
Quasigroups and Related Systems 20 (2012), 219− 232

Clifford congruences on an idempotent-surjective

R-semigroup

Roman S. Gigo«

Abstract. In the paper we describe the least Clifford congruence ξ on an idempotent-surjective
R-semigroup, and so we generalize the result of LaTorre (1983). In addition, a characterization of
all Clifford congruences on such a semigroup (in particular, on a structurally regular semigroup)
is given. Furthermore, we �nd necessary and suf�cient conditions for ξ to be idempotent pure or
E-unitary. Moreover, using some earlier result, we give a description of all USG-congruences on
an idempotent-surjective semigroup, and so we generalize the result of Howie and Lallement for
regular semigroups (1966). Finally, in Section 4 we study the subdirect products of an E-unitary
semigroup and a Clifford semigroup.

1. Preliminaries

Whenever possible the notation and conventions of Howie [11, 12] are used. Let S
be a semigroup and let A ⊆ S. Denote by EA the set of all idempotents of A, that
is, EA = {a ∈ A : a2 = a}, and by Reg(S) the set of all regular elements of S,
i.e., Reg(S) = {a ∈ S : a ∈ aSa}. We say that S is regular if Reg(S) = S. More
generally, in [10] Hall observed that the set Reg(S) of a semigroup S with ES 6= ∅
forms a regular subsemigroup of S if and only if the product of any two idempotents
of S is regular. In a such case, S is said to be an R-semigroup. Finally, if ES is a
subsemigroup of S, then S is called an E-semigroup. Clearly, any E-semigroup is
an R-semigroup.

Let S be a semigroup, a ∈ S. The set W (a) = {x ∈ S : x = xax} is called
the set of weak inverses of a, so the elements of W (a) will be called weak inverse

elements of a. A semigroup S is said to be E-inversive if for every a ∈ S there is
x ∈ S such that ax ∈ ES [21]. Clearly, S is E-inversive iff W (a) 6= ∅ (a ∈ S), so if
S is E-inversive, then for all a ∈ S there is x ∈ S such that ax, xa ∈ ES . For some
interesting results concerning E-inversive semigroups, see [18, 4].

A generalization of the concept of regularity will also prove convenient. De�ne a
semigroup S to be idempotent-surjective if whenever ρ is a congruence on S and aρ
is an idempotent of S/ρ, then aρ contains some idempotent of S [2]. The famous
Lallement's Lemma says that all regular semigroups are idempotent-surjective.
Finally, it is known that idempotent-surjective semigroups are E-inversive.
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On the other hand, Kopamu de�ned in [14] a countable family of congruences
on a semigroup S, as follows: for each ordered pair of non-negative integers (m,n),
he put:

θm,n = {(a, b) ∈ S × S : (∀x ∈ Sm, y ∈ Sn) xay = xby},

and he made the convention that S1 = S and S0 denotes the set containing only
the empty word. In particular, θ0,0 = 1S . Recall from [14] that if S/θm,n is regular
for some non-negative integers m,n, then S is structurally regular. Kopamu also
proved that structurally regular semigroups are idempotent-surjective. Finally, in
[8] the author showed that structurally regular semigroups are R-semigroups, and
so every structurally regular semigroup is an idempotent-surjective R-semigroup.

Green's relations on S are denoted by L ((a, b) ∈ L if Sa∪ {a} = Sb∪ {b}), R
((a, b) ∈ R if aS ∪ {a} = bS ∪ {b}) and H (= L ∩ R). Denote by Ha the H-class
containing the element a. Notice that Green's Theorem says that in an arbitrary
semigroup S either HaHa ∩Ha = ∅ or Ha is a group.

Recall that a semigroup S is a semilattice if a2 = a, ab = ba for all a, b ∈ S.
Let C be some class of semigroups of the same type T (for example: the class of all
groups); call its elements C-semigroups. A congruence ρ on a semigroup S is said
to be a C-congruence if S/ρ ∈ C. Clearly, the least semilattice congruence η (say)
on an arbitrary semigroup S exists. Finally, a semigroup S is a semilattice S/ρ of

groups if there exists a semilattice congruence ρ on S such that every ρ-class is a
group. Since H ⊆ η, then a semigroup S is a semilattice S/ρ of groups if and only
if H = η. Indeed, H ⊆ η ⊆ ρ and evidently ρ ⊆ H. Consequently we have H = η.
The converse implication follows from Green's Theorem.

Moreover, some preliminaries about group congruences on a semigroup S are
needed. A subset A of S is called (respectively) full ; reflexive and dense if ES ⊆ A;
(∀a, b ∈ S)(ab ∈ A ⇒ ba ∈ A) and (∀s ∈ S)(∃x, y ∈ S) sx, ys ∈ A. Also, we de�ne
the closure operator ω on S by Aω = {s ∈ S : (∃ a ∈ A) as ∈ A} (where A ⊆ S).
We shall say that A ⊆ S is closed (in S) if Aω = A. Further, a subsemigroup N
of a semigroup S is said to be normal if it is full, dense, reflexive and closed (if
N is normal, then we shall write N � S). Finally, if a subsemigroup of S is dense
and reflexive, then it is called quasi-normal.

By the kernel of a congruence ρ on a semigroup S we shall mean the set
ker(ρ) = {x ∈ S : (x, x2) ∈ ρ}.

Result 1.1. [5] Let B be a quasi-normal subsemigroup of a semigroup S. Then the

relation ρB = {(a, b) ∈ S × S : (∃ x, y ∈ B) ax = yb} is a group congruence on S.
Also, B ⊆ Bω = ker(ρB), and if B � S, then B = ker(ρB).

Conversely, if ρ is a group congruence on S, then there is a normal subsemi-

group N of S such that ρ = ρN (in fact, N = ker(ρ)). Thus there is an inclusion-

preserving bijection between the set of all normal subsemigroups of S and the set

of all group congruences on S.
Moreover, the least group congruence on an E-inversive E-semigroup is given

by

σ = {(a, b) ∈ S × S : (∃ e, f ∈ ES) ea = bf}.
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Remark 1.2. [5] Let B be a quasi-normal subsemigroup of S. Then:

(a, b) ∈ ρB ⇔ (∃x ∈ S) xa, xb ∈ B.

It is easily seen that if S is an E-inversive semigroup (and so ES is dense), then
there exists the least normal subsemigroup of S. In the light of Result 1.1, every
E-inversive semigroup possesses the least group congruence σ.

An inverse semigroup in which the idempotents are central is called a Cli�ord

semigroup. Recall that a semigroup S is a Clifford semigroup if and only if it is a
semilattice of groups [11]. Observe that if ab = e ∈ ES , then

ba = baa−1a = a−1aba = a−1ea ∈ ES .

Thus ab = ba (since ab and ba belong to the same subgroup of S), so ES is reflexive.
Further, a semigroup S is called η-simple if S has no semilattice congruences except
the universal relation. It is well known that every η-class of S is η-simple [20].

Recall from [9] that a full quasi-normal subsemigroup of a semigroup is called
seminormal.

Finally, we have need the following two results.

Theorem 1.3. Let ρ be an arbitrary semilattice congruence on an idempotent-

surjective R-semigroup S, N be a (semi)normal subsemigroup of S and let a ∈ S.
Put Na = N ∩ aρ. Then:

(a) aρ is an E-inversive R-semigroup;
(b) Na is a (semi)normal subsemigroup of aρ.

Proof. (a). Let a ∈ S and e ∈ Eaη. Suppose by way of contradiction that aη is not
E-inversive. Then the set A of all non E-inversive elements of aη is an ideal of aη.
Clearly, e /∈ A. Consider an equivalence ρ (say) on aη induced by the partition:
{A, aη \ A} and suppose that there are elements s, t ∈ aη \ A such that st ∈ A.
Then fg ∈ A for some idempotents f, g ∈ aη \A. Since S is an R-semigroup, then
x = xfgx, fg = fgxfg for some x ∈ S. It follows that x ∈ aη, so x ∈ W (fg) in aη,
which contradicted to fg ∈ A. Hence ρ is a semilattice congruence on an η-simple
semigroup aη, a contradiction. Consequently, A = ∅ (since e /∈ A), and so aη is an
E-inversive R-semigroup.

(b). The second part of the theorem is a direct consequence of the de�nition
of a (semi)normal subsemigroup and the �rst part of the theorem.

Lemma 1.4. Let B be the least seminormal subsemigroup of an idempotent-

surjective semigroup S. If φ is an epimorphism of S onto a Clifford semigroup T ,
then Bφ = ET .

Proof. Put A = (ET )φ−1. Clearly, A is a full subsemigroup of S. Thus A is dense.
Moreover, if xy ∈ A, then ET 3 (xy)φ = xφ · yφ = yφ · xφ = (yx)φ (since ET

is reflexive), so yx ∈ A. Hence B ⊆ A. Thus Bφ ⊆ ((ET )φ−1)φ ⊆ ET . Since S
is idempotent-surjective and B is full, then ET = (ES)φ ⊆ Bφ. Consequently,
Bφ = ET .
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2. Clifford congruences

Let ε be a semilattice congruence on an idempotent-surjective R-semigroup S.
Denote ε-classes of S by Sα, where α's are elements of some set A, and de�ne on
A a binary operation ◦, as follows: if a ∈ Sα, b ∈ Sβ , then

α ◦ β = γ ⇔ ab ∈ Sγ .

Clearly, (A, ◦) is a semilattice (isomorphic to S/ε), so

S =
⋃
{Sα : α ∈ A}

is a semilattice A of E-inversive R-semigroups Sα (Theorem 1.3(a)). For any semi-
normal subsemigroup I of S, put Iα = I ∩ Sα (α ∈ A); see Theorem 1.3(b). Then
by Result 1.1 and Remark 1.2, for every α, the relation

ρIα
= {(a, b) ∈ Sα × Sα : (∃x ∈ Sα) xa, xb ∈ Iα}

is a group congruence on Sα. Put ρ =
⋃
{ρIα

: α ∈ A}. We will show that ρ is
a congruence on S. Let (a, b) ∈ ρ, say (a, b) ∈ ρIα

; c ∈ Sβ . Then xa, xb ∈ Iα

for some x ∈ Sα. Since Iβ is dense, then cz ∈ Iβ for some z ∈ Sβ . Notice that
ac, bc, zx ∈ Sαβ . Furthermore, (xa)(cz) ∈ IαIβ ⊆ I. Hence (zx)(ac) ∈ I (since I
is reflexive), therefore, (zx)(ac) ∈ I ∩ Sαβ = Iαβ . Similarly, (zx)(bc) ∈ Iαβ . This
implies that (ac, bc) ∈ ρ, and so ρ is a right congruence on S. By symmetry of the
de�nition of ρIα

, we conclude that ρ is also a left congruence on S. Thus ρ is a
congruence on S and for all a ∈ S, aρ = aρIα

if a ∈ Sα. Put Gα = Sα/ρIα
. Then

S/ρ =
⋃
{Gα : α ∈ A} is a semilattice A of groups Gα.

Applying the above construction (of ρ) to the least semilattice congruence η on
S and to the least seminormal subsemigroup B of S, we obtain some semilattice
of groups congruence on S, say ξ.

Let S be an idempotent-surjective E-semigroup. Then each η-class of S is an
E-semigroup. De�ne on every Sα the least group congruence σα (see Result 1.1).
Then the relation ξ∗, induced by this partition of S, is a congruence on S. Indeed,
if aξ∗ b, say (a, b) ∈ σα in Sα; c ∈ Sβ , then ea = bf , where e, f ∈ ESα , and so
(bcc∗b∗e)ac = bc(c∗ ·b∗bf ·c) for every b∗ ∈ WSα(b), c∗ ∈ WSβ

(c). The expressions in
the parentheses belong to ES . Further, bcc∗b∗e, c∗b∗bfc ∈ Sαβ , ac, bc ∈ Sαβ . Hence
ξ∗ is a right congruence on S. By symmetry, ξ∗ is a left congruence on S. Thus
S/ξ∗ is a semilattice of groups.

Finally, we will show that ξ is the least Clifford congruence on an idempotent-
surjective R-semigroup S. Let ρ be any congruence on S such that S/ρ is a semi-
lattice A of groups, say S/ρ =

⋃
{Gα : α ∈ A}; ρ\ be the natural homomorphism of

S onto S/ρ and ϕ be the canonical morphism of S/ρ onto A, de�ned by (aρ)ϕ = α
if aρ ∈ Gα. The composition map Φ = ρ\ϕ is a morphism of S onto A, so ΦΦ−1,
where a(ΦΦ−1)b if and only if aρ, bρ ∈ Gα for some α ∈ A, is a semilattice congru-
ence on S. Thus η ⊆ ΦΦ−1. Suppose that aξ b. Then aη b and xa = by for some
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x, y ∈ aη ∩B, where B is the least seminormal subsemigroup of S. Since x, y, a, b
lie in the same η-class, then they belong to the same ΦΦ−1-class, so xρ, yρ, aρ, bρ lie
in Gα (α ∈ A). Since x, y ∈ B, then xρ, yρ ∈ ES/ρ (Lemma 1.4), so xρ = yρ = 1Gα

(the identity of the group Gα). It follows that

aρ = (xρ)(aρ) = (xa)ρ = (by)ρ = (bρ)(yρ) = bρ.

Consequently, ξ ⊆ ρ, as required.
Observe that if S is an E-semigroup, then x, y ∈ ES (by the de�nition of ξ∗),

so obviously xρ = yρ = 1Gα
∈ ES/ρ. Thus ξ∗ ⊆ ρ.

Note that ξ, ξ∗ ⊆ η ∩ σ and denote by Baη the intersection of aη and B (a ∈ S).
We have just shown the following theorem.

Theorem 2.1.The least Clifford congruence on an idempotent-surjective R-semi-

group S is given by

ξ = {(a, b) ∈ η : (∃x, y ∈ Baη) xa = by}.

Remark 2.2. In the light of Remark 1.2,

ξ = {(a, b) ∈ η : (∃x ∈ aη) xa, xb ∈ Baη}.

Corollary 2.3. The least Clifford congruence on an idempotent-surjective E-semi-

group S is given by

ξ∗ = {(a, b) ∈ η : (∃ e, f ∈ Eaη) ea = bf}.

Note also that we have proved the �rst part of the following theorem which is
new for regular semigroups (and it is probably new even for inverse semigroups).

Theorem 2.4. Let ε be an arbitrary semilattice congruence on an idempotent-

surjective R-semigroup S and let A be a seminormal subsemigroup of S. Then the

relation

ρA,ε = {(a, b) ∈ ε : (∃x, y ∈ aε ∩A) xa = by}

is a Clifford congruence on S.
Conversely, if ρ is a Clifford congruence on S, then there exists a semilattice

congruence ε on S and a seminormal subsemigroup A of S such that ρ = ρA,ε.

Proof. Let ρ be a semilattice of groups congruence on S. Since S/ρ is a semilattice
of groups, then the least semilattice congruence on S/ρ is HS/ρ. De�ne a relation
ε on S, as follows: (a, b) ∈ ε if and only if (aρ, bρ) ∈ HS/ρ. Then HS/ρ = ε/ρ. It
follows that ε is a semilattice congruence on S, since (S/ρ)/HS/ρ ∼= S/ε. Next,
put

A =
⋃
{eρ : e ∈ ES}.

Since S is idempotent-surjective and ES/ρ is a subsemigroup of S/ρ, then A is
a semigroup. Obviously, A is full. Finally, A is reflexive, since ES/ρ is reflexive.
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Consequently, A is a seminormal subsemigroup of S. Further, note that ρ ⊆ ε, and
consider an arbitrary ρ-class eρ, where e ∈ ES . Let x ∈ (eρ)ω in eε (in particular,
(xρ, eρ) ∈ HS/ρ). Then ax ∈ eρ for some a ∈ eρ. Hence

eρ = (aρ)(xρ) = (eρ)(xρ) = xρ,

because (xρ, eρ) ∈ HS/ρ. Thus eρ is closed in eε. Since A ∩ eε = eρ for every
e ∈ ES , then ρ = ρA,ε, as required.

A congruence ρ on a semigroup S is called idempotent pure if eρ ⊆ ES for all
e ∈ ES . Note that if S is idempotent-surjective, then ρ is idempotent pure if and
only if ker(ρ) = ES .

Let E be the relation on a semigroup S induced by the partition {ES , S \ES}.
Then E[ is the greatest idempotent pure congruence on S. Put τ = E[. Then [12]

τ = {(a, b) ∈ S × S : (∀x, y ∈ S(1)) xay ∈ ES ⇔ xby ∈ ES},

where S(1) denotes the semigroup obtained from S by adjoining the identity 1.
Recall from [5] that an E-inversive semigroup S is E-unitary if and only if ES

is closed in S.
The following result will be useful.

Result 2.5. [5, 7] Let S be an idempotent-surjective semigroup. Then the following

conditions are equivalent:
(a) S is E-unitary;
(b) ker(σ) = ES ;
(c) every idempotent pure congruence on S is E-unitary ;
(d) there exists an idempotent pure E-unitary congruence on S;
(e) σ = τ .

The following theorem gives necessary and suf�cient conditions for ξ to be
idempotent pure. Note that the condition (c) is new even for regular semigroups.

Theorem 2.6. Let S be an idempotent-surjective R-semigroup. Then the following

conditions are equivalent:
(a) ξ is idempotent pure;
(b) each η-class of S is an E-unitary E-inversive subsemigroup of S;
(c) ξ = η ∩ τ .

Proof. (a)⇐⇒ (b). It follows from the construction of ξ and Result 2.5 (see (b)).
(a) =⇒ (c). Let ξ be idempotent pure, that is, ξ ⊆ τ . Then evidently ξ ⊆ η ∩ τ .

Conversely, let a(η ∩ τ)b. Take any weak inverse x of a in aη. Then (xa, xb) ∈ τ ,
where xa ∈ Eaη. Since xb ∈ aη, then xb ∈ Eaη. Thus (a, b) ∈ ξ (by Remark 2.2).

(c) =⇒ (a). This is trivial.

Corollary 2.7. Let S be an idempotent-surjective R-semigroup. Then ξ is idempo-

tent pure if and only if S is a semilattice of E-unitary E-inversive semigroups.
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Moreover, we have the following theorem.

Theorem 2.8. Let S be an idempotent-surjective R-semigroup. Then the following

conditions are equivalent:
(a) S is E-unitary ;
(b) ξ is an idempotent pure E-unitary congruence on S;
(c) for every a ∈ S, aη is E-unitary and σaη = σS ∩ (aη × aη).

Proof. (a) =⇒ (b). If S is E-unitary, then each η-class of S is also E-unitary and
so, by Theorem 2.6, ξ is idempotent pure. Hence by Result 2.5, ξ is E-unitary.

(b) =⇒ (a). This follows from Result 2.5.
(a) =⇒ (c). Let a ∈ S. It is clear that aη is E-unitary. Also, if (a, b) ∈ σ,

then ab∗ ∈ ES for all b∗ ∈ W (b), so if (a, b) ∈ σ ∩ (aη × aη), then ab∗ ∈ Eaη

for all b∗ ∈ W (b) in aη. Thus ab∗b ∈ Eaηb. It follows that (a, b) ∈ σaη. Therefore
σ ∩ (aη × aη) ⊆ σaη. The converse inclusion is obvious.

(c) =⇒ (a). Let e ∈ ES , x ∈ aη, where a ∈ S. Choose f ∈ Eaη and suppose
that (x, e) ∈ σS . Clearly, (e, f) ∈ σS . Hence (x, f) ∈ σS ∩ (aη × aη) = σaη. Thus
x ∈ ES , so S is E-unitary (by Result 2.5).

The next result gives some equivalent conditions for ξ to be E-unitary, when
ξ is idempotent pure.

Corollary 2.9. Let an idempotent-surjective R-semigroup S be a semilattice of an

E-unitary E-inversive semigroups. Then the following conditions are equivalent:
(a) S is E-unitary ;
(b) ξ = η ∩ σ;
(c) ξ is E-unitary ;
(d) for every a ∈ S, σaη = σS ∩ (aη × aη).

Proof. (a) =⇒ (b). The main assumption of the corollary implies that ξ is idem-
potent pure (Corollary 2.7). Hence ξ = η∩ τ (Theorem 2.6). Since S is E-unitary,
then τ = σ (Result 2.5). Thus ξ = η ∩ σ.

(b) =⇒ (c). The congruences η and σ are both E-unitary. Therefore ξ = η ∩ σ
is also E-unitary.

(c) =⇒ (a). The assumptions imply that the congruence ξ is idempotent pure
and E-unitary. Thus S is E-unitary (Result 2.5).

(a) ⇐⇒ (d). It is a consequence of Theorem 2.8.

Finally, we have the following corollary.

Corollary 2.10. In any E-unitary idempotent-surjective semigroup S,

ξ ∩H = 1S .

If in addition ES forms a semilattice, then

ξ ∩ L = ξ ∩R = 1S .

Proof. This follows from Theorem 5.5 [5], since ξ ⊆ σ.
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3. USG-congruences

A semigroup S is said to be a USG-semigroup if it is an E-unitary Clifford semi-
group. Recall from [13] that if S is a USG-semigroup, then σ ∩ η = 1S .

Remark that if a semigroup is a subdirect product of a group and a semilattice,
then it is an E-semigroup.

Theorem 3.1. In any idempotent-surjective semigroup S, σ ∩ η = 1S if and only

if S is a USG-semigroup.

Proof. Let σ ∩ η = 1S . Then S is a subdirect product of the group S/σ and the
semilattice S/η, so S is an idempotent-surjective E-semigroup. In particular, the
least Clifford congruence ξ exists on S. Also, ξ ⊆ σ ∩ η and so ξ = 1S . Hence S is
a semilattice of groups. Thus H = η. Let (x, e) ∈ σ (where x ∈ S, e ∈ ES). Then
(since x ∈ Hf for some f ∈ ES ⊆ eσ) (x, f) ∈ σ ∩H = σ ∩ η = 1S , so x = f ∈ ES .
Consequently, S is E-unitary.

If ρ, υ are two congruences on S such that ρ ⊆ υ, then the map ϕ : S/ρ → S/υ,
(aρ)ϕ = aυ (a ∈ S), is a well-de�ned epimorphism between these semigroups.
Denote its kernel ϕϕ−1 by

υ/ρ = {(aρ, bρ) ∈ S/ρ× S/ρ : a υ b}.

Then (S/ρ)/(υ/ρ) ∼= S/υ. Also, each congruence α on S/ρ is of the form υ/ρ, where
υ ⊇ ρ is a congruence on S. Indeed, the relation υ, de�ned on S by: a υ b if and
only if (aρ, bρ) ∈ α, is a congruence on S such that ρ ⊆ υ and α = υ/ρ. Finally, let
ρ ⊆ υ1, υ2 (where υ1, υ2 are congruences on S). Then (υ1/ρ)∩(υ2/ρ) = (υ1∩υ2)/ρ,
and (υ1 ∩ υ2)/ρ = 1S/ρ implies that ρ = υ1 ∩ υ2.

Note that if a class C of semigroups is closed under homomorphic images and
the least C-congruence ρCS on a semigroup S exists, then the interval [ρCS , S × S]
consists of all C-congruences on S and is a complete sublattice of C(S).

Theorem 3.2. Let C1, C2 and C3 be some classes of semigroups; ρC1
A , ρC2

A be the

least C1-congruence, C2-congruence on any semigroup A, respectively, such that

A ∈ C3 if and only if ρC1
A ∩ ρC2

A = 1A. Then the intersection of a C1-congruence

and a C2-congruence on a semigroup S is a C3-congruence. Conversely, every

C3-congruence on S can be expressed in this way.

Proof. Let ρi be a Ci-congruence on S (for i = 1, 2). Put ρ = ρ1 ∩ ρ2 and observe
that ρ1/ρ is a C1-congruence, ρ2/ρ is a C2-congruence on S/ρ. Since (ρ1/ρ)∩(ρ2/ρ)
is the identity relation on S/ρ, then ρC1

S/ρ ∩ ρC2
S/ρ = 1S/ρ. Thus S/ρ ∈ C3, and so

ρ = ρ1 ∩ ρ2 is a C3-congruence on S.
Conversely, let ρ be any C3-congruence on S, ρ1/ρ = ρC1

S/ρ, ρ2/ρ = ρC2
S/ρ, where

ρ ⊆ ρ1, ρ2. Then ρi is a Ci-congruence on S (for i = 1, 2). Furthermore,

(ρ1 ∩ ρ2)/ρ = ρC1
S/ρ ∩ ρC1

S/ρ = 1S/ρ.

Thus ρ = ρ1 ∩ ρ2, as required.
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Remark 3.3. One can modify Theorem 3.2 for any type of a universal algebra.

The following theorem describes all USG-congruences on idempotent-surjective
semigroups.

Theorem 3.4. The intersection of a group congruence ν and a semilattice con-

gruence γ on an idempotent-surjective semigroup S is a USG-congruence.
Conversely, any USG-congruence ρ on S can be expressed in this way, and ν, γ

are uniquely determined by ρ.

Proof. Note that the class of all idempotent-surjective semigroups is closed under
homomorphic images. All assertions of the theorem except a uniqueness follows
from Theorems 3.1, 3.2 (see the proof of Theorem 3.2).

Let ρ = ν1∩ γ1 = ν2∩ γ2, where νi is a group congruence and γi is a semilattice
congruence on S (i = 1, 2), and let (a, b) ∈ γ1. Since γ1 ∩ γ2 is a band congruence,
then there are e, f ∈ ES such that (a, e) ∈ γ1 ∩ γ2, (e, f) ∈ ν1 and (f, b) ∈ γ1 ∩ γ2.
In fact, (e, f) ∈ γ1 ∩ ν1 = γ2 ∩ ν2 ⊆ γ2. Hence (a, b) ∈ γ2. Thus γ1 ⊆ γ2. Similarly,
we obtain the opposite inclusion, so γ1 = γ2. Put γ1 = γ2 = γ. Let (a, b) ∈ ν1. Then
(aab, abb) ∈ ν1 ∩ γ ⊆ ν2. Hence (a, b) ∈ ν2 (by cancellation), therefore, ν1 ⊆ ν2.
By symmetry, ν2 ⊆ ν1. Consequently, ν1 = ν2, as required.

Corollary 3.5. The relation σ ∩ η is the least USG-congruence on an arbitrary

idempotent-surjective semigroup S.

Corollary 3.6. An idempotent-surjective semigroup is a subdirect product of a

group and a semilattice if and only if it is a USG-semigroup.

Proof. Let S ⊆ G × Y be a subdirect product of a group G and a semilattice Y .
Then the two projection maps induce on S a group congruence and a semilattice
congruence. The intersection of these congruences is the equality relation on S.
Thus σ ∩ η = 1S , so S is a USG-semigroup (Theorem 3.1).

The converse implication is clear.

Lemma 3.7. Let S be an E-unitary idempotent-surjective semigroup. Then S/ξ is

a USG-semigroup.

Proof. Let S be E-unitary. Then every η-class of S is E-unitary, too. In the light
of Theorem 2.6, ξ is idempotent pure. Hence ξ is E-unitary (Corollary 2.9). Thus
S/ξ is a USG-semigroup.

One can show without dif�culty that the least E-unitary congruence π on an
arbitrary E-inversive semigroup exists.

Lemma 3.8. Let S be an idempotent-surjective R-semigroup. Then the relation

(ξ ∨ π)/π

is the least Clifford congruence on S/π.



228 R.S. Gigo«

Proof. Indeed, S/(ξ ∨ π) is a Clifford semigroup, so (ξ ∨ π)/π is a semilattice of
groups congruence on S/π, since S/(ξ ∨ π) ∼= (S/π)/((ξ ∨ π)/π). On the other
hand, if α is a semilattice of groups congruence on S/π, then α = ρ/π, where
π ⊆ ρ. Since (S/π)/(ρ/π) ∼= S/ρ, then ρ is a Clifford congruence on S, so π, ξ ⊆ ρ.
Hence ξ ∨ π ⊆ ρ. Thus (ξ ∨ π)/π ⊆ ρ/π = α, as required.

Theorem 3.9. In any idempotent-surjective R-semigroup S,

σ ∩ η = ξ ∨ π.

Proof. We have just seen that S/(ξ∨π) ∼= (S/π)/((ξ∨π)/π). By Lemmas 3.7, 3.8,
(S/π)/((ξ∨π)/π) is an E-unitary semilattice of groups and so S/(ξ∨π) is also an
E-unitary semilattice of groups. Thus ξ ∨ π is a USG-congruence on S. Moreover,
ξ ⊆ σ ∩ η and π ⊆ σ ∩ η. Hence ξ ∨ π ⊆ σ ∩ η. Thus ξ ∨ π = σ ∩ η (because σ ∩ η
is the least USG-congruence on S).

Corollary 3.10. In any E-unitary idempotent-surjective semigroup,

ξ = σ ∩ η.

4. The condition π ∩ ξ = 1S

In this section we characterize those idempotent-surjective R-semigroups S which
are a subdirect product of an E-unitary semigroup and a Clifford semigroup, i.e.,
those semigroups S for which π ∩ ξ is the identity relation. Since E-unitary semi-
groups and Clifford semigroups are both E-semigroups, then S are E-semigroups,
too.

In [2] Edwards de�ned the relation µ on a semigroup S by

(a, b) ∈ µ ⇐⇒

{
(xL ax or xL bx) =⇒ axH bx,

(xRxa or xRxb) =⇒ xaHxb,

where x is an arbitrary element of Reg(S). Furthermore, he proved in [3] that µ
is the maximum idempotent-separating congruence on an arbitrary idempotent-
surjective semigroup S (that is, µ ∩ (ES × ES) = 1S).

Recall that a semigroup S is:

• fundamental if µ = 1S [1];

• η-simple if η = S × S [20].

Note that if an E-inversive semigroup S is η-simple, then the least Clifford
congruence ξ coincides with σ. Indeed, let ρ be a Clifford congruence on S. Since
S/ρ is a Clifford semigroup, then the least semilattice congruence on S/ρ is H.
De�ne a relation ε on S, as follows: (a, b) ∈ ε if (aρ)H(bρ). Then H = ε/ρ, so
ε is a semilattice congruence on S, since (S/ρ)/H ∼= S/ε. Thus (aρ)H(bρ) for all
a, b ∈ S. Consequently, S/ρ is a group.
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Recall that π denotes the least E-unitary congruence on an E-inversive semi-
group. Clearly, π ⊆ σ (the least group congruence).

From the last two paragraphs we obtain the following corollary.

Corollary 4.1. Let S be an η-simple E-inversive semigroup. Then S is E-unitary

if and only if π ∩ ξ = 1S.

Proposition 4.2. Let S be an idempotent-surjective R-semigroup, π ∩ ξ = 1S.

Then S is a semilattice of (η-simple) E-unitary E-inversive semigroups.

Proof. It is suf�cient to show that every η-class of S is E-unitary. Let a ∈ S. Then
the restriction of π to aη is an E-unitary congruence on aη and the restriction of ξ
to aη is a group congruence on aη. From the assumption of the proposition follows
that the intersection of these two congruences is the identity relation on aη, so the
intersection of the least E-unitary congruence and the least Clifford congruence on
aη is also the identity relation. In the light of Corollary 4.1, aη is E-unitary.

Theorem 4.3. Let S be a fundamental idempotent-surjective R-semigroup. Then

π ∩ ξ = 1S if and only if S is E-unitary.

Proof. Let π ∩ ξ = 1S ; e, f ∈ ES . If (e, f) ∈ π, then (e, f) ∈ η. Hence (e, f) ∈ ξ.
Thus e = f , so π ⊆ µ = 1S . Consequently, S is E-unitary.

The converse implication is trivial.

Remark 4.4. The above theorem is valid for any C-congruence ρ (instead of π)
contained in η (i.e., if we replace in the theorem π by ρ, then we must replace
“E-unitary� with �C-semigroup�).

Recall from [7] that (for idempotent-surjective semigroups) every congruence
of the interval [π, σ] is E-unitary. Also, ker(ρ) = ker(π) for every ρ ∈ [π, σ].

We have mentioned above that the class of idempotent-surjective semigroups is
closed under homomorphic images. Using Hall's observation, one can prove with-
out dif�culty that the class of all idempotent-surjective R-semigroups possess this
property. It is also known that the class of all structurally regular semigroups is
closed under taking homomorphic images [14].

For regular semigroups S, µ ∩ τ = 1S . The next theorem gives necessary and
suf�cient conditions for π ∩ ξ to be the identity relation on idempotent-surjective
R-semigroups S such that µ ∩ τ = 1S (in particular, the theorem is valid, too, for
structurally regular semigroups having this additional property).

Remark 4.5. Using Lemma 1.2 [17], Janet Mills proved for orthodox semigroups a
similar result to the next theorem (see Theorem 3.5 [17]). However, the proof of her
lemma is not correct (see [6]). Moreover, in [6] using different methods, the author
showed the theorem of Mills (with a very important additional condition). Finally,
notice that the implication “(f) ⇒ (g)” in the following theorem is proved in a
different way than the corresponding implication in [6].
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Theorem 4.6. If S is an idempotent-surjective R-semigroup such that µ∩ τ = 1S,

then the following conditions are equivalent:
(a) π ∩ ξ = 1S ;
(b) S is a semilattice of E-unitary E-inversive semigroups and π ⊆ µ;
(c) S is a semilattice of E-unitary E-inversive semigroups and π ⊆ µ∩ σ ⊆ σ;
(d) S is a semilattice of E-unitary E-inversive semigroups and the congruence

µ ∩ σ is E-unitary;
(e) S is a semilattice of E-unitary E-inversive semigroups and at least one

idempotent-separating congruence on S (say ρ) is E-unitary;
(f) S is a subdirect product of an E-unitary idempotent-surjective semigroup

and a Clifford semigroup;
(g) S is a semilattice of E-unitary E-inversive semigroups and the relation

H ∩ σ is E-unitary congruence on S.

Proof. (a) =⇒ (b). This implication follows directly from Proposition 4.2 and from
the proof of Theorem 4.3.

(b) =⇒ (c). This is clear, since π ⊆ σ.

(c) =⇒ (d). In that case, µ ∩ σ ∈ [π, σ], so µ ∩ σ is E-unitary.

(d) =⇒ (e). This is evident.
(e) =⇒ (a). In such case, π ⊆ ρ ⊆ µ. Hence π ∩ ξ ⊆ µ ∩ ξ = µ ∩ (η ∩ τ) (see

Corollary 2.7 and Theorem 2.6). Thus π ∩ ξ ⊆ µ ∩ τ = 1S .

(a) =⇒ (f). This is clear.
(f) =⇒ (g). Suppose that S is a subdirect product of an E-unitary idempotent-

surjective semigroup A and a Clifford semigroup T . Notice that (a, t)(H∩σ)(b, w)
in S if and only if (a, b) ∈ H ∩ σ in A and (t, w) ∈ H ∩ σ = η ∩ σ in T , i.e., if and
only if a = b (Theorem 5.5 [5]) and (t, w) ∈ η ∩ σ in T . This implies that H∩ σ is
a congruence on S. Finally, we will show that the congruence H ∩ σ is E-unitary.
Let

(e, g)(a, t)(H ∩ σ)(f, h),

where (e, g), (f, h) ∈ ES , then ea = f and (gt, h) ∈ H ∩ σ in T . It follows that

a ∈ EA & t ∈ ker(σT ).

Hence

(t, i) ∈ HT ∩ σT

for some i ∈ ET , since T is a semilattice of groups. Consequently,

(a, t)(H ∩ σ)(a, i),

where (a, i) ∈ ES , so H ∩ σ is E-unitary.

(g) =⇒ (e). This is evident.
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