Clifford congruences on an idempotent-surjective *R*-semigroup

Roman S. Gigoń

Abstract. In the paper we describe the least Clifford congruence ξ on an idempotent-surjective R-semigroup, and so we generalize the result of LaTorre (1983). In addition, a characterization of all Clifford congruences on such a semigroup (in particular, on a structurally regular semigroup) is given. Furthermore, we find necessary and sufficient conditions for ξ to be idempotent pure or E-unitary. Moreover, using some earlier result, we give a description of all USG-congruences on an idempotent-surjective semigroup, and so we generalize the result of Howie and Lallement for regular semigroups (1966). Finally, in Section 4 we study the subdirect products of an E-unitary semigroup and a Clifford semigroup.

1. Preliminaries

Whenever possible the notation and conventions of Howie [11, 12] are used. Let S be a semigroup and let $A \subseteq S$. Denote by E_A the set of all *idempotents* of A, that is, $E_A = \{a \in A : a^2 = a\}$, and by Reg(S) the set of all *regular elements* of S, i.e., $Reg(S) = \{a \in S : a \in aSa\}$. We say that S is *regular* if Reg(S) = S. More generally, in [10] Hall observed that the set Reg(S) of a semigroup S with $E_S \neq \emptyset$ forms a regular subsemigroup of S if and only if the product of any two idempotents of S is regular. In a such case, S is said to be an R-semigroup. Finally, if E_S is a subsemigroup of S, then S is called an E-semigroup. Clearly, any E-semigroup is an R-semigroup.

Let S be a semigroup, $a \in S$. The set $W(a) = \{x \in S : x = xax\}$ is called the set of *weak inverses* of a, so the elements of W(a) will be called *weak inverse* elements of a. A semigroup S is said to be *E-inversive* if for every $a \in S$ there is $x \in S$ such that $ax \in E_S$ [21]. Clearly, S is *E*-inversive iff $W(a) \neq \emptyset$ ($a \in S$), so if S is *E*-inversive, then for all $a \in S$ there is $x \in S$ such that $ax, xa \in E_S$. For some interesting results concerning *E*-inversive semigroups, see [18, 4].

A generalization of the concept of regularity will also prove convenient. Define a semigroup S to be *idempotent-surjective* if whenever ρ is a congruence on S and $a\rho$ is an idempotent of S/ρ , then $a\rho$ contains some idempotent of S [2]. The famous Lallement's Lemma says that all regular semigroups are idempotent-surjective. Finally, it is known that idempotent-surjective semigroups are E-inversive.

²⁰¹⁰ Mathematics Subject Classification: 20M99, 06B10

Keywords: Clifford congruence, *R*-semigroup, idempotent-surjective semigroup, *E*-semigroup, structurally regular semigroup, *E*-unitary congruence, USG-congruence.

On the other hand, Kopamu defined in [14] a countable family of congruences on a semigroup S, as follows: for each ordered pair of non-negative integers (m, n), he put:

$$\theta_{m,n} = \{(a,b) \in S \times S : (\forall x \in S^m, y \in S^n) \ xay = xby\}$$

and he made the convention that $S^1 = S$ and S^0 denotes the set containing only the empty word. In particular, $\theta_{0,0} = 1_S$. Recall from [14] that if $S/\theta_{m,n}$ is regular for some non-negative integers m, n, then S is structurally regular. Kopamu also proved that structurally regular semigroups are idempotent-surjective. Finally, in [8] the author showed that structurally regular semigroups are R-semigroups, and so every structurally regular semigroup is an *idempotent-surjective R-semigroup*.

Green's relations on S are denoted by $\mathcal{L}((a, b) \in \mathcal{L} \text{ if } Sa \cup \{a\} = Sb \cup \{b\}), \mathcal{R}((a, b) \in \mathcal{R} \text{ if } aS \cup \{a\} = bS \cup \{b\}) \text{ and } \mathcal{H} (= \mathcal{L} \cap \mathcal{R}).$ Denote by \mathcal{H}_a the \mathcal{H} -class containing the element a. Notice that Green's Theorem says that in an arbitrary semigroup S either $\mathcal{H}_a \mathcal{H}_a \cap \mathcal{H}_a = \emptyset$ or \mathcal{H}_a is a group.

Recall that a semigroup S is a *semilattice* if $a^2 = a$, ab = ba for all $a, b \in S$. Let C be some class of semigroups of the same type T (for example: the class of all groups); call its elements C-semigroups. A congruence ρ on a semigroup S is said to be a C-congruence if $S/\rho \in C$. Clearly, the least semilattice congruence η (say) on an arbitrary semigroup S exists. Finally, a semigroup S is a semilattice S/ρ of groups if there exists a semilattice congruence ρ on S such that every ρ -class is a group. Since $\mathcal{H} \subseteq \eta$, then a semigroup S is a semilattice S/ρ of groups if and only if $\mathcal{H} = \eta$. Indeed, $\mathcal{H} \subseteq \eta \subseteq \rho$ and evidently $\rho \subseteq \mathcal{H}$. Consequently we have $\mathcal{H} = \eta$. The converse implication follows from Green's Theorem.

Moreover, some preliminaries about group congruences on a semigroup S are needed. A subset A of S is called (respectively) full; reflexive and dense if $E_S \subseteq A$; $(\forall a, b \in S) (ab \in A \Rightarrow ba \in A)$ and $(\forall s \in S) (\exists x, y \in S) sx, ys \in A$. Also, we define the closure operator ω on S by $A\omega = \{s \in S : (\exists a \in A) as \in A\}$ (where $A \subseteq S$). We shall say that $A \subseteq S$ is closed (in S) if $A\omega = A$. Further, a subsemigroup N of a semigroup S is said to be normal if it is full, dense, reflexive and closed (if N is normal, then we shall write $N \triangleleft S$). Finally, if a subsemigroup of S is dense and reflexive, then it is called quasi-normal.

By the *kernel* of a congruence ρ on a semigroup S we shall mean the set $\ker(\rho) = \{x \in S : (x, x^2) \in \rho\}.$

Result 1.1. [5] Let B be a quasi-normal subsemigroup of a semigroup S. Then the relation $\rho_B = \{(a, b) \in S \times S : (\exists x, y \in B) ax = yb\}$ is a group congruence on S. Also, $B \subseteq B\omega = \ker(\rho_B)$, and if $B \triangleleft S$, then $B = \ker(\rho_B)$.

Conversely, if ρ is a group congruence on S, then there is a normal subsemigroup N of S such that $\rho = \rho_N$ (in fact, $N = \ker(\rho)$). Thus there is an inclusionpreserving bijection between the set of all normal subsemigroups of S and the set of all group congruences on S.

Moreover, the least group congruence on an E-inversive E-semigroup is given by

$$\sigma = \{(a,b) \in S \times S : (\exists e, f \in E_S) \ ea = bf\}.$$

Remark 1.2. [5] Let B be a quasi-normal subsemigroup of S. Then:

$$(a,b) \in \rho_B \Leftrightarrow (\exists x \in S) \ xa, xb \in B.$$

It is easily seen that if S is an E-inversive semigroup (and so E_S is dense), then there exists the least normal subsemigroup of S. In the light of Result 1.1, every E-inversive semigroup possesses the least group congruence σ .

An inverse semigroup in which the idempotents are central is called a *Clifford* semigroup. Recall that a semigroup S is a Clifford semigroup if and only if it is a semilattice of groups [11]. Observe that if $ab = e \in E_S$, then

$$ba = baa^{-1}a = a^{-1}aba = a^{-1}ea \in E_S.$$

Thus ab = ba (since ab and ba belong to the same subgroup of S), so E_S is reflexive. Further, a semigroup S is called η -simple if S has no semilattice congruences except the universal relation. It is well known that every η -class of S is η -simple [20].

Recall from [9] that a full quasi-normal subsemigroup of a semigroup is called *seminormal*.

Finally, we have need the following two results.

Theorem 1.3. Let ρ be an arbitrary semilattice congruence on an idempotentsurjective R-semigroup S, N be a (semi)normal subsemigroup of S and let $a \in S$. Put $N_a = N \cap a\rho$. Then:

- (a) $a\rho$ is an *E*-inversive *R*-semigroup;
- (b) N_a is a (semi)normal subsemigroup of $a\rho$.

Proof. (a). Let $a \in S$ and $e \in E_{a\eta}$. Suppose by way of contradiction that $a\eta$ is not *E*-inversive. Then the set *A* of all non *E*-inversive elements of $a\eta$ is an ideal of $a\eta$. Clearly, $e \notin A$. Consider an equivalence ρ (say) on $a\eta$ induced by the partition: $\{A, a\eta \setminus A\}$ and suppose that there are elements $s, t \in a\eta \setminus A$ such that $st \in A$. Then $fg \in A$ for some idempotents $f, g \in a\eta \setminus A$. Since *S* is an *R*-semigroup, then x = xfgx, fg = fgxfg for some $x \in S$. It follows that $x \in a\eta$, so $x \in W(fg)$ in $a\eta$, which contradicted to $fg \in A$. Hence ρ is a semilattice congruence on an η -simple semigroup $a\eta$, a contradiction. Consequently, $A = \emptyset$ (since $e \notin A$), and so $a\eta$ is an *E*-inversive *R*-semigroup.

(b). The second part of the theorem is a direct consequence of the definition of a (semi)normal subsemigroup and the first part of the theorem. \Box

Lemma 1.4. Let B be the least seminormal subsemigroup of an idempotentsurjective semigroup S. If ϕ is an epimorphism of S onto a Clifford semigroup T, then $B\phi = E_T$.

Proof. Put $A = (E_T)\phi^{-1}$. Clearly, A is a full subsemigroup of S. Thus A is dense. Moreover, if $xy \in A$, then $E_T \ni (xy)\phi = x\phi \cdot y\phi = y\phi \cdot x\phi = (yx)\phi$ (since E_T is reflexive), so $yx \in A$. Hence $B \subseteq A$. Thus $B\phi \subseteq ((E_T)\phi^{-1})\phi \subseteq E_T$. Since S is idempotent-surjective and B is full, then $E_T = (E_S)\phi \subseteq B\phi$. Consequently, $B\phi = E_T$.

2. Clifford congruences

Let ε be a semilattice congruence on an idempotent-surjective *R*-semigroup *S*. Denote ε -classes of *S* by S_{α} , where α 's are elements of some set *A*, and define on *A* a binary operation \circ , as follows: if $a \in S_{\alpha}, b \in S_{\beta}$, then

$$\alpha \circ \beta = \gamma \Leftrightarrow ab \in S_{\gamma}.$$

Clearly, (A, \circ) is a semilattice (isomorphic to S/ϵ), so

$$S = \bigcup \{ S_{\alpha} : \alpha \in A \}$$

is a semilattice A of E-inversive R-semigroups S_{α} (Theorem 1.3(a)). For any seminormal subsemigroup I of S, put $I_{\alpha} = I \cap S_{\alpha}$ ($\alpha \in A$); see Theorem 1.3(b). Then by Result 1.1 and Remark 1.2, for every α , the relation

$$\rho_{I_{\alpha}} = \{(a, b) \in S_{\alpha} \times S_{\alpha} : (\exists x \in S_{\alpha}) \ xa, xb \in I_{\alpha}\}$$

is a group congruence on S_{α} . Put $\rho = \bigcup \{ \rho_{I_{\alpha}} : \alpha \in A \}$. We will show that ρ is a congruence on S. Let $(a,b) \in \rho$, say $(a,b) \in \rho_{I_{\alpha}}$; $c \in S_{\beta}$. Then $xa, xb \in I_{\alpha}$ for some $x \in S_{\alpha}$. Since I_{β} is dense, then $cz \in I_{\beta}$ for some $z \in S_{\beta}$. Notice that $ac, bc, zx \in S_{\alpha\beta}$. Furthermore, $(xa)(cz) \in I_{\alpha}I_{\beta} \subseteq I$. Hence $(zx)(ac) \in I$ (since Iis reflexive), therefore, $(zx)(ac) \in I \cap S_{\alpha\beta} = I_{\alpha\beta}$. Similarly, $(zx)(bc) \in I_{\alpha\beta}$. This implies that $(ac, bc) \in \rho$, and so ρ is a right congruence on S. By symmetry of the definition of $\rho_{I_{\alpha}}$, we conclude that ρ is also a left congruence on S. Thus ρ is a congruence on S and for all $a \in S$, $a\rho = a\rho_{I_{\alpha}}$ if $a \in S_{\alpha}$. Put $G_{\alpha} = S_{\alpha}/\rho_{I_{\alpha}}$. Then $S/\rho = \bigcup \{G_{\alpha} : \alpha \in A\}$ is a semilattice A of groups G_{α} .

Applying the above construction (of ρ) to the least semilattice congruence η on S and to the least seminormal subsemigroup B of S, we obtain some semilattice of groups congruence on S, say ξ .

Let S be an idempotent-surjective E-semigroup. Then each η -class of S is an E-semigroup. Define on every S_{α} the least group congruence σ_{α} (see Result 1.1). Then the relation ξ^* , induced by this partition of S, is a congruence on S. Indeed, if $a\xi^*b$, say $(a,b) \in \sigma_{\alpha}$ in S_{α} ; $c \in S_{\beta}$, then ea = bf, where $e, f \in E_{S_{\alpha}}$, and so $(bcc^*b^*e)ac = bc(c^*\cdot b^*bf \cdot c)$ for every $b^* \in W_{S_{\alpha}}(b), c^* \in W_{S_{\beta}}(c)$. The expressions in the parentheses belong to E_S . Further, $bcc^*b^*e, c^*b^*bfc \in S_{\alpha\beta}$, $ac, bc \in S_{\alpha\beta}$. Hence ξ^* is a right congruence on S. By symmetry, ξ^* is a left congruence on S. Thus S/ξ^* is a semilattice of groups.

Finally, we will show that ξ is the least Clifford congruence on an idempotentsurjective *R*-semigroup *S*. Let ρ be any congruence on *S* such that S/ρ is a semilattice *A* of groups, say $S/\rho = \bigcup \{G_{\alpha} : \alpha \in A\}$; ρ^{\natural} be the natural homomorphism of *S* onto S/ρ and φ be the canonical morphism of S/ρ onto *A*, defined by $(a\rho)\varphi = \alpha$ if $a\rho \in G_{\alpha}$. The composition map $\Phi = \rho^{\natural}\varphi$ is a morphism of *S* onto *A*, so $\Phi\Phi^{-1}$, where $a(\Phi\Phi^{-1})b$ if and only if $a\rho, b\rho \in G_{\alpha}$ for some $\alpha \in A$, is a semilattice congruence on *S*. Thus $\eta \subseteq \Phi\Phi^{-1}$. Suppose that $a\xi b$. Then $a\eta b$ and xa = by for some $x, y \in a\eta \cap B$, where B is the least seminormal subsemigroup of S. Since x, y, a, blie in the same η -class, then they belong to the same $\Phi\Phi^{-1}$ -class, so $x\rho, y\rho, a\rho, b\rho$ lie in G_{α} ($\alpha \in A$). Since $x, y \in B$, then $x\rho, y\rho \in E_{S/\rho}$ (Lemma 1.4), so $x\rho = y\rho = 1_{G_{\alpha}}$ (the identity of the group G_{α}). It follows that

$$a\rho = (x\rho)(a\rho) = (xa)\rho = (by)\rho = (b\rho)(y\rho) = b\rho$$

Consequently, $\xi \subseteq \rho$, as required.

Observe that if S is an E-semigroup, then $x, y \in E_S$ (by the definition of ξ^*), so obviously $x\rho = y\rho = 1_{G_{\alpha}} \in E_{S/\rho}$. Thus $\xi^* \subseteq \rho$.

Note that $\xi, \xi^* \subseteq \eta \cap \sigma$ and denote by $B_{a\eta}$ the intersection of $a\eta$ and $B \ (a \in S)$. We have just shown the following theorem.

Theorem 2.1. The least Clifford congruence on an idempotent-surjective R-semigroup S is given by

$$\xi = \{ (a,b) \in \eta : (\exists x, y \in B_{a\eta}) \ xa = by \}.$$

Remark 2.2. In the light of Remark 1.2,

$$\xi = \{(a, b) \in \eta : (\exists x \in a\eta) \ xa, xb \in B_{an}\}$$

Corollary 2.3. The least Clifford congruence on an idempotent-surjective E-semigroup S is given by

$$\xi^* = \{(a,b) \in \eta : (\exists e, f \in E_{a\eta}) \ ea = bf\}.$$

Note also that we have proved the first part of the following theorem which is new for regular semigroups (and it is probably new even for inverse semigroups).

Theorem 2.4. Let ε be an arbitrary semilattice congruence on an idempotentsurjective R-semigroup S and let A be a seminormal subsemigroup of S. Then the relation

$$\rho_{A,\varepsilon} = \{ (a,b) \in \varepsilon : (\exists x, y \in a\varepsilon \cap A) \ xa = by \}$$

is a Clifford congruence on S.

Conversely, if ρ is a Clifford congruence on S, then there exists a semilattice congruence ε on S and a seminormal subsemigroup A of S such that $\rho = \rho_{A,\varepsilon}$.

Proof. Let ρ be a semilattice of groups congruence on S. Since S/ρ is a semilattice of groups, then the least semilattice congruence on S/ρ is $\mathcal{H}^{S/\rho}$. Define a relation ε on S, as follows: $(a, b) \in \varepsilon$ if and only if $(a\rho, b\rho) \in \mathcal{H}^{S/\rho}$. Then $\mathcal{H}^{S/\rho} = \varepsilon/\rho$. It follows that ε is a semilattice congruence on S, since $(S/\rho)/\mathcal{H}^{S/\rho} \cong S/\varepsilon$. Next, put

$$A = \bigcup \{ e\rho : e \in E_S \}.$$

Since S is idempotent-surjective and $E_{S/\rho}$ is a subsemigroup of S/ρ , then A is a semigroup. Obviously, A is full. Finally, A is reflexive, since $E_{S/\rho}$ is reflexive.

R.S. Gigoń

Consequently, A is a seminormal subsemigroup of S. Further, note that $\rho \subseteq \varepsilon$, and consider an arbitrary ρ -class $e\rho$, where $e \in E_S$. Let $x \in (e\rho)\omega$ in $e\varepsilon$ (in particular, $(x\rho, e\rho) \in \mathcal{H}^{S/\rho}$). Then $ax \in e\rho$ for some $a \in e\rho$. Hence

$$e\rho = (a\rho)(x\rho) = (e\rho)(x\rho) = x\rho,$$

because $(x\rho, e\rho) \in \mathcal{H}^{S/\rho}$. Thus $e\rho$ is closed in $e\varepsilon$. Since $A \cap e\varepsilon = e\rho$ for every $e \in E_S$, then $\rho = \rho_{A,\varepsilon}$, as required.

A congruence ρ on a semigroup S is called *idempotent pure* if $e\rho \subseteq E_S$ for all $e \in E_S$. Note that if S is idempotent-surjective, then ρ is idempotent pure if and only if ker $(\rho) = E_S$.

Let \mathcal{E} be the relation on a semigroup S induced by the partition $\{E_S, S \setminus E_S\}$. Then \mathcal{E}^{\flat} is the greatest idempotent pure congruence on S. Put $\tau = \mathcal{E}^{\flat}$. Then [12]

$$\tau = \{(a,b) \in S \times S : (\forall x, y \in S^{(1)}) xay \in E_S \Leftrightarrow xby \in E_S\},\$$

where $S^{(1)}$ denotes the semigroup obtained from S by adjoining the identity 1.

Recall from [5] that an *E*-inversive semigroup *S* is *E*-unitary if and only if E_S is closed in *S*.

The following result will be useful.

Result 2.5. [5, 7] Let S be an idempotent-surjective semigroup. Then the following conditions are equivalent:

- (a) S is E-unitary;
- (b) $\ker(\sigma) = E_S;$
- (c) every idempotent pure congruence on S is E-unitary;
- (d) there exists an idempotent pure E-unitary congruence on S;
- (e) $\sigma = \tau$.

The following theorem gives necessary and sufficient conditions for ξ to be idempotent pure. Note that the condition (c) is new even for regular semigroups.

Theorem 2.6. Let S be an idempotent-surjective R-semigroup. Then the following conditions are equivalent:

- (a) ξ is idempotent pure;
- (b) each η -class of S is an E-unitary E-inversive subsemigroup of S;
- (c) $\xi = \eta \cap \tau$.

Proof. (a) \iff (b). It follows from the construction of ξ and Result 2.5 (see (b)). (a) \implies (c). Let ξ be idempotent pure, that is, $\xi \subseteq \tau$. Then evidently $\xi \subseteq \eta \cap \tau$. Conversely, let $a(\eta \cap \tau)b$. Take any weak inverse x of a in $a\eta$. Then $(xa, xb) \in \tau$,

where $xa \in E_{a\eta}$. Since $xb \in a\eta$, then $xb \in E_{a\eta}$. Thus $(a, b) \in \xi$ (by Remark 2.2). (c) \Longrightarrow (a). This is trivial.

Corollary 2.7. Let S be an idempotent-surjective R-semigroup. Then ξ is idempotent pure if and only if S is a semilattice of E-unitary E-inversive semigroups. \Box

Moreover, we have the following theorem.

Theorem 2.8. Let S be an idempotent-surjective R-semigroup. Then the following conditions are equivalent:

- (a) S is E-unitary;
- (b) ξ is an idempotent pure E-unitary congruence on S;
- (c) for every $a \in S$, $a\eta$ is *E*-unitary and $\sigma_{a\eta} = \sigma_S \cap (a\eta \times a\eta)$.

Proof. $(a) \Longrightarrow (b)$. If S is E-unitary, then each η -class of S is also E-unitary and so, by Theorem 2.6, ξ is idempotent pure. Hence by Result 2.5, ξ is E-unitary.

 $(b) \Longrightarrow (a)$. This follows from Result 2.5.

 $(a) \Longrightarrow (c)$. Let $a \in S$. It is clear that $a\eta$ is *E*-unitary. Also, if $(a,b) \in \sigma$, then $ab^* \in E_S$ for all $b^* \in W(b)$, so if $(a,b) \in \sigma \cap (a\eta \times a\eta)$, then $ab^* \in E_{a\eta}$ for all $b^* \in W(b)$ in $a\eta$. Thus $ab^*b \in E_{a\eta}b$. It follows that $(a,b) \in \sigma_{a\eta}$. Therefore $\sigma \cap (a\eta \times a\eta) \subseteq \sigma_{a\eta}$. The converse inclusion is obvious.

 $(c) \Longrightarrow (a)$. Let $e \in E_S$, $x \in a\eta$, where $a \in S$. Choose $f \in E_{a\eta}$ and suppose that $(x, e) \in \sigma_S$. Clearly, $(e, f) \in \sigma_S$. Hence $(x, f) \in \sigma_S \cap (a\eta \times a\eta) = \sigma_{a\eta}$. Thus $x \in E_S$, so S is E-unitary (by Result 2.5).

The next result gives some equivalent conditions for ξ to be *E*-unitary, when ξ is idempotent pure.

Corollary 2.9. Let an idempotent-surjective R-semigroup S be a semilattice of an E-unitary E-inversive semigroups. Then the following conditions are equivalent:

(a) S is E-unitary;

(b) $\xi = \eta \cap \sigma;$

- (c) ξ is *E*-unitary;
- (d) for every $a \in S$, $\sigma_{a\eta} = \sigma_S \cap (a\eta \times a\eta)$.

Proof. $(a) \Longrightarrow (b)$. The main assumption of the corollary implies that ξ is idempotent pure (Corollary 2.7). Hence $\xi = \eta \cap \tau$ (Theorem 2.6). Since S is E-unitary, then $\tau = \sigma$ (Result 2.5). Thus $\xi = \eta \cap \sigma$.

 $(b) \Longrightarrow (c)$. The congruences η and σ are both *E*-unitary. Therefore $\xi = \eta \cap \sigma$ is also *E*-unitary.

 $(c) \Longrightarrow (a)$. The assumptions imply that the congruence ξ is idempotent pure and *E*-unitary. Thus *S* is *E*-unitary (Result 2.5).

 $(a) \iff (d)$. It is a consequence of Theorem 2.8.

Corollary 2.10. In any E-unitary idempotent-surjective semigroup S,

 $\xi \cap \mathcal{H} = 1_S.$

If in addition E_S forms a semilattice, then

Finally, we have the following corollary.

$$\xi \cap \mathcal{L} = \xi \cap \mathcal{R} = 1_S.$$

Proof. This follows from Theorem 5.5 [5], since $\xi \subseteq \sigma$.

3. USG-congruences

A semigroup S is said to be a USG-semigroup if it is an E-unitary Clifford semigroup. Recall from [13] that if S is a USG-semigroup, then $\sigma \cap \eta = 1_S$.

Remark that if a semigroup is a subdirect product of a group and a semilattice, then it is an *E*-semigroup.

Theorem 3.1. In any idempotent-surjective semigroup S, $\sigma \cap \eta = 1_S$ if and only if S is a USG-semigroup.

Proof. Let $\sigma \cap \eta = 1_S$. Then S is a subdirect product of the group S/σ and the semilattice S/η , so S is an idempotent-surjective E-semigroup. In particular, the least Clifford congruence ξ exists on S. Also, $\xi \subseteq \sigma \cap \eta$ and so $\xi = 1_S$. Hence S is a semilattice of groups. Thus $\mathcal{H} = \eta$. Let $(x, e) \in \sigma$ (where $x \in S, e \in E_S$). Then (since $x \in \mathcal{H}_f$ for some $f \in E_S \subseteq e\sigma$) $(x, f) \in \sigma \cap \mathcal{H} = \sigma \cap \eta = 1_S$, so $x = f \in E_S$. Consequently, S is E-unitary.

If ρ, v are two congruences on S such that $\rho \subseteq v$, then the map $\varphi : S/\rho \to S/v$, $(a\rho)\varphi = av \ (a \in S)$, is a well-defined epimorphism between these semigroups. Denote its kernel $\varphi\varphi^{-1}$ by

$$v/\rho = \{(a\rho, b\rho) \in S/\rho \times S/\rho : a v b\}.$$

Then $(S/\rho)/(v/\rho) \cong S/v$. Also, each congruence α on S/ρ is of the form v/ρ , where $v \supseteq \rho$ is a congruence on S. Indeed, the relation v, defined on S by: a v b if and only if $(a\rho, b\rho) \in \alpha$, is a congruence on S such that $\rho \subseteq v$ and $\alpha = v/\rho$. Finally, let $\rho \subseteq v_1, v_2$ (where v_1, v_2 are congruences on S). Then $(v_1/\rho) \cap (v_2/\rho) = (v_1 \cap v_2)/\rho$, and $(v_1 \cap v_2)/\rho = 1_{S/\rho}$ implies that $\rho = v_1 \cap v_2$.

Note that if a class C of semigroups is closed under homomorphic images and the least C-congruence $\rho_S^{\mathcal{C}}$ on a semigroup S exists, then the interval $[\rho_S^{\mathcal{C}}, S \times S]$ consists of all C-congruences on S and is a complete sublattice of C(S).

Theorem 3.2. Let C_1 , C_2 and C_3 be some classes of semigroups; $\rho_A^{C_1}$, $\rho_A^{C_2}$ be the least C_1 -congruence, C_2 -congruence on any semigroup A, respectively, such that $A \in C_3$ if and only if $\rho_A^{C_1} \cap \rho_A^{C_2} = 1_A$. Then the intersection of a C_1 -congruence and a C_2 -congruence on a semigroup S is a C_3 -congruence. Conversely, every C_3 -congruence on S can be expressed in this way.

Proof. Let ρ_i be a C_i -congruence on S (for i = 1, 2). Put $\rho = \rho_1 \cap \rho_2$ and observe that ρ_1/ρ is a C_1 -congruence, ρ_2/ρ is a C_2 -congruence on S/ρ . Since $(\rho_1/\rho) \cap (\rho_2/\rho)$ is the identity relation on S/ρ , then $\rho_{S/\rho}^{C_1} \cap \rho_{S/\rho}^{C_2} = 1_{S/\rho}$. Thus $S/\rho \in C_3$, and so $\rho = \rho_1 \cap \rho_2$ is a C_3 -congruence on S.

Conversely, let ρ be any C_3 -congruence on S, $\rho_1/\rho = \rho_{S/\rho}^{C_1}$, $\rho_2/\rho = \rho_{S/\rho}^{C_2}$, where $\rho \subseteq \rho_1, \rho_2$. Then ρ_i is a C_i -congruence on S (for i = 1, 2). Furthermore,

$$(\rho_1 \cap \rho_2)/\rho = \rho_{S/\rho}^{\mathcal{C}_1} \cap \rho_{S/\rho}^{\mathcal{C}_1} = \mathbb{1}_{S/\rho}.$$

Thus $\rho = \rho_1 \cap \rho_2$, as required.

Remark 3.3. One can modify Theorem 3.2 for any type of a universal algebra.

The following theorem describes all USG-congruences on idempotent-surjective semigroups.

Theorem 3.4. The intersection of a group congruence ν and a semilattice congruence γ on an idempotent-surjective semigroup S is a USG-congruence.

Conversely, any USG-congruence ρ on S can be expressed in this way, and ν, γ are uniquely determined by ρ .

Proof. Note that the class of all idempotent-surjective semigroups is closed under homomorphic images. All assertions of the theorem except a uniqueness follows from Theorems 3.1, 3.2 (see the proof of Theorem 3.2).

Let $\rho = \nu_1 \cap \gamma_1 = \nu_2 \cap \gamma_2$, where ν_i is a group congruence and γ_i is a semilattice congruence on S (i = 1, 2), and let $(a, b) \in \gamma_1$. Since $\gamma_1 \cap \gamma_2$ is a band congruence, then there are $e, f \in E_S$ such that $(a, e) \in \gamma_1 \cap \gamma_2$, $(e, f) \in \nu_1$ and $(f, b) \in \gamma_1 \cap \gamma_2$. In fact, $(e, f) \in \gamma_1 \cap \nu_1 = \gamma_2 \cap \nu_2 \subseteq \gamma_2$. Hence $(a, b) \in \gamma_2$. Thus $\gamma_1 \subseteq \gamma_2$. Similarly, we obtain the opposite inclusion, so $\gamma_1 = \gamma_2$. Put $\gamma_1 = \gamma_2 = \gamma$. Let $(a, b) \in \nu_1$. Then $(aab, abb) \in \nu_1 \cap \gamma \subseteq \nu_2$. Hence $(a, b) \in \nu_2$ (by cancellation), therefore, $\nu_1 \subseteq \nu_2$. By symmetry, $\nu_2 \subseteq \nu_1$. Consequently, $\nu_1 = \nu_2$, as required.

Corollary 3.5. The relation $\sigma \cap \eta$ is the least USG-congruence on an arbitrary idempotent-surjective semigroup S.

Corollary 3.6. An idempotent-surjective semigroup is a subdirect product of a group and a semilattice if and only if it is a USG-semigroup.

Proof. Let $S \subseteq G \times Y$ be a subdirect product of a group G and a semilattice Y. Then the two projection maps induce on S a group congruence and a semilattice congruence. The intersection of these congruences is the equality relation on S. Thus $\sigma \cap \eta = 1_S$, so S is a USG-semigroup (Theorem 3.1).

The converse implication is clear.

Lemma 3.7. Let S be an E-unitary idempotent-surjective semigroup. Then S/ξ is a USG-semigroup.

Proof. Let S be E-unitary. Then every η -class of S is E-unitary, too. In the light of Theorem 2.6, ξ is idempotent pure. Hence ξ is E-unitary (Corollary 2.9). Thus S/ξ is a USG-semigroup.

One can show without difficulty that the least *E*-unitary congruence π on an arbitrary *E*-inversive semigroup exists.

Lemma 3.8. Let S be an idempotent-surjective R-semigroup. Then the relation

 $(\xi \lor \pi)/\pi$

is the least Clifford congruence on S/π .

Proof. Indeed, $S/(\xi \vee \pi)$ is a Clifford semigroup, so $(\xi \vee \pi)/\pi$ is a semilattice of groups congruence on S/π , since $S/(\xi \vee \pi) \cong (S/\pi)/((\xi \vee \pi)/\pi)$. On the other hand, if α is a semilattice of groups congruence on S/π , then $\alpha = \rho/\pi$, where $\pi \subseteq \rho$. Since $(S/\pi)/(\rho/\pi) \cong S/\rho$, then ρ is a Clifford congruence on S, so $\pi, \xi \subseteq \rho$. Hence $\xi \vee \pi \subseteq \rho$. Thus $(\xi \vee \pi)/\pi \subseteq \rho/\pi = \alpha$, as required.

Theorem 3.9. In any idempotent-surjective R-semigroup S,

$$\sigma \cap \eta = \xi \vee \pi.$$

Proof. We have just seen that $S/(\xi \lor \pi) \cong (S/\pi)/((\xi \lor \pi)/\pi)$. By Lemmas 3.7, 3.8, $(S/\pi)/((\xi \lor \pi)/\pi)$ is an *E*-unitary semilattice of groups and so $S/(\xi \lor \pi)$ is also an *E*-unitary semilattice of groups. Thus $\xi \lor \pi$ is a USG-congruence on *S*. Moreover, $\xi \subseteq \sigma \cap \eta$ and $\pi \subseteq \sigma \cap \eta$. Hence $\xi \lor \pi \subseteq \sigma \cap \eta$. Thus $\xi \lor \pi = \sigma \cap \eta$ (because $\sigma \cap \eta$ is the least USG-congruence on *S*).

Corollary 3.10. In any E-unitary idempotent-surjective semigroup,

$$\xi = \sigma \cap \eta. \qquad \Box$$

4. The condition $\pi \cap \xi = 1_S$

In this section we characterize those idempotent-surjective R-semigroups S which are a subdirect product of an E-unitary semigroup and a Clifford semigroup, i.e., those semigroups S for which $\pi \cap \xi$ is the identity relation. Since E-unitary semigroups and Clifford semigroups are both E-semigroups, then S are E-semigroups, too.

In [2] Edwards defined the relation μ on a semigroup S by

$$(a,b) \in \mu \iff \begin{cases} (x \mathcal{L} ax \text{ or } x \mathcal{L} bx) \Longrightarrow ax \mathcal{H} bx, \\ (x \mathcal{R} xa \text{ or } x \mathcal{R} xb) \Longrightarrow xa \mathcal{H} xb, \end{cases}$$

where x is an arbitrary element of Reg(S). Furthermore, he proved in [3] that μ is the maximum *idempotent-separating* congruence on an arbitrary idempotent-surjective semigroup S (that is, $\mu \cap (E_S \times E_S) = 1_S$).

Recall that a semigroup S is:

- fundamental if $\mu = 1_S$ [1];
- η -simple if $\eta = S \times S$ [20].

Note that if an *E*-inversive semigroup *S* is η -simple, then the least Clifford congruence ξ coincides with σ . Indeed, let ρ be a Clifford congruence on *S*. Since S/ρ is a Clifford semigroup, then the least semilattice congruence on S/ρ is \mathcal{H} . Define a relation ε on *S*, as follows: $(a,b) \in \varepsilon$ if $(a\rho)\mathcal{H}(b\rho)$. Then $\mathcal{H} = \varepsilon/\rho$, so ε is a semilattice congruence on *S*, since $(S/\rho)/\mathcal{H} \cong S/\varepsilon$. Thus $(a\rho)\mathcal{H}(b\rho)$ for all $a, b \in S$. Consequently, S/ρ is a group.

Recall that π denotes the least E-unitary congruence on an E-inversive semigroup. Clearly, $\pi \subseteq \sigma$ (the least group congruence).

From the last two paragraphs we obtain the following corollary.

Corollary 4.1. Let S be an η -simple E-inversive semigroup. Then S is E-unitary if and only if $\pi \cap \xi = 1_S$. \square

Proposition 4.2. Let S be an idempotent-surjective R-semigroup, $\pi \cap \xi = 1_S$. Then S is a semilattice of $(\eta$ -simple) E-unitary E-inversive semigroups.

Proof. It is sufficient to show that every η -class of S is E-unitary. Let $a \in S$. Then the restriction of π to $a\eta$ is an E-unitary congruence on $a\eta$ and the restriction of ξ to $a\eta$ is a group congruence on $a\eta$. From the assumption of the proposition follows that the intersection of these two congruences is the identity relation on $a\eta$, so the intersection of the least *E*-unitary congruence and the least Clifford congruence on $a\eta$ is also the identity relation. In the light of Corollary 4.1, $a\eta$ is E-unitary.

Theorem 4.3. Let S be a fundamental idempotent-surjective R-semigroup. Then $\pi \cap \xi = 1_S$ if and only if S is E-unitary.

Proof. Let $\pi \cap \xi = 1_S$; $e, f \in E_S$. If $(e, f) \in \pi$, then $(e, f) \in \eta$. Hence $(e, f) \in \xi$. Thus e = f, so $\pi \subseteq \mu = 1_S$. Consequently, S is E-unitary.

The converse implication is trivial.

Remark 4.4. The above theorem is valid for any C-congruence ρ (instead of π) contained in η (i.e., if we replace in the theorem π by ρ , then we must replace "*E*-unitary" with "C-semigroup").

Recall from [7] that (for idempotent-surjective semigroups) every congruence of the interval $[\pi, \sigma]$ is *E*-unitary. Also, $\ker(\rho) = \ker(\pi)$ for every $\rho \in [\pi, \sigma]$.

We have mentioned above that the class of idempotent-surjective semigroups is closed under homomorphic images. Using Hall's observation, one can prove without difficulty that the class of all idempotent-surjective *R*-semigroups possess this property. It is also known that the class of all structurally regular semigroups is closed under taking homomorphic images [14].

For regular semigroups $S, \mu \cap \tau = 1_S$. The next theorem gives necessary and sufficient conditions for $\pi \cap \xi$ to be the identity relation on idempotent-surjective R-semigroups S such that $\mu \cap \tau = 1_S$ (in particular, the theorem is valid, too, for structurally regular semigroups having this additional property).

Remark 4.5. Using Lemma 1.2 [17], Janet Mills proved for orthodox semigroups a similar result to the next theorem (see Theorem 3.5 [17]). However, the proof of her lemma is not correct (see [6]). Moreover, in [6] using different methods, the author showed the theorem of Mills (with a very important additional condition). Finally, notice that the implication " $(f) \Rightarrow (g)$ " in the following theorem is proved in a different way than the corresponding implication in [6].

Theorem 4.6. If S is an idempotent-surjective R-semigroup such that $\mu \cap \tau = 1_S$, then the following conditions are equivalent:

- (a) $\pi \cap \xi = 1_S;$
- (b) S is a semilattice of E-unitary E-inversive semigroups and $\pi \subseteq \mu$;
- (c) S is a semilattice of E-unitary E-inversive semigroups and $\pi \subseteq \mu \cap \sigma \subseteq \sigma$;
- (d) S is a semilattice of E-unitary E-inversive semigroups and the congruence $\mu \cap \sigma$ is E-unitary;
- (e) S is a semilattice of E-unitary E-inversive semigroups and at least one idempotent-separating congruence on S (say ρ) is E-unitary;
- (f) S is a subdirect product of an E-unitary idempotent-surjective semigroup and a Clifford semigroup;
- (g) S is a semilattice of E-unitary E-inversive semigroups and the relation $\mathcal{H} \cap \sigma$ is E-unitary congruence on S.

Proof. $(a) \Longrightarrow (b)$. This implication follows directly from Proposition 4.2 and from the proof of Theorem 4.3.

- (b) \implies (c). This is clear, since $\pi \subseteq \sigma$.
- (c) \implies (d). In that case, $\mu \cap \sigma \in [\pi, \sigma]$, so $\mu \cap \sigma$ is *E*-unitary.
- $(d) \implies (e)$. This is evident.

(e) \implies (a). In such case, $\pi \subseteq \rho \subseteq \mu$. Hence $\pi \cap \xi \subseteq \mu \cap \xi = \mu \cap (\eta \cap \tau)$ (see Corollary 2.7 and Theorem 2.6). Thus $\pi \cap \xi \subseteq \mu \cap \tau = 1_S$.

 $(a) \implies (f)$. This is clear.

 $(f) \Longrightarrow (g)$. Suppose that S is a subdirect product of an E-unitary idempotentsurjective semigroup A and a Clifford semigroup T. Notice that $(a,t)(\mathcal{H}\cap\sigma)(b,w)$ in S if and only if $(a,b) \in \mathcal{H} \cap \sigma$ in A and $(t,w) \in \mathcal{H} \cap \sigma = \eta \cap \sigma$ in T, i.e., if and only if a = b (Theorem 5.5 [5]) and $(t,w) \in \eta \cap \sigma$ in T. This implies that $\mathcal{H} \cap \sigma$ is a congruence on S. Finally, we will show that the congruence $\mathcal{H} \cap \sigma$ is E-unitary. Let

$$(e,g)(a,t)(\mathcal{H}\cap\sigma)(f,h),$$

where $(e, g), (f, h) \in E_S$, then ea = f and $(gt, h) \in \mathcal{H} \cap \sigma$ in T. It follows that

$$a \in E_A$$
 & $t \in \ker(\sigma_T)$.

Hence

$$(t,i) \in \mathcal{H}^T \cap \sigma_T$$

for some $i \in E_T$, since T is a semilattice of groups. Consequently,

$$(a,t)(\mathcal{H}\cap\sigma)(a,i),$$

where $(a, i) \in E_S$, so $\mathcal{H} \cap \sigma$ is *E*-unitary. (g) \implies (e). This is evident.

References

- D. Easdown, Biorder-preserving coextensions of fundamental semigroups, Proc. Edinburgh Math. Soc. 31 (1988), 463-467.
- [2] P.M. Edwards, Eventually regular semigroups, Bull. Austral. Math. Soc. 28 (1983), 23-38.
- [3] P.M. Edwards, Maximizing a congruence with respect to its partition of idempotents, Semigroup Forum 39 (1985), 313-317.
- [4] R.S. Gigoń, Some results on E-inversive semigroups, Quasigroups Relat. Systems 20 (2012), 53-60.
- [5] R.S. Gigoń, Congruences and group congruences on a semigroup, Semigroup Forum (in print), doi:10.1007/s00233-012-9425-z.
- [6] **R.S. Gigoń**, Comment on the paper of Janet E. Mills: "Certain congruences on orthodox semigroups", (to appear in Studia Sci. Math. Hungarica).
- [7] **R.S. Gigoń**, On the lattice of congruences on idempotent-regular-surjective semigroups, (to appear in Communications in Algebra).
- [8] **R.S. Gigoń**, Regular congruences on an idempotent-regular-surjective semigroup, Bull. Australian Math. Soc. (in print).
- [9] G. Gomes, A characterization of the group congruences on a semigroup, Semigroup Forum 46 (1993), 48-53.
- [10] **T.E. Hall**, On regular semigroups, J. Algebra **24** (1973), 1–24.
- [11] J.M. Howie, An introduction to semigroup theory, Academic Press, London (1976).
- [12] J.M. Howie, Fundamentals of semigroup theory, Oxford University Press, New York (1995).
- [13] J.M. Howie and G. Lallement, Certain fundamental congruences on a regular semigroup, Proc. Glasgow Math. Soc. 7 (1966), 145–159.
- [14] S.J.L. Kopamu, The concept of structural regularity, Portugaliae Math. 53 (1996), 435-456.
- [15] G. Lallement, Congruences et équivalences de Green sur un demi-groupe régulier, C. R. Acad. Sci. Paris 262A (1966), 613-616.
- [16] D.R. LaTorre, The least semilattice of groups congruence on a regular semigroup, Semigroup Forum 27 (1983), 319–329.

- [17] J.E. Mills, Certain congruences on orthodox semigroups, Pac. J. Math. 64 (1976), 317-226.
- [18] H. Mitsch and M. Petrich, Restricting idempotents in E-inversive semigroups, Acta Sci. Math. (Szeged) 67 (2001), 555-570.
- [19] M. Petrich, Inverse semigroups, Wiley, New York (1984).
- [20] **T. Tamura**, Note of the greatest semilattice decomposition of semigroups, Semigroup Forum 4 (1972), 255-261.
- [21] G. Thierrin, Demi-groupes inversés et rectangulaires, Bull. Cl. Sci. Acad. Roy. Belgique 41 (1955), 83-92.

Received August 10, 2012 Revised December 20, 2012

Institute of Mathematics and Computer Science, Wrocław University of Technology, Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland E-mail: romekgigon@tlen.pl