)¢ (since Er
is reflexive), so yr € A. Hence B C A. Thus B¢ C ((Er)¢~')¢ C Er. Since S
is idempotent-surjective and B is full, then Epr = (Es)¢ C B¢. Consequently,
B¢ = Er. O
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2. Clifford congruences

Let £ be a semilattice congruence on an idempotent-surjective R-semigroup S.
Denote e-classes of S by S,, where a’s are elements of some set A, and define on
A a binary operation o, as follows: if a € S,,b € S3, then

aofB=v&abe S,.

Clearly, (A, o) is a semilattice (isomorphic to S/¢), so
S=|J{S: €A}

is a semilattice A of E-inversive R-semigroups S, (Theorem 1.3(a)). For any semi-
normal subsemigroup I of S, put I, = I NS, (o € A); see Theorem 1.3(b). Then
by Result 1.1 and Remark 1.2, for every «, the relation

pr. = {(a,b) € So x So : Az € Sy) wa,zb € I}

is a group congruence on S,. Put p = J{pr, : @ € A}. We will show that p is
a congruence on S. Let (a,b) € p, say (a,b) € pr,; ¢ € Sg. Then za,zb € I,
for some x € S,. Since Ig is dense, then cz € Ig for some z € Sg. Notice that
ac, be, zx € Sop. Furthermore, (za)(cz) € Inls C I. Hence (zz)(ac) € I (since I
is reflexive), therefore, (zz)(ac) € I N Sap = Iog. Similarly, (zz)(bc) € Ig. This
implies that (ac,bc) € p, and so p is a right congruence on S. By symmetry of the
definition of pr, , we conclude that p is also a left congruence on S. Thus p is a
congruence on S and for all a € S, ap = apy, if a € S,. Put G4 = So/pr1, - Then
S/p=U{Ga : @ € A} is a semilattice A of groups G,.

Applying the above construction (of p) to the least semilattice congruence 7 on
S and to the least seminormal subsemigroup B of S, we obtain some semilattice
of groups congruence on S, say &.

Let S be an idempotent-surjective E-semigroup. Then each 7-class of S is an
E-semigroup. Define on every S, the least group congruence o, (see Result 1.1).
Then the relation £*, induced by this partition of S, is a congruence on S. Indeed,
if a*b, say (a,b) € 04 in Sy; ¢ € Sa, then ea = bf, where e, f € Eg_, and so
(bec*b*e)ac = be(c*-b*bf-c) for every b* € W, (b), ¢* € W, (c). The expressions in
the parentheses belong to Eg. Further, bcc*b*e, c*b*bfc € Su3, ac,bc € S, 3. Hence
£* is a right congruence on S. By symmetry, £* is a left congruence on S. Thus
S/€* is a semilattice of groups.

Finally, we will show that £ is the least Clifford congruence on an idempotent-
surjective R-semigroup S. Let p be any congruence on S such that S/p is a semi-
lattice A of groups, say S/p = J{G4 : @ € A}; p° be the natural homomorphism of
S onto S/p and ¢ be the canonical morphism of S/p onto A, defined by (ap)y = «
if ap € G. The composition map ® = py is a morphism of S onto A, so dd~1,
where a(®®~1)b if and only if ap, bp € G, for some o € A, is a semilattice congru-
ence on S. Thus n C ®®~!. Suppose that a£b. Then anb and xa = by for some
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x,y € anN B, where B is the least seminormal subsemigroup of S. Since z,y,a,b
lie in the same n-class, then they belong to the same ®®~!-class, so xp, yp, ap, bp lie
in G, (o € A). Since x,y € B, then zp,yp € Eg/, (Lemma 1.4), so zp = yp = lg,
(the identity of the group G ). It follows that

ap = (xp)(ap) = (za)p = (by)p = (bp)(yp) = bp.

Consequently, £ C p, as required.
Observe that if S is an E-semigroup, then z,y € Eg (by the definition of £*),
so obviously xp = yp = 1g, € Eg/,. Thus £* C p.
Note that &,£* C N o and denote by By, the intersection of an and B (a € S).
We have just shown the following theorem.

Theorem 2.1. The least Clifford congruence on an idempotent-surjective R-semi-
group S is given by
& ={(a,b) en: (3z,y € Byy) za = by}. O

Remark 2.2. In the light of Remark 1.2,

¢={(a,b) €n:(3z € an) za,xb € Bqy}.

Corollary 2.3. The least Clifford congruence on an idempotent-surjective E-semi-
group S is given by

& ={(a,b) en: e, f € Eqy) ea=0bf}. O

Note also that we have proved the first part of the following theorem which is
new for regular semigroups (and it is probably new even for inverse semigroups).

Theorem 2.4. Let € be an arbitrary semilattice congruence on an idempotent-
surjective R-semigroup S and let A be a seminormal subsemigroup of S. Then the
relation

pae ={(a,b) €e: (Fx,y € acNA) za = by}

is a Clifford congruence on S.
Conversely, if p is a Clifford congruence on S, then there exists a semilattice
congruence € on S and a seminormal subsemigroup A of S such that p = pa,..

Proof. Let p be a semilattice of groups congruence on S. Since S/p is a semilattice
of groups, then the least semilattice congruence on S/p is H/?. Define a relation
e on S, as follows: (a,b) € ¢ if and only if (ap,bp) € H3/P. Then H3/P =¢/p. Tt

follows that € is a semilattice congruence on S, since (S/p)/H5/? = S/e. Next,
put

A:U{ep:eeEs}.

Since S is idempotent-surjective and Eg/, is a subsemigroup of S/p, then A is
a semigroup. Obviously, A is full. Finally, A is reflexive, since Eg/, is reflexive.
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Consequently, A is a seminormal subsemigroup of S. Further, note that p C ¢, and
consider an arbitrary p-class ep, where e € Eg. Let © € (ep)w in ee (in particular,
(zp,ep) € H3/P). Then ax € ep for some a € ep. Hence

ep = (ap)(zp) = (ep)(zp) = zp,

because (xp,ep) € H5/P. Thus ep is closed in es. Since A Nes = ep for every
e € By, then p = pa ., as required. 0

A congruence p on a semigroup S is called idempotent pure if ep C Eg for all
e € Eg. Note that if S is idempotent-surjective, then p is idempotent pure if and
only if ker(p) = Fg.

Let &€ be the relation on a semigroup S induced by the partition {Eg, S\ Eg}.
Then &° is the greatest idempotent pure congruence on S. Put 7 = £”. Then [12]

7={(a,b) € S x S: (Va,y € SV) zay € Es & xby € Eg},

where S(1) denotes the semigroup obtained from S by adjoining the identity 1.
Recall from [5] that an E-inversive semigroup S is E-unitary if and only if Eg
is closed in S.
The following result will be useful.

Result 2.5. [5, 7] Let S be an idempotent-surjective semigroup. Then the following
conditions are equivalent:

(a) S is E-unitary;

(b) ker(o) = Es;

(¢) every idempotent pure congruence on S is E-unitary;

(d) there exists an idempotent pure E-unitary congruence on S;

(e) o=r. O

The following theorem gives necessary and sufficient conditions for £ to be
idempotent pure. Note that the condition (c¢) is new even for regular semigroups.

Theorem 2.6. Let S be an idempotent-surjective R-semigroup. Then the following
conditions are equivalent:

(a) & is idempotent pure;

(b) each n-class of S is an E-unitary E-inversive subsemigroup of S

(c) E=nnr.

Proof. (a) <= (b). It follows from the construction of ¢ and Result 2.5 (see (b)).
(a) = (c). Let £ be idempotent pure, that is, £ C 7. Then evidently £ Cn N 7.

Conversely, let a(n N 7)b. Take any weak inverse z of ¢ in an. Then (za,xb) € T,

where za € E,,. Since xb € an, then xb € E,,,. Thus (a,b) € £ (by Remark 2.2).
(¢) = (a). This is trivial. O

Corollary 2.7. Let S be an idempotent-surjective R-semigroup. Then £ is idempo-
tent pure if and only if S is a semilattice of E-unitary E-inversive semigroups. [
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Moreover, we have the following theorem.

Theorem 2.8. Let S be an idempotent-surjective R-semigroup. Then the following
conditions are equivalent:

(a) S is E-unitary;

(b) & is an idempotent pure E-unitary congruence on S;

(¢c) for every a € S, an is E-unitary and o4, = og N (an x an).

Proof. (a) = (b). If S is E-unitary, then each n-class of S is also F-unitary and
s0, by Theorem 2.6, £ is idempotent pure. Hence by Result 2.5, £ is E-unitary.

(b) = (a). This follows from Result 2.5.

(a) = (¢). Let a € S. It is clear that an is E-unitary. Also, if (a,b) € o,
then ab* € Eg for all b* € W(b), so if (a,b) € o N (an x an), then ab* € E,,
for all b* € W (b) in an. Thus ab*b € E,,b. It follows that (a,b) € o4y. Therefore
o N (an x an) C o4y. The converse inclusion is obvious.

(¢) = (a). Let e € Eg, x € an, where a € S. Choose f € E,, and suppose
that (z,e) € og. Clearly, (e, f) € 0. Hence (z, f) € o5 N (an X an) = 04y. Thus
x € Eg, so S is E-unitary (by Result 2.5). O

The next result gives some equivalent conditions for £ to be E-unitary, when
£ is idempotent pure.

Corollary 2.9. Let an idempotent-surjective R-semigroup S be a semilattice of an
E-unitary E-inversive semigroups. Then the following conditions are equivalent:

(a) S is E-unitary;

(b) £=nno;
(¢) € is E-unitary;
(d) for everya € S, 04y = 0os N (an x an).
Proof. (a) = (b). The main assumption of the corollary implies that £ is idem-
potent pure (Corollary 2.7). Hence £ = nN 7 (Theorem 2.6). Since S is E-unitary,
then 7 = o (Result 2.5). Thus £ =nNo.

(b) = (c¢). The congruences n and o are both E-unitary. Therefore E =nNo
is also E-unitary.

(¢) = (a). The assumptions imply that the congruence ¢ is idempotent pure
and E-unitary. Thus S is E-unitary (Result 2.5).

(a) < (d). Tt is a consequence of Theorem 2.8. O

Finally, we have the following corollary.
Corollary 2.10. In any E-unitary idempotent-surjective semigroup S,
ENH=1g.
If in addition Es forms a semilattice, then
ENL=E(ENR = 1g.
Proof. This follows from Theorem 5.5 [5], since £ C o. O
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3. USG-congruences

A semigroup S is said to be a USG-semigroup if it is an F-unitary Clifford semi-
group. Recall from [13] that if S is a USG-semigroup, then o Ny = 1g.

Remark that if a semigroup is a subdirect product of a group and a semilattice,
then it is an F-semigroup.

Theorem 3.1. In any idempotent-surjective semigroup S, c Nn = lg if and only
if S is a USG-semigroup.

Proof. Let 0 N = 1g. Then S is a subdirect product of the group S/c and the
semilattice S/7, so S is an idempotent-surjective E-semigroup. In particular, the
least Clifford congruence £ exists on S. Also, £ CoNn and so & = 1g. Hence S is
a semilattice of groups. Thus H = 7. Let (x,e) € o (where x € S,e € Eg). Then
(since x € H for some f € Eg Ceo) (z,f) eocNH=0Nn=1g,s0x = f € Egs.
Consequently, S is E-unitary. O

If p,v are two congruences on S such that p C v, then the map ¢ : S/p — S/v,
(ap)p = av (a € S), is a well-defined epimorphism between these semigroups.
Denote its kernel @ ~! by

v/p={(ap,bp) € S/px S/p:avb}.

Then (S/p)/(v/p) = S/v. Also, each congruence . on S/p is of the form v/p, where
v 2 p is a congruence on S. Indeed, the relation v, defined on S by: awvb if and
only if (ap,bp) € «, is a congruence on S such that p C v and a = v/p. Finally, let
p C v1, vy (where vq, vg are congruences on S). Then (v1/p)N(v2/p) = (viNva)/p,
and (v1 Nvg)/p = 1g/, implies that p = v Nvs.

Note that if a class C of semigroups is closed under homomorphic images and
the least C-congruence p% on a semigroup S exists, then the interval [p$, S x S]
consists of all C-congruences on S and is a complete sublattice of C(S).

Theorem 3.2. Let C1, Co and C3 be some classes of semigroups; pil, pif be the
least Ci-congruence, Co-congruence on any semigroup A, respectively, such that
A € Cs if and only if pil N pif = 14. Then the intersection of a Cy-congruence
and a Cy-congruence on a semigroup S is a Cs-congruence. Conversely, every
Cs-congruence on S can be expressed in this way.

Proof. Let p; be a Ci~congruence on S (for ¢ = 1,2). Put p = p; N p2 and observe
that p1/p is a Cy-congruence, p2/p is a Ca-congruence on S/ p. Since (p1/p)N(p2/p)
is the identity relation on S/p, then pgl/p N pgz/p = lg/,- Thus S/p € C3, and so
p = p1 N p2 is a C3-congruence on S.

Conversely, let p be any Cs-congruence on S, p1/p = pgl/p, p2/p = pg"}p, where
p C p1, p2. Then p; is a C;-congruence on S (for ¢ = 1,2). Furthermore,

C C
(p1 N p2)/p=pg), N Ps), =1s/p-

Thus p = p; N p2, as required. O
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Remark 3.3. One can modify Theorem 3.2 for any type of a universal algebra.

The following theorem describes all USG-congruences on idempotent-surjective
semigroups.

Theorem 3.4. The intersection of a group congruence v and a semilattice con-
gruence vy on an idempotent-surjective semigroup S is a USG-congruence.

Conversely, any USG-congruence p on S can be expressed in this way, and v,y
are uniquely determined by p.

Proof. Note that the class of all idempotent-surjective semigroups is closed under
homomorphic images. All assertions of the theorem except a uniqueness follows
from Theorems 3.1, 3.2 (see the proof of Theorem 3.2).

Let p = v1Ny1 = 1o N yg, where y; is a group congruence and +y; is a semilattice
congruence on S (i = 1,2), and let (a,b) € 7;. Since 1 N2 is a band congruence,
then there are e, f € Fg such that (a,e) € y1 N7, (e, f) € v1 and (f,b) € y1 Ns.
In fact, (e, f) € v1 Nv1 =y Nwg C 2. Hence (a,b) € 2. Thus 1 C ~y,. Similarly,
we obtain the opposite inclusion, so 71 = 2. Put y; = 72 = 7. Let (a,b) € v1. Then
(aab, abb) € v1 Ny C vy. Hence (a,b) € vy (by cancellation), therefore, 11 C vs.
By symmetry, vo C v1. Consequently, v1 = o, as required. O

Corollary 3.5. The relation o N7 is the least USG-congruence on an arbitrary
idempotent-surjective semigroup S. O

Corollary 3.6. An idempotent-surjective semigroup is a subdirect product of a
group and a semilattice if and only if it is a USG-semigroup.

Proof. Let S C G x Y be a subdirect product of a group G and a semilattice Y.
Then the two projection maps induce on S a group congruence and a semilattice
congruence. The intersection of these congruences is the equality relation on S.
Thus o0 N =1g, so S is a USG-semigroup (Theorem 3.1).

The converse implication is clear. O

Lemma 3.7. Let S be an E-unitary idempotent-surjective semigroup. Then S/ is
a USG-semigroup.

Proof. Let S be E-unitary. Then every n-class of S is E-unitary, too. In the light
of Theorem 2.6, £ is idempotent pure. Hence £ is E-unitary (Corollary 2.9). Thus
S/¢ is a USG-semigroup. O

One can show without difficulty that the least E-unitary congruence 7 on an
arbitrary F-inversive semigroup exists.

Lemma 3.8. Let S be an idempotent-surjective R-semigroup. Then the relation

Evm)/m

is the least Clifford congruence on S/m.
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Proof. Indeed, S/(¢ V ) is a Clifford semigroup, so (£ V 7)/m is a semilattice of
groups congruence on S/m, since S/(§ V w) = (S/7)/((€ V w)/7). On the other
hand, if « is a semilattice of groups congruence on S/m, then o = p/m, where
7 C p. Since (S/7)/(p/7) =2 S/p, then p is a Clifford congruence on S, so 7, £ C p.
Hence € V1 C p. Thus (£ V7)/m C p/m = «, as required. O

Theorem 3.9. In any idempotent-surjective R-semigroup S,
cNn=¢&Vm.

Proof. We have just seen that S/(§V ) = (S/7)/((£V7)/7). By Lemmas 3.7, 3.8,
(S/m)/((§Vm)/m) is an E-unitary semilattice of groups and so S/(§ V) is also an
FE-unitary semilattice of groups. Thus £ V 7 is a USG-congruence on .S. Moreover,
EConnand m CoNn. Hence Vo Conn. Thus £ Vo =onn (because o Ny
is the least USG-congruence on S). O

Corollary 3.10. In any E-unitary idempotent-surjective semigroup,

E=onm. O

4. The condition T N& = 1g

In this section we characterize those idempotent-surjective R-semigroups S which
are a subdirect product of an E-unitary semigroup and a Clifford semigroup, i.e.,
those semigroups S for which 7 N ¢ is the identity relation. Since E-unitary semi-
groups and Clifford semigroups are both F-semigroups, then S are E-semigroups,
too.

In [2] Edwards defined the relation p on a semigroup S by

(x Lax or x Lbr) = axH bz,

(a,b) € p <—
(xRxa or  Rxb) = xaH xb,

where z is an arbitrary element of Reg(S). Furthermore, he proved in [3] that u

is the maximum idempotent-separating congruence on an arbitrary idempotent-

surjective semigroup S (that is, u N (Es X Eg) = 1g).

Recall that a semigroup S is:

o fundamental if ;= 1g [1];

o n-simple if n = S x S [20].

Note that if an E-inversive semigroup S is n-simple, then the least Clifford
congruence ¢ coincides with . Indeed, let p be a Clifford congruence on .S. Since
S/p is a Clifford semigroup, then the least semilattice congruence on S/p is H.
Define a relation € on S, as follows: (a,b) € € if (ap)H(bp). Then H = ¢/p, so
¢ is a semilattice congruence on S, since (S/p)/H =2 S/e. Thus (ap)H(bp) for all
a,b € S. Consequently, S/p is a group.
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Recall that 7 denotes the least F-unitary congruence on an E-inversive semi-
group. Clearly, 7 C o (the least group congruence).
From the last two paragraphs we obtain the following corollary.

Corollary 4.1. Let S be an n-simple E-inversive semigroup. Then S is E-unitary
if and only if TNE = 1g. O

Proposition 4.2. Let S be an idempotent-surjective R-semigroup, m N & = 1g.
Then S is a semilattice of (n-simple) E-unitary E-inversive semigroups.

Proof. 1t is sufficient to show that every n-class of S is E-unitary. Let a € S. Then
the restriction of 7 to an is an E-unitary congruence on an and the restriction of &
to an is a group congruence on an. From the assumption of the proposition follows
that the intersection of these two congruences is the identity relation on an, so the
intersection of the least F-unitary congruence and the least Clifford congruence on
amn is also the identity relation. In the light of Corollary 4.1, an is F-unitary. O

Theorem 4.3. Let S be a fundamental idempotent-surjective R-semigroup. Then
mN&=1g if and only if S is E-unitary.

Proof. Let tN& = 1g; ¢, f € Eg. If (e, f) € m, then (e, f) € n. Hence (e, f) € &.
Thus e = f, so m C = 1g. Consequently, S is E-unitary.
The converse implication is trivial. O

Remark 4.4. The above theorem is valid for any C-congruence p (instead of )
contained in 7 (i.e., if we replace in the theorem 7 by p, then we must replace
“E-unitary” with “C-semigroup”).

Recall from [7] that (for idempotent-surjective semigroups) every congruence
of the interval [r, o] is E-unitary. Also, ker(p) = ker(r) for every p € [m,o].

We have mentioned above that the class of idempotent-surjective semigroups is
closed under homomorphic images. Using Hall’s observation, one can prove with-
out difficulty that the class of all idempotent-surjective R-semigroups possess this
property. It is also known that the class of all structurally regular semigroups is
closed under taking homomorphic images [14].

For regular semigroups S, 4 N7 = 1g. The next theorem gives necessary and
sufficient conditions for 7 N & to be the identity relation on idempotent-surjective
R-semigroups S such that N7 = 1g (in particular, the theorem is valid, too, for
structurally regular semigroups having this additional property).

Remark 4.5. Using Lemma 1.2 [17], Janet Mills proved for orthodox semigroups a
similar result to the next theorem (see Theorem 3.5 [17]). However, the proof of her
lemma is not correct (see [6]). Moreover, in [6] using different methods, the author
showed the theorem of Mills (with a very important additional condition). Finally,
notice that the implication “(f) = (g)” in the following theorem is proved in a
different way than the corresponding implication in [6].
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Theorem 4.6. If S is an idempotent-surjective R-semigroup such that uN7 = 1g,
then the following conditions are equivalent:
(a) mNE=1s;
(b) S is a semilattice of E-unitary E-inversive semigroups and m C pu;
(c) S is a semilattice of E-unitary E-inversive semigroups and m C uNo C o;
(d) S is a semilattice of E-unitary E-inversive semigroups and the congruence
wNo is E-unitary;
(e) S is a semilattice of E-unitary E-inversive semigroups and at least one
idempotent-separating congruence on S (say p) is E-unitary;
(f) S is a subdirect product of an E-unitary idempotent-surjective semigroup
and a Clifford semigroup;
(g) S is a semilattice of E-unitary E-inversive semigroups and the relation
HNo is E-unitary congruence on S.

Proof. (a) = (b). This implication follows directly from Proposition 4.2 and from
the proof of Theorem 4.3.

(b) = (c¢). This is clear, since 7 C 0.
(¢) = (d). In that case, pNo € [m,0], so pNo is E-unitary.
(d) = (e). This is evident.
() = (a). Insuch case, 7 C p C p. Hence tNEC unNé&=pun(nnr) (see
Corollary 2.7 and Theorem 2.6). Thus tNE C uN7 = 1g.

(a) = (f). This is clear.

(f) = (g). Suppose that S is a subdirect product of an E-unitary idempotent-
surjective semigroup A and a Clifford semigroup T'. Notice that (a,t)(HNo)(b, w)
in S if and only if (a,b) e HNo in A and (t,w) e HNo=nNoin T, ie., if and
only if a = b (Theorem 5.5 [5]) and (¢,w) € nNo in T. This implies that HN o is
a congruence on S. Finally, we will show that the congruence H N o is E-unitary.
Let

(e;9)(a,t)(H N a)(f h),
where (e, g), (f,h) € Eg, then ea = f and (gt,h) € HNo in T. It follows that

a€ Ey & teker(or).

Hence
(t, Z) eH'n or

for some ¢ € Ep, since T is a semilattice of groups. Consequently,
(a,t)(H No)(a,i),

where (a,i) € Eg, so HNo is E-unitary.
(99 = (e). This is evident. O
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